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Summary. As we learn from the literature, flexibility in
choosing synchronization operations greatly simplifies the
task of designing highly concurrent programs. Unfortu-
nately, existing hardware is inflexible and is at best on the
level of a ¸oad—¸inked/Store—Conditional operation on
a single word. Building on the hardware based transac-
tional synchronization methodology of Herlihy and Moss,
we offer software transactional memory (STM), a novel
software method for supporting flexible transactional pro-
gramming of synchronization operations. STM is non-
blocking, and can be implemented on existing machines
using only a ¸oad—¸inked/Store—Conditional operation.
We use STM to provide a general highly concurrent
method for translating sequential object implementations
to non-blocking ones based on implementing a k-word
compare&swap STM-transaction. Empirical evidence col-
lected on simulated multiprocessor architectures shows
that our method always outperforms the non-blocking
translation methods in the style of Barnes, and outper-
forms Herlihy’s translation method for sufficiently large
numbers of processors. The key to the efficiency of our
software-transactional approach is that unlike Barnes
style methods, it is not based on a costly ‘‘recursive help-
ing’’ policy.

Key words: Multiprocessor synchronization — Lock-free
— Transactional memory — Distributed shared memory

1 Introduction

A major obstacle on the way to making multiprocessor
machines widely acceptable is the difficulty of program-
mers in designing highly concurrent programs and data
structures. Given the growing realization that unpredict-
able delay is an increasingly serious problem in modern
multiprocessor architectures, we argue that conventional
techniques for implementing concurrent objects by means
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of critical sections are unsuitable, since they limit parallel-
ism, increase contention for memory and interconnect,
and make the system vulnerable to timing anomalies
and processor failures. The key to highly concurrent
programming is to decrease the number and size of
critical sections a multiprocessor program uses (possibly
eliminating critical sections altogether) by constructing
classes of implementations that are non-blocking [7, 15,
16]. As we learn from the literature, flexibility in choos-
ing the synchronization operations greatly simplifies the
task of designing non-blocking concurrent programs.
Examples are the non-blocking data-structures of
Massalin and Pu [24] which use a Compare&Swap on
two words, Anderson’s [2] parallel path compression
on lists which uses a special Splice operation, the counting
networks of [5] which use combination of Fetch&Comp-
lement and Fetch&Inc, Israeli and Rappoport’s Heap
[20] which can be implemented using a three-word
Compare&Swap, and many more. Unfortunately, most
of the current or soon to be developed architectures
support operations on the level of a ¸oad—¸inked/
Store—Conditional operation for a single word, making
most of these highly concurrent algorithms impractical in
the near future.

Bershad [7] suggested to overcome the problem of
providing efficient programming primitives on existing
machines by employing operating system support. Herlihy
and Moss [17] have proposed an ingenious hardware
solution: transactional memory. By adding a specialized
associative cache and making several minor changes to the
cache consistency protocols, they are able to support
a flexible transactional language for writing synchroniza-
tion operations. Any synchronization operation can be
written as a transaction and executed using an optimistic
algorithm built into the consistency protocol. Unfortu-
nately though, this solution is blocking.

This paper proposes to adopt the transactional ap-
proach, but not its hardware based implementation. We
introduce software transactional memory (STM), a novel
design that supports flexible transactional programming
of synchronization operations in software. Though we
cannot aim for the same overall performance, our software
transactional memory has clear advantages in terms of
applicability to today’s machines, portability among



machines, and resiliency in the face of timing anomalies
and processor failures.

We focus on implementations of a software transac-
tional memory that support static transactions, that is,
transactions which access a pre-determined sequence of
locations. This class includes most of the known and
proposed synchronization primitives in the literature.

1.1 STM in a nutshell

In a non-faulty environment, the way to ensure the atom-
icity of the operations is usually based on locking or
acquiring exclusive ownerships on the memory locations
accessed by a given operation Op. If a transaction cannot
acquire an ownership it fails, and releases the ownerships
already acquired. Otherwise, it succeeds in executing Op
and frees the ownerships acquired. To guarantee liveness,
one must first eliminate deadlocks, which for static trans-
actions is done by acquiring the ownerships needed in
some increasing order. In order to continue ensuring live-
ness in a faulty environment, we must make certain that
every transaction completes even if the process which
executes it has been delayed, swapped out, or crashed. This
is achieved by a ‘‘helping’’ methodology, forcing other
transactions which are trying to acquire the same location
to help the owner of this location to complete its own
transaction. The key feature in the transactional approach
is that in order to free a location one need only help its
single ‘‘owner’’ transaction. Moreover, one can effectively
avoid the overhead of coordination among several trans-
actions attempting to help release a location by employing
a ‘‘reactive’’ helping policy which we call non-redundant-
helping.

1.2 Sequential-to-non-blocking translation

One can use STM to provide a general highly concurrent
method for translating sequential object implementations
into non-blocking ones based on the caching approach of
[6, 28]. The approach is straightforward: use transactional
memory to implement any collection of changes to
a shared object, performing them as an atomic k-word
Compare&Swap transaction (see Fig. 2) on the desired
locations. The non-blocking STM implementation
guarantees that some transaction will always succeed.

Herlihy, in [16] (referred to in the sequel as Herlihy’s
method), was the first to offer a general transformation
of sequential objects into non-blocking concurrent
ones. According to his methodology, updating a data
structure is done by first copying it into a new allocated
block of memory, making the changes on the new version
and tentatively switching the pointer to the new data
structure, all that with the help of ¸oad—¸inked/
Store—Conditional atomic operations. Unfortunately,
Herlihy’s method does not provide a suitable solution for
large data structures and like the standard approach of
locking the whole object, does not support concurrent
updating. Alemany and Felten [4] and LaMarca [22]
suggested to improve the efficiency of this general method
at the price of losing portability, by using operating system
support making a set of strong assumptions on system
behavior.

To overcome the limitations of Herlihy’s method,
Barnes, in [6], introduced his caching method, that avoids
copying the whole object and allows concurrent disjoint
updating. A similar approach was independently proposed
by Turek, Shasha, and Prakash [28]. According to Barnes,
a process first ‘‘simulates’’ the execution of the updating in
its private memory, i.e., reading a location for the first time
is done from the shared memory but writing is done into
the private memory. Then, the process uses a non-blocking
k-word Read-Modify-¼rite atomic operation which
checks if the values contained in the memory are equiva-
lent to the value read in the cache update. If this is the case,
the operation stores the new values in the memory. Other-
wise, the process restarts from the beginning. Barnes sug-
gested to implement the k-word Read-Modify-Write by
locking locations in ascending key. The key to achieving
the non-blocking resilient behavior in the caching
approach [6, 28] is the cooperative method: whenever
a process needs (depends on) a location already locked by
another process it helps the locking process to complete its
own operation, and this is done recursively along the
dependency chain. Though Barnes as well as Turek,
Shasha, and Prakash are vague on specific implemen-
tation details, a recent paper by Israeli and Rappoport
[21] gives, using the cooperative method, a clean and
streamlined implementation of a non-blocking k-word
Compare&Swap using ¸oad—¸inked/Store—Conditional.
Our STM based translation method is similar to that of
Israeli and Rappoport in that it uses the Barnes caching
algorithm to acquire and release locations. However, it
introduces a new transactional approach to providing non-
blocking resilient behavior. We do so in order to overcome
the two major drawbacks of the general cooperative
method [6, 21, 28]:

— The cooperative method’s recursive structure of
‘‘helping’’ frequently causes processes to help other pro-
cesses which access a disjoint part of the data structure.

— Unlike STM’s transactional k-word Compare&Swap
operations which mostly fail on the transaction level and
are thus not ‘‘helped,’’ a high percentage of cooperative
k-word Compare&Swap operations fail but generate
contention since they are nevertheless helped by other
processes.

Take for example a process P which executes a 2-word
Compare&Swap operation on locations a and b. Assume
that some other process Q already owns b. According to
the cooperative method, P first helps Q complete its opera-
tion and only then acquires b and continues on its own
operation. However, in many cases P’s Compare&Swap
operation will not change the memory since Q changed
b after P already read it, and P will have to retry. All the
processes waiting for location a will have to first help P,
then Q, and again P, when in any case P’s operation will
likely fail. Moreover, after P has acquired b, all the pro-
cesses requesting b will also redundantly help P.

On the other hand, if P executes the 2-word
Compare&Swap operation as an STM transaction, P will
fail to acquire b, release a, help Q, and restart. The pro-
cesses waiting for a will have to help only P. The processes
waiting for b will not have to help P. Finally, if Q has not
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changed b, P will most likely find the value of b in its own
cache.

1.3 Empirical results

To make sequential-to-non-blocking translation methods
acceptable, one needs to reduce the performance overhead
one has to pay when the system is stable (non-faulty). We
present (see Sect. 5) the first experimental comparison of
the performance under stable conditions of the translation
techniques cited above. We use the well accepted Proteus
Parallel Hardware Simulator [8, 9].

We found that on a simulated Alewife [1] cache-coher-
ent distributed shared-memory machine, as the potential
for concurrency in accessing the object grows, the STM
non-blocking translation method outperforms both
Herlihy’s method and the cooperative method. Unfortu-
nately, our experiments show that in general STM and
other non-blocking techniques are inferior to standard
non-resilient lock-based methods such as queue-locks [25].
Results for a shared bus architecture were similar in flavor.

In summary, STM offers a novel software package of
flexible coordination operations for the design of highly
concurrent shared objects, which ensures resiliency in
faulty runs and improved performance in non-faulty ones.
The following section introduces STM. In Sects. 3 and
4 we describe our implementation and its correctness
proof. Finally, in Sect. 5 we present our empirical perfor-
mance evaluation.

2 Transactional memory

We begin by presenting software transactional memory,
a variant of the transactional memory of [17]. A transac-
tion is a finite sequence of local and shared memory
machine instructions:

Read-transactional — reads the value of a shared location
into a local register.

¼rite-transactional — stores the contents of a local register
into a shared location.

The data set of a transaction is the set of shared locations
accessed by the Read—transactional and ¼rite—transac-
tional instructions. Any transaction may either fail, or
complete successfully, in which case its charges are visible
atomically to other processes. For example, dequeuing
a value from the head of a doubly linked list as in Fig. 1
may be performed as a transaction. If the transaction
terminates successfully it returns the dequeued item or an
Empty value.

A k-word Compare&Swap transaction as in Fig. 2 is
a transaction which gets as parameters the data set, its size,
and two vectors Old and New of the data set’s size. A
successful k-word Compare&Swap transaction checks
whether the values stored in the memory are equivalent to
Old. In that case, the transaction stores the New values
into the memory and returns a C&S-Success value, other-
wise it returns C&S-Failure.

A software transactional memory (STM) is a shared
object which behaves like a memory that supports mul-

Dequeue ( )
BeginTransaction

DeletedItem"Read-transactional(Head)
if DeletedItem"Null

ReturnedValue"Empty
else

¼rite-transactional(Head, DeletedItemC.Next)
if DeletedItemC.Next"Null

¼rite-transactional (Tail, Null)
ReturnedValue"DeletedItemC.Value

EndTransaction
end Dequeue

Fig. 1. A non static transaction

k—word-C&S(Size,DataSet[],Old[ ],New[])
BeginTransaction

for i"1 to Size do
if Read-transactional(Dataset[i]])9Old[i]

ReturnedValue"C&S-Failure
ExitTransaction

for i"1 to Size do
¼rite-transactional(DataSet[i], New[i])

ReturnedValue"C&S-Success
EndTransaction

end k—word—C&S

Fig. 2. A static transaction

tiple changes to its addresses by means of transactions.
A transaction is a thread of control that applies a finite
sequence of primitive operations to memory.

A static transaction is a special form of transaction in
which the data set is known in advance, and can thus be
thought of as an atomic procedure which gets as para-
meters the data set and a deterministic transition function
which determines the new values to be stored in the data
set. This procedure updates the memory and returns the
previous value stored. This paper will focus on implemen-
tations of a transactional memory that supports static
transactions, a class that includes most of the known and
proposed synchronization operations in the literature. The
k-word Compare&Swap transaction in Fig. 2 is an example
of a static transaction, while the Dequeue procedure in
Fig. 1 is not.

An STM implementation is wait-free if any process
which repeatedly attempts to execute a given transaction
terminates successfully after a finite number of machine
steps. It is non-blocking if the repeated attempts to execute
some transaction by a process implies that some process
(not necessarily the same one and with a possibly different
transaction) will terminate successfully after a finite num-
ber of machine steps in the whole system. An STM imple-
mentation is swap tolerant if it is non-blocking under the
assumption that a process cannot be swapped out infinite-
ly many times. The hardware implemented transactions of
[17] could in theory repeatedly fail forever, it processes try
to write two locations in different order (as when updating
a doubly linked list). However, if used only for static
transactions, their implementation can be made swap
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tolerant (but not non-blocking, since a single process
running alone and being repeatedly swapped out during
the execution of a transaction will never terminate
successfully).

2.1 The system model

Our computation model follows Herlihy and Wing [14]
and can also be cast in terms of the I/O automata model of
Lynch and Tuttle [23]. A concurrent system consists of
a collection of processes. Processes communicate through
shared data structures called objects. Each object has a set
of primitive operations that provide the only means to
manipulate that object. Each process is a sequential thread
of control [14] which applies a sequence of operations to
objects by issuing an invocation and receiving the asso-
ciated response. A history is a sequence of invocations and
responses of some system execution. Each history induces
a ‘‘real-time’’ order of operations (P) where an operation
A precedes another operation B if A’s response occurs
before B’s invocation. Two operations are concurrent if
they are unrelated by the real-time order. A sequential
history is a history in which each invocation is followed
immediately by its corresponding response. The sequential
specification of an object is the set of legal sequential
histories associated with it. The basic correctness require-
ment for a concurrent implementation is linearizability
[14]: every concurrent history is ‘‘equivalent’’ to some
legal sequential history which is consistent with the partial
real-time order induced by the concurrent history. In a lin-
earizable implementation, operations appear to take effect
atomically at some point between their invocation and
response. In our model, every shared memory location l of
a multiprocessor machine’s memory is formally modeled
as an object which provides every processor i"12 n
four types of possible operations, with the following se-
quential specification:

Readi(l) reads location l and returns its value v.
¸oad—¸inkedi(l) reads location l and returns its value v.

Marks location l as ‘‘read by i.’’
Store—Conditionali(l, v) if location l is marked as ‘‘read by

i,’’ the operation writes the value v to l, erases all existing
marks by other processors on l and returns a success
status. Otherwise returns a failure status.

¼ritei(l, v) writes the value v to location l, erases all exist-
ing ‘‘read by’’ marks by other processors on l.

A more detailed formal specification of these operation
can be found in [15, 16].

2.2 A sequential specification of STM

The following is the sequential specification of STM. Let
¸ be a set of locations. A memory state is a function
s :¸>» which returns for each location l of ¸ a value
from some set ». Let S be the set of all possible memory
states. A transition function t : S>S, is a computable func-
tion which gets as a parameter a state and returns a new
state. Given a subset ds-¸, we say that a transition
function t is ds dependent, if the following conditions hold:
(a) for every state s and every location l, if lNds then

t(s)(l)"s (l ); (b) if s
1

and s
2

are two states s.t. for every
l3ds, s

1
(l )"s

2
(l ), then for every l3ds t (s

1
) (l )"t(s

2
) (l). In

other words, (a) states that locations not in ds are not
affected and (b) states that effects of a transaction depend
only on locations in ds.

Given a set ¸ of locations, a Static ¹ransactional
Memory over ¸ is a concurrent object which provides
every process i with a ¹ran

i
(DataSet, f, r, status) operation

(we add the subscript to denote that this operation is
executed by i, and omit it when the id of the processor
performing the operation is unimportant). It has as input
DataSet — a subset of ¸, and f — a transition function which
is Dataset dependent. It returns a function r : DataSet>»

and a boolean value status.
Let h"o

1
o
2
o
32

be a finite or infinite sequential
history where o

i
is the ith operation executed. For every

finite prefix hm"o
1
o
2
o
32

o
m

of h, we define the termina-
ting state of hm, ¹S(hm) in the following inductive way: If
m"0 then ¹S (hm)"e where e is the function e(l)"0
for every l3¸. If m'0 then assume w.l.o.g. that
o
m
"¹ran (DS, f, r, status) and let hm~1"o

1
o
2
o
32

o
m~1

.
If status"success then ¹S (hm)"f (¹S(hm~1)) otherwise
¹S(hm)"¹S (hm~1).

We can now proceed to define the sequential specifica-
tion of the static transactional memory. Given a function
f :A>B and A@-A, we define the restriction of f on A@
(denoted f pA@) to be the function f @ :A@>B s.t.
∀a3A@f @ (a)"f (a). We require that a correct implementa-
tion of an STM object meet the following sequential
specification:

Definition 2.1. The sequential specification includes the set
of sequential histories, such that for each finite or infinite
history h"o

1
o
2
o
32

, for all k, if o
k
"¹ran(DataSet, f, r,

status) and status"success then r"¹S(o
1
o
2
o
32

o
k~1

)p
DataSet.

In other words, each concurrent execution can be lin-
earized to a sequential one, in which each successful trans-
action returns the values that were stored in the Dataset
locations before the transaction started.

3 A non-blocking implementation of STM

We implement a non-blocking static STM of size M using
the following data structures (See Fig. 3):

— Memory [M], a vector which contains the data stored
in the transactional memory.

— Ownerships [M], a vector which determines for any
cell in Memory, which transaction owns it.

Each process i keeps in the shared memory a record,
pointed to by Rec

i
, that will be used to store information

on the current transaction it initiated. It has the following
fields: Size which contains the size of the data set. Add[]
— a vector which contains the data set addresses in increas-
ing order. Old»alues[] a vector of the data set’s size whose
cells are initialized to Null at the beginning of every trans-
action. In case of a successful transaction this vector will
contain the former values stored in the involved locations.
The other fields are used to synchronize between the
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Fig. 3. STM implementation:
shared data structures

owner of the record and the processes which may event-
ually help its transactions. »ersion is an integer, initially 0,
which determines the instance number of the transaction.
This field is incremented every time the process terminates
a transaction.

A process i initiates the execution of a transaction by
calling the Start¹ransaction routine of Fig. 4. The Start-
¹ransaction routine first initializes the process’s record
and then declares the record as stable, ensuring that any
processors helping the transaction complete will read
a consistent description of the transaction. After executing
the transaction the process checks if the transaction has
succeeded, and if so returns the content of the vector
Old»alues.

The procedure ¹ransaction (Fig. 5), gets as parameters
Rec, the address of the record the transaction executed,
and a boolean value IsInitiator, indicating whether ¹rans-
action was called by the initiating process or by a helping
process. The parameter version contains the instance num-
ber of the record executed.1 This parameter is not used
when the routine is called by the initiating process since
the version field will never change during the call. ¹rans-
action, first tries to acquire ownership on the data set’s
locations by calling AquireOwnership. If it fails to do so,
then upon returning from AquireOwnership, the status field
will be set to (Failure, failadd). If the status field does not
have a value yet, the process sets it to (Success, 0). In case of
success the process writes the old values into the transac-
tion’s record, calculates the new values to be stored, writes
them to the memory and releases the ownerships. Other-
wise, the status field contains the location that caused the
failure. The process first releases the ownerships that it
already owns and, in the case that it is not a helping
process, it helps the transaction which owns the failing
location. Helping is performed only if the helped transac-
tion’s record is in a stable state. Since the procedure
AcquireOwnerships of Fig. 6 may be called either by the

1The use of this unbounded field can be avoided if an additional
»alidate operation is available [20, 21]. A standard 64 bit field will
however suffice in practice

Start¹ransaction(DataSet)
Initialize(Rec

i
, DataSet)

Rec
i
C.stable"True

¹ransaction(Rec
i
, Rec

i
C.version, True)

Rec
i
C.stable"False

Rec
i
C.version]]

If Rec
i
C .status"Success then

return(Success, Rec
i
C.OldValues)

else
return Failure

Initialize (Rec
i
,DataSet)

Rec
i
C.status"Null

Rec
i
C.AllWritten"Null

Rec
i
C.size"DDataSetD

for j"1 to DDataSet D do
Rec

i
C.Add[j]"DataSet[j]

Rec
i
C.OldValues[j]"Null

Fig. 4. Start&Transaction

initiator or by the helping processes, we must ensure that
(1) all processes will try to acquire ownership on the same
locations (this is done by checking the version between the
¸oad—¸inked and the Store—Conditional instructions)
(2) from the moment that the status of the transaction
becomes fixed, no additional ownerships are allowed for
that transaction. The second property is essential for prov-
ing not only atomicity but also the non-blocking property.
Any process which reads a free location must, before
acquiring ownership on it, confirm that the transaction
status is still undecided. This is done by writing (with
Store—Conditional) (Null, 0) in the status field. This pre-
vents any process that read the location in the past while it
was owned by a different transaction from setting the
status to Failure.

When writing the new values with ºpdateMemory as
in Fig. 6, the processes synchronize in order to prevent
a slow process from updating the memory after the owner-
ships have been released. To do so every process sets the
All¼ritten field to be True, after updating the memory and
before releasing the ownerships.

103



¹ransaction(rec, version, IsInitiator)
AcquireOwnerships(rec, version)
(status, failadd)"LL(recC.status)
if status"Null then

if (version9recC.version) then return
SC(recC.status, (Success, 0))

(status, failadd)"LL(recC.status)
if status"Success then

AgreeOld»alues(rec, version)
NewValues"CalcNewValues(recC.OldValues)
ºpdateMemory(rec, version, NewValues)
ReleaseOwnerships(rec, version)

else
ReleaseOwnerships(rec, version)
if IsInitiator then

failtran"Ownerships[failadd]
if failtran"Nobody then

return
else

failversion"failtranC.version
if failtranC.stable

¹ransaction(failtran, failversion, False)

Fig. 5. Transaction

4 Correctness proof

Given a run (we freely interchange between run and
history) of the STM implementation, the nth transaction
execution of process i is marked at ¹(i, n). The transaction
record for ¹ (i, n) is denoted as R

i
, and by definition only

process i updates R
i
C.version. It is thus clear that the

number n in ¹ (i, n) is equal to the content of R
i
C.version

during ¹(i, n)’s execution. The executing processes of
¹(i, n) consist of process i, called the initiator, and the
helping processes, those executing ¹ransaction with para-
meters (R

i
, n, False).

The following are the definitions of the register opera-
tions, where the superscript of an operation marks the id of
the process which executed it, and the subscript marks the
transaction instance that the process executes. Sometimes,
when subscript and superscript are not needed we will
omit them.

¼ i
T
(variable, value) Process i performs a ¼rite operation

on variable with value while executing transaction ¹.
Ri

T
(variable, value) Process i performs a Read operation on
variable which returns value while executing transaction
¹.

¸¸ i
T
(variable, value) Process i performs a ¸oad—¸inked op-

eration on variable which returns value while executing
¹.

SC i
T
(variable, value) Process i performs a successful

Store—Conditional operation on variable with value
while executing ¹.

R i
T
(U(variable)) is a short form for R i

T
(variable, value)?

U(value) for some predicate U.

Clearly, any implementation of transactional memory
which is based on an ownership policy only, without

AcquireOwnerships(rec, version)
transize"recC.size
for j"1 to size do

while true do
location"recC.add[j]
if LL(recC.status)9Null then return
owner"LL(Ownerships[recC.Add[j]])
if recC.version9version return
if owner"rec then exit while loop
if owner"Nobody then

if SC(recC.status, (Null,0)) then
if SC(Ownerships[location], rec) then exit while loop

else
if SC(recC.status, (Failure, j)) then return

ReleaseOwnerships(rec, version)
size"recC.size
for j"1 to size do

location"recC.Add[j]
if LL(Ownerships[location])"rec then

if recC.version9version then return
SC(Ownerships[location], Nobody)

AgreeOld»alues(rec, version)
size"recC.size
for j"1 to size do

location"recC.Add[j]
if LL(recC.OldValues[j])"Null then

if recC.version9version then return
SC(recC.OldValues[j], Memory[location])

ºpdateMemory(rec, version, newvalues)
size"recC.size
for j"1 to size do

location"recC.Add[j]
oldvalue"LL(Memory[location])
if recC.AllWritten then return
if version9recC.version then return
if oldvalues9newvalues[j] then

SC(Memory[location], newvalues[j])
if (not LL(recC.AllWritten)) then

if version9recC.version then return
SC(recC.AllWritten, True)

Fig. 6. Ownerships and Memory access

helping, will satisfy the linearizability requirement: if
a single process is able to lock all the needed memory
locations it will be able to update the memory atomically.
Consequently, in order to prove the linearizability of our
implementation, we must show that the fact that many
processes may execute the same transaction will behave
as if they were a single process running alone. In the
following proof we will first show that all the executing
processes of a transaction perform the same transaction
that the initiator intended. Then, we will prove that all the
executing processes agree on the final status of the transac-
tion. Finally, we will demonstrate that the executing pro-
cess of a successful transaction will update the memory
correctly.

The non-blocking property of the implementation will
be established by showing first that no executing process
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will ever be able to acquire an ownership after the transac-
tion has failed, and then showing that since locations are
acquired in increasing order, some transaction will event-
ually succeed.

4.1 Linearizability

We first show that although process i uses the same record
for all its transactions and may eventually change it while
some executing process reads its content, all the executing
processes of a transaction read a consistent description of
what is supposed to do.

Claim 4.1. Given an execution r of the STM implementa-
tion, the helping processes of a transaction ¹(i, n) in r read
the same data set vector which was stored by i. Any
executing process of ¹(i, n) which read a different data set
will not update any of the shared data structures.

Proof. Assume by way of contradiction that there is
a helping process j of ¹(i, n) which read a different
description of the transaction. That means that for some
location a from ¹(i, n)’s description, Rj

T (i,n)
(a, x) and

¼ i
T (i,n)

(a, y) but x9y. By the algorithm, only process
i updates the description fields in Rec

i
and it does it

only once per transaction. Assume first that
¼i

T (i,n)
(a, y)PRj

T (i, n)
(a, x). Since x9y, there is some write

operation ¼ i
T (i,n{)

(a, x) s.t.

¼ i
T (i,n)

(a, y)P¼ i
T (i,n{)

(a,x)PRj
T (i,n)

(a, x)

where n@'n. Since

¼i
T(i,n)

(Rec
i
C.version, n#1)P¼i

T(i,n{)
(a, x)PRj

T(i,n)
(a, x)

and all the helping process of ¹(n, i) compare n and
Rec

i
C.version before executing a SC operation, j will not,

from this point on, update any shared data structure.
Assume that Rj

T (i,n)
(a, x)P¼ i

T (i,n)
(a, y). By the algorithm

(lines 19, 20 in the ¹ransaction procedure),

Rj
T (i,n)

(Rec
i
C.version,n)PRj

T (i,n)
(Rec

i
C.stable, true)P

Rj
T (i,n)

(a, x),

and in that case

¼i
T (i,n~1)

(Rec
i
C.version, n)P¼i

T (i,n)
(Rec

i
C.stable, true)P

¼ i
T (i,n)

(a, y)

which is a contradiction to the description of the Start-
¹ransaction procedure. K

Next we show that all the executing processes of a trans-
action agree on its terminating status.

Claim 4.2. Assume that i and j are two executing processes
of some transaction ¹ (i, n). If i and j read different values
of the terminating status (line 6 in the ¹ransaction proced-
ure), at least one of them will henceforth not update the
shared data structures.

Proof. Assume by way of contradiction that

Rk
T (i,n)

(Rec
i
C.status, Failure)

and

Rj
T (i,n)

(Rec
i
C.status, Success),

and assume w.l.o.g. that

Rk
T(i,n)

(Rec
i
C.status, Failure)PRj

T(i,n)
(Rec

i
C.status, Success).

In that case, there is some process z such that

Rk
T (i,n)

(Rec
i
C.status, Failure)P¸¸k (Rec

i
C.status, Null)P

SCk (Rec
i
C .status, Success)P

Rj
T (i,n)

(Rec
i
C.status, Success).

Since i is the only process which initializes Rec
i
C.status,

it follows that

Rk
T (i,n)

(Rec
i
C.status, Failure)P¼z (Rec

i
C.status, Null)P

SCz (Rec
i
C.status, Success)P

Rj
T (i,n)

(Rec
i
C.status, Success).

By the algorithm

Rk
T (i,n)

(Rec
i
C.version, n)PRk

T (i,n)
(Rec

i
C.stable, true)P

Rk
T (i,n)

(Rec
i
C.status, Failure)

and

¼ i (Rec
i
C.version, n#1)P¼ i (Rec

i
C.status, Null).

We may therefore conclude that process j will not update
the shared data structures any more after executing
Rj

T (i,n)
(Rec

i
C.status, Success). K

Thanks to Claim 4.2, we can now define a transaction
as successful if its terminating status is Success and failing
otherwise. From the algorithm and Claim 4.2 it is clear
that executing processes of failing transactions will never
change the Memory data structure.

Claim 4.3. Every successful transaction has:

(a) only one executing process which writes Success as
the terminating status of the transaction and

(b) only one executing process who sets the All¼ritten
field to true.

Proof. Assume that during a successful transaction ¹(i,n),
one of those fields, f was updated by two executing pro-
cesses k and j. Both have executed

R
T (i,n)

(Rec
i
C.version, n)P¸¸

T (i,n)
( f, Null)P

R
T (i,n)

(Rec
i
C.version, n)P¼(Rec

i
C.stable, ¹rue)P

¸¸( f, Null)PSC
T (i,n)

( f, v).

Assume w.l.o.g. that SCk
T (i,n)

( f, v)PSCj
T (i,n)

( f, v). By
the specification of the ¸oad—¸inked/Store—Conditional
operation,

¸¸k
T (i,n)

( f, Null)PSCk
T (i,n)

( f, v)

P¸¸j
T (i,n)

( f, Null)PSCj
T (i,n)

( f, v).

But since only process i writes Null into field f, it follows
that

¼ i (Rec
i
C.stable, False)P¼ i (Rec

i
C.version, n)P

¼ i
T (i,n)

( f, Null).
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Process j thus read Rec
i
C.stable as false and therefore

should not have helped ¹(i, n). K

For any successful transaction ¹(i, n) let Sº (n, i) be the SC
operation which has set ¹ (i, n)’s status to Success and let
A¼(n, i) be the SC operation which has set the All¼ritten
field to True. By the above claims those operations are well
defined. The following lemma shows that successful trans-
actions access the memory atomically.

Lemma 4.4. For every n and every process i, if ¹ (i, n) is
a successful transaction, then

(a) between Sº (n, i ) and A¼(n, i ) all the entries in the
Ownerships vector from ¹(i, n)’s data set contain Rec

i
, and

(b) at ¼ i
T (i,n)

(Rec
i
C.version, n#1) no entry contains

Rec
i
.

Proof. The proof is by joint induction on n. Assume that
the properties hold for n@(n and let us prove them for n.

To prove (a), consider j, the process which executed
Sº(n, i ). By the algorithm, j has performed

Rj (Rec
i
C.version, n)P/ j

Tran (i,n)
(Ownerships[x

1
], Rec

i
)P

2P/j
Tran (i,n)

(Ownerships[x
l
], Rec

i
)PSº(n, i)

where / is either a SC or R operation, and x
12

x
l
are

¹ran(i, n)’s data set locations. Assume that for some loca-
tion x

r
at Sº (n, i), Ownerships[x

j
] differ from those of

Rec
i
. By the algorithm this may happen only if

/j
Tran (i,n)

(Ownerships[x
r
], Rec

i
)P

SCk (Ownerships[x
r
], Null).

Therefore, there is some process k executing release—
ownerships during ¹ran(i, n@) for n@(n. More precisely,
the following sequence of operations has occurred:

¸¸k
Tran (i,n)

(Ownerships[x
r
], Rec

i
)P

Rk
Tran (i,n{)

(Rec
i
C .version, n@)P

¼ i (Rec
i
C.version, n)PRj (Rec

i
C.version, n)P

SCk
Tran (i,n{)

(Ownerships[x
r
], Null).

By the induction hypothesis on property (b), at
¼ i (Rec

i
C.version,n), Ownerships[x

r
] differs from Rec

iand therefore the SCk
Tran (i,n{)

(Ownerships[x
r
], Null) should

have failed. A contradiction.
To prove (b), note that from the algorithm it follows

that process i has executed

/ i
Tran (i,n)

(Rec
i
C.status, Success)P

/i
Tran (i,n)

(Ownerships[x
1
],Null)P2P

/ j
Tran (i,n)

(Ownerships[x
l
], Null)P

¼ i
T (i,n)

(Rec
i
C.version, n#1).

Assume by way of contradiction that at ¼ i
T (i,n)

(Rec
i
C

.version, n#1) there is some location x
r

where
Ownerships[x

r
]"Rec

i
. By the induction hypothesis on

property (b), x
r
belongs to ¹ran

i
’s data set. Let k be the

processor that wrote Rec
i
on Ownerships[x

r
]. By the algo-

rithm, k performed

¸¸k (Rec
i
C.status, Null)P¸¸k (Ownerships[x

r
], Null)P

SCk (Rec
i
C.status, Null)P

/ i
Tran (i,n)

(Rec
i
C.status, Success)P

SCk (Ownerships[x
r
], Rec

i
).

By property a, at the point of executing SC
Tran (i,n)

(Rec
i
C

.status, Success), Ownerships[x
j
]"Rec

i
and therefore

SCk (Ownerships[x
r
], Null) should have failed, a contradic-

tion. K

The following corollary will be useful when proving the
non-blocking property of the implementation. The proof is
similar to the proof of part (b) in Lemma 4.4

Corollary 4.5. ¸et ¹ (i, n) be a failing transaction; then at
the point of executing ¼ i

T (i,n)
(Rec

i
C.version, n#1), no en-

try contains Rec
i
.

We can now complete the proof of linearizability. We
define the execution state of the implementation at any
point of the execution to be the function F s.t.
F(x)"Memory[x] for every x3¸.

Lemma 4.6. ¸et ¹ (i, n) be a successful transaction, and let
F1 and F2 be the execution states at Sº(i, n) and A¼(i, n)
respectively. ¹he following properties hold:

(a) At A¼(i, n), Rec
i
C.old—values"F1pDataSet

(i,n)
.

(b) If F1 and F2 are the execution states of Sº(i, n)
and A¼(i, n) respectively then F2pDateSet

(i,n)
"f

(i,n)
(F1)p

DataSet
(i,n)

, where f
(i,n)

is the transition function of ¹(i, n).
(c) After A¼(i, n) no process executing ¹

(i,n)
will update

Memory.

Proof. The proof is by joint induction on the length of the
execution.

To prove (a), let F1 be the execution state at Sº (i, n).
Assume by way of contradiction that there is some loca-
tion x3DataSet

i,n
, Rec

i
C.old—values[x]9F1(x). That

means that Memory[x] was changed between Sº (i, n) and
the point in the execution in which Rec

i
C.old—values[x]

was set. Since, by the algorithm, all the executing processes
of ¹ (n, i) update Rec

i
C.old—values before updating the

Memory, Memory[x] was altered by an executing process
of some other successful transaction ¹(i@, n@). By Lemma
4.4, A¼(i@, n@)pSº(i, n) and therefore by the induction
hypothesis on property (c), we have a contradiction.

To prove (b), assume by way of contradiction that
at A¼(i, n) there is some location x

r
3DataSet

i,n
s.t.

Memory[x
r
]9f

(i,n)
(F1) (x

r
). Let j be the process which

executed A¼(i, n). By the algorithm, as a part of the
ºpdateMemory procedure, j performed either

Rj
T (i,n)

(Memory[x
r
], f

(i,n)
(F1) (x

r
))PA¼(i, n)

or

Rj
T (i,n)

(Memory[x
r
]9f

(i,n)
(F1) (x

r
))P

SCj
T (i,n)

(Memory[x
r
] f

(i,n)
(F1) (x

r
))PA¼ (i, n).

Therefore, there is some process k which performed SCk on
Memory[x

r
] with a value different from f

(i,n)
(F1) (x

r
) after

Rj(x
r
,*) and before A¼(i, n). Assume w.l.o.g. that k is
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executing the transaction ¹ran(i@, n@). If i"i@ then clearly
n@(n and by the induction hypothesis on property (c), k’s
writing should have failed. Therefore i@9i. If
A¼(i@, n@)PSCk then A¼ (i@, n@)PA¼(i, n) and using the
induction hypothesis on property (c) we again have a con-
tradiction. Therefore SCkPA¼(i@, n@). In that case we
have a contradiction to Lemma 4.4 since at SCk, Owner-
ships[x

r
] is supposed to contain both Rec

i
and Rec

i{
.

To prove (c), assume by way of contradiction that some
executing process j of ¹(i, n) updated a location x

r
in

memory after A¼(i, n). Process j performed the following
sequence of operations:

¸¸j
Tran (i,n)

(Memory[x
r
], val)P

Rj
Tran (i,j)

(Rec
i
C.All¼ritten, False)P

Rj
Tran (i,j)

(Rec
i
C.version, n)P

SCj
Tran (i,n)

(Memory[x
r
], f

(i,n)
(F1) (x

r
))

where

val9f
(i,n)

(F1) (x
r
)

and therefore

¸¸j
Tran (i,n)

(Memory[x
r
], val)PA¼ (i,n).

By property (a), at A¼(i, n), Memory[x
r
] contains

f
(i,n)

(F1) (x
r
) and therefore SCj

Tran (i,n)
(Memory[x

r
],

f
(i,n)

(F1) (x
r
)) should have failed. K

In order to prove that the implementation is linearizable,
let us first consider executions of the STM implementation
which contain successful transactions only. Let HS be one
of those executions and let A¼1PA¼2PA¼32be
the sequential subsequence of all the A¼ events that
occurred during HS. Since an A¼ event occurs only once
for every successful transaction, let H be the sequence

¹
AW1

(DataSet
1
, f

1
, ov

1
, success) ¹

AW2
(DataSet

2
, f

2
, ov

2
, success)

¹
AW3

(DataSet
1
, f

1
, ov

1
, success)2

of transaction executions induced by the A¼ events,
where for every ¹

AWn
the triple (DataSet

n
, f

n
, ov

n
, success)

represents the content of the DataSet, F, old—values, and
status fields respectively in ¹

AWn
’s records at A¼

n
. By

Lemma 4.6, it is a simple exercise to show by induction
that H is a legal sequential history according to Definition
2.1. Since failing transactions do not cause any change to
Memory, we may conclude that:

Theorem 4.7. ¹he implementation is linearizable.

4.2 Non-blocking

We denote the executing process which wrote Failure to
Rec

i
C.status of a transaction ¹(i, n) as its failing process. In

order to prove the non-blocking property of the imple-
mentation, define the failing location of ¹ (i, n) to be the
location that the failing process failed to acquire.

Claim 4.8. Given a failing transaction ¹ (i, n), all the
executing process of ¹(i, n) will never acquire a location
which is higher or equal to the failing location of ¹ (i, n).

Proof. Assume by way of contradiction that some execut-
ing process of ¹ (i, n) acquired a location at least as high as
¹(i, n)’s failing location. Since the process read all the
lower locations acquired for ¹(i, n), let j be the executing
process of ¹(i, n) that acquired the failing location x

r
of

¹(i, n). By the algorithm, j performed the following
sequence of operations:

¸¸j
T (i,n)

(Rec
i
C.status, Null)P

¸¸j
T (i,n)

(Ownerships[x
r
], Nobody)P

SCj
T (i,n)

(Rec
i
C.status, Null)P

SCj
T (i,n)

(Ownerships[x
r
], Rec

i
).

The failing process of ¹ (i, n), k has performed the following
sequence of operations:

¸¸k
T (i,n)

(Rec
i
C.status, Null)P

¸¸k
T (i,n)

(Ownerships[x
r
], other)P

SCk
T (i,n)

(Rec
i
C.status, Failure),

where other is neither Null nor Rec
i
. Assume that

SCk
T (i,n)

(Rec
i
C.status, Failure)P

SCj
T (i,n)

(Ownerships[x
r
], Rec

i
).

In that case

SCj
T (i,n)

(Rec
i
C.status, Null)P

¸¸k
T (i,n)

(Rec
i
C.status, Null)P

¸¸k
T (i,n)

(Ownerships[x
r
], other)P

SCk
T (i,n)

(Rec
i
C .status, Failure).

Consequently k must have seen Ownerships[x
r
] already

owned by i or the SCj
T (i,n)

(Ownerships[x
r
], Rec

i
) should

have failed. Therefore SCj
T (i,n)

(Ownerships[x
r
],

Rec
i
)PSCk

T (i,n)
(Rec

i
C.status, Failure). Now, if SCj

T (i,n)(Ownerships[x
r
], Rec

i
)P¸¸k

T (i,n)
(Ownerships[x

r
],other)

we have a contradiction since a process executing ¹(i, n)
never releases its ownership before the status is set and
processes executing ¹(i, n@), n@(n will see that the
Rec

i
C.version has changed. For that reason,

¸¸k
T (i,n)

(Ownerships[x
r
], other)P

SCk
T (i,n)

(Rec
i
C.status, Failure)P

SCj
T (i,n)

(Ownerships[x
r
], Rec

i
).

In that case

¸¸k
T (i,n)

(Rec
i
C.status, Null)P

¸¸k
T (i,n)

(Ownerships[x
r
], other)P

¸¸j
T (i,n)

(Ownerships[x
r
], Nobody)P

SCj
T (i,n)

(Rec
i
C.status, Null)P

SCj
T (i,n)

(Ownerships[x
r
], Rec

i
)

and SCk
T (i,n)

(Rec
i
C.status, Failure) must have failed, a

contradiction. K

Theorem 4.9. ¹he implementation is non-blocking.
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Proof. Assume by way of contradiction that there is an
infinite schedule in which no transaction terminates suc-
cessfully. Assume that the number of failing transactions
is finite. This happens only if from some point on, in the
computation, all the processes are ‘‘stuck’’ in the
AcquireOwnerships routine. In this case there are several
processes which try to get ownership on the same location
for the same transaction. This means that case at least one
process will succeed or will fail the transaction, a contra-
diction. It must thus be the case that the number of failing
transactions is infinite. In that case, there is at least one
location which is a failing address infinitely often. Con-
sider A, the highest of those addresses. Since the initiator of
the transaction tries to help the transaction which has
failed him before retrying, and since by Corollary 4.5 all
acquired locations are released before helping, it follows
that there are infinitely many transactions which have
acquired ownership on A but have failed. By Claim 4.8
those transactions have failed on addresses higher than A,
a contradiction to the fact that A is the highest failed
location. K

To avoid major overheads when no Failures occur, any
algorithm based on the helping paradigm must avoid
‘‘redundant helping’’ as much as possible. A processes
helping is redundant when the helping process is not faster
then the helped process. Such helping will only increase
contention and consequently, will cause the helped process
to release the ownerships later than it would have released
if not helped. A straightforward solution is to modify the
STM implementation such that a process i will help the
transactions of some other process j, not every time that it
is blocked by it, but rather every r

ij
71 times. Choosing

the correct value for r
ij

is important. If it is too high, it will
take too much time for the system to discover and help
a slow process. On the other hand if it is too low, it will
result into a considerable amount of redundant helping.
The solution for the process i is to vary r

ij
according to its

expected estimate of process j ’s speed. On multiprocessor
architectures, the relative speed between two processes is
not completely random, but rather depends on the loca-
tion and on the load of the processors on which the
processes are located. One can thus use the history of
redundant helps that occurred in the past to provide
a good estimate of the relative speed of other processes. In
our implementation, a process i discovers that helping was
redundant if the version field changed while it was helping.
Each time a process i discovers that help to process j was
not redundant it decreases r

ij
by one, otherwise it increases

it by one (up to some upper bound).

5 An empirical evaluation of translation methods

5.1 Methodology

We compared the performance of STM and other software
methods on 64 processor bus and network architectures
using the Proteus simulator developed by Brewer,
Dellarocas, Colbrook, and Weihl [8]. Proteus simulates
parallel code by multiplexing several parallel threads on
a single CPU. Each thread runs on its own virtual CPU

with accompanying local memory, cache, and communica-
tions hardware, keeping track of how much time is spent
using each component. In order to facilitate fast simula-
tions, Proteus does not do complete hardware simulations.
Instead, operations which are local (do not interact with
the parallel environment) are run uninterrupted on the
simulating machine’s CPU and memory. The amount of
time used for local calculations is added to the time spent
performing (simulated) globally visible operations to de-
rive each thread’s notion of the current time. Proteus
makes sure a thread can only see global events within the
scope of its local time.

In the simulated bus architecture, processors commun-
icate with shared memory modules through a common
bus. Uniform shared-memory access is assumed, that is,
access of any memory module from any processor, when
the bus is free, takes the same amount of time, which is
4 cycles. Each processor has a cache with 2048 lines of
8 bytes and the cache coherence is maintained using
Goodman’s [18] ‘‘snoopy’’ cache-coherence protocol.

The simulated network architecture is similar to that of
the Alewife cache-coherent distributed-memory machine
currently under development at MIT [1]. Each node of the
machine’s torus shaped communication grid consists of
a processor, cache memory, router, and a portion of the
globally-addressable memory. The cost of switching or
wiring in the Alewife architecture is 1 cycle/packet. Each
processor has a cache with 2048 lines of 8 bytes. Cache
coherence is provided using a version of Chaiken’s [12]
directory-based cache-coherence protocol.

The current version of Proteus does not support
¸oad—¸inked/Store—Conditional instructions. Instead we
used a slightly modified version that supports a 64-bit
Compare&Swap operation where 32 bits serve as a time
stamp. Naturally this operation is less efficient than the
theoretical ¸oad—¸inked/Store—Conditional proposed in
[6, 16, 20] (which we could have built directly into Pro-
teus), since a failing Compare&Swap will cost a memory
access while a failing Store—Conditional will not. However,
we believe the 64-bit Compare&Swap is closer to the real
world than the theoretical ¸oad—¸inked/Store—Conditional
since existing implementations of ¸oad—¸inked/Store—
Conditional as on Alpha [13] or PowerPC [19] do not
allow access to the shared memory between the
¸oad—¸inked and the Store—Conditional operations. On
existing machines the 64 bits Compare&Swap may be
implemented by using a 64 bit ¸oad—¸inked/Store—
Conditional as on the Alpha, or using Bershad’s lock-free
methodology2 [7].

We used four synthetic benchmarks for evaluating
various methods for implementing shared data structures.
The methods vary in the size of the data structure and the
amount of parallelism.

We ran each benchmark varying the number of proces-
sors participating in the simulation. We measured through-
put, the average number of operations performed in a one
million cycle period. The throughput was calculated using
the following formula: throughput"(106]operations)/

2The non-blocking property will be achieved only if the number of
spurious failures is finite
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elapsed-time where operations is the total number of opera-
tions performed in the benchmark and elapsed-time is the
number of cycles that elapsed from the beginning up to the
end of the simulation.

Counting. Each of n processes increments a shared
counter 10000/n times. In this benchmark updates are
short, change the whole object state, and have no built in
parallelism.

Resource allocation. A resource allocation scenario [10]:
a few processes share a set of resources and from time
to time a process tries to atomically acquire a subset of
size s of those resources. This is the typical behavior
of a well designed distributed data structure. For lack
of space we show only the benchmark which has n pro-
cesses atomically increment 5000/n times with s"2, 4,
6 locations chosen uniformly at random from a vector of
length 60. The benchmark captures the behavior of highly
concurrent queue and counter implementations as in
[26, 27].

Priority queue. A shared priority queue on a heap of
size n. We used a variant of a sequential heap implementa-
tion [11]. In this benchmark each of the n processes
alternately enqueues a random value in a heap and de-
queues the greatest value from it 5000/n times. The heap is
initially empty and its maximal size is n. This is probably
the most trying benchmark since there is no potential for
concurrency and the size of the data structure increases
with n.

Doubly linked queue. An implementation of a queue as
a doubly linked list in an array. The first two cells of the
array contain the head and the tail of the list. Every item in
the list is a pair of cells in the array, which represent the
index of the previous and next element respectively. Each
process enqueues a new item by updating tail to contain
the new item’s index and dequeues an item by updating the
head to contain the index of the next item in the list. Each
process executes 5000/n pairs of enqueue/dequeue opera-
tions on a queue of initial size n. This benchmark supports
limited parallelism since when the queue is not empty,
enqueues/dequeues update the tail/head of the queue with-
out interfering each other. For a high number of processes,
the size of the updated locations in each enqueue/dequeue
is relatively small compared to the object size.

We simplified the general STM implementation for the
case in which k-word Compare&Swap transaction are be-
ing performed (given in Fig. 2). The simplification is that
processes excuting a transaction do not have to agree on
the value stored in the Dataset before the transaction
started, only on a boolean value which is true if the value is
equal to old[].

We used the above benchmarks to compare STM to
the two non-blocking software translation methods de-
scribed earlier and a blocking MCS queue-lock [25] based
solution (the data structure is accessed in a mutually
exclusive manner). The non-blocking methods include
Herlihy’s Method and Israeli and Rappoport’s k-word
Compare&Swap based implementation. All the non-
blocking methods use exponential backoff [3] to reduce
contention.

5.2 Results

The data to be presented leads us to conclude that there
are three factors differentiating among the performance of
the four methods:

1. Potential for parallelism: Both locking and Her-
lihy’s method do not exploit potential for parallelism3 and
only one process at a time is allowed to update the data
structure. The software-transactional and the cooperative
methods allow concurrent processes to access disjoint
parts of the data structure.

2. ¹he price of a failing update: In Herlihy’s non-
blocking method, the number of memory accesses of a fail-
ing update is at least the size of the object (reading the
object and copying it to the private copy, and reading and
writing to the pointer). Fortunately, the nature of the cache
coherence protocols is such that almost all accesses per-
formed when the process updates its private copy are local.
In both caching methods (STM and Israeli and Rappo-
port), the price of a failure is a least the number locations
accessed during the cached execution.

3. ¹he amount of helping by other processes: Helping
exists only in the software-transactional and the coopera-
tive methods. In the Israeli and Rappoport method, k-
word Compare&Swap, including failing ones, are helped
not only by the k-word Compare&Swap operations that
access the same locations concurrently, but also by all the
operations that are in turn helping them, and so on2 In
the STM method, a k-word Compare&Swap is helped only
by operations that need non-disjoint locations. Moreover,
and this is a crucial performance factor, in STM most of
the unsuccessful updates terminate as failing transactions,
not as failing k-word Compare&Swap, and when a transac-
tion fails on the first location, it is not helped.

The results for the counting benchmark are given in Fig. 7.
The horizontal axis shows the number of processors and
the vertical axis shows the throughput achieved. This
benchmark is cruel to the caching based methods, since the
amount of updated memory is equivalent to the size of the
object and there is no potential for parallelism. On the bus
architecture, locking and Herlihy’s method give signifi-
cantly higher throughput than the caching methods.

The results of the resource allocation benchmark are
shown in Fig. 8. We measured the potential for parallelism
as a percentage of the atomic s-word-increments that suc-
ceeded on first attempt. When s"2 this percentage varies
between 73—75% at 10 processors down to 33—34% at 60
processors. For s"4 the potential for parallelism is
40—44% at 4 processors down to 16% at 60 processors,
and when s"6 it varies between 24—29% at 10 processors
to 9—10% at 60 processors. In general, as the number of
processors increases, local work can be performed concur-
rently, and thus the performance of the STM improves.
Beyond a certain number of processors, the potential for
parallelism declines, causing a growing number of k-word
Compare&Swap conflicts, and the throughput degrades.
This is the reason for the relatively low throughput of the

3Note that we use a very unsophisticated locking solution and ones
with more potential for parallelism can be designed
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Fig. 7. Counting benchmark

Fig. 8. Resource allocation benchmark
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Fig. 9. Priority queue benchmark

Fig. 10. Doubly linked queue benchmark

STM method for small numbers of processors and the
concave form of STM graphs. As one can see, when s"2
on the bus or when s"2, 4 on Alewife architecture, the
STM method outperforms even the queue-lock method.

Figure 9 describes the results of a priority queue bench-
mark. A priority queue is a data structure that does not
allow concurrency, and as the number of processors in-
creases, the number of locations accessed increases too.
Still, the number of accessed locations is smaller than the
size of the object. Therefore, the STM performs better than
Herlihy’s method at most levels of concurrency.

Figure 10 contains the doubly linked queue results.
There is more concurrency in accessing the object than in
the counter benchmark, though it is limited: at most two
processes may concurrently update the queue. Herlihy’s
method performs poorly because the penalty paid for
a failed update grows linearly with queue size: usually
twice the number of the processes. In the STM method, the
low granularity of the two-word Compare&Swap transac-
tions implies that the price of a failure remains constant in
all concurrency levels, though local work is still higher
than the queue-lock method.

5.3 A comparison of non-blocking methods

Every theoretical method can be improved in many ways
when implemented in practice. In order to get a fair com-

parison between the non-blocking methods, we believe one
should use them in their ‘‘purest’’ form. We therefore
compare the performance of all the non-blocking methods
without backoff (in all the methods) and without the non-
redundant-helping policy (in STM). We show the results of
running these ‘‘pure’’ algorithms in high load situations,
when all processes are repeatedly trying to access the data
structure, and low load situations, where the access pat-
terns are sparse.

5.3.1 A high load comparison

In general, our results show that STM outperforms the
cooperative method in all circumstances, and except from
the counter benchmark, STM outperforms Herlihy’s
method too. The results of the counter benchmark are
shown in Fig. 11. As in the previous tests, Herlihy’s
method performs better than caching methods on both
architectures. In bus Herlihy’s method is 2.91 times faster
than STM on 10 processors, down to 1.35 times faster than
STM on 60 processors. On Alewife style architecture,
Herlihy’s method is 3.38 times faster than STM on 10
processors, down to 2.23 times faster than STM on 60
processors. STM is 1.97 faster than the Israeli and Rappo-
port method on the bus architecture up to 8.44 times faster
than Israeli and Rappoport on 60 processors. On the
Alewife architecture, STM is from 1.92 times up to 7.6 time
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Fig. 11. Non-blocking comparison: counting benchmark

Fig. 12. Non-blocking comparison: priority queue benchmark

Fig. 13. Non-blocking comparison: doubly linked queue benchmark

faster than the Israeli and Rappoport method. The degra-
dation in the performance of the Israeli and Rappoport
method is due to the high number of failing k-word Com-
pare&Swap operations: up to 8.4 times the successful ones!
For STM the number of failing k-word Compare&Swap
operations is at most 0.26 times the number of successful
k-word Compare&Swap. Thus most of the transactions in
STM terminate as failing transactions and are not helped
since they failed in acquiring the first (and last) location

needed. In the priority queue benchmark, on a simulated
bus architecture, Herlihy’s method is from 2.36 times faster
than STM, down to 2.8 times slower than STM. On the
Alewife architecture, Herlihy’s method has a throughput
that is 2.41 times higher than STM throughput, down to
1.1 times lower than STM. The results of the doubly linked
queue appear in Fig. 13. On the bus architecture STM is
up to 3.37 faster than Israeli and Rappoport and up to 59
times faster than Herlihy’s method. On the Alewife style
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Fig. 14. Non-blocking comparison: resource allocation benchmark

architecture, STM had 12.9 times higher throughput than
Herlihy’s method and 7.28 higher throughput than the
Israeli and Rappoport method. In the resource allocation
benchmark (Fig. 14) STM also outperforms other
methods. On the bus architecture it is 1.1—1.6 times faster.
On the Alewife architecture it is 1.09—1.68 times faster.
Note, that in this benchmark, the factor that affects the
Israeli and Rappoport performance is not the number of
failing k-word Compare&Swap operations, which is rela-
tively low, but the increased redundant helping by remote
processors. We also compare the cooperative k-word
Compare&Swap with STM for a specific implementation

which explicitly needs such a software supported opera-
tion. We chose Israeli and Rappoport’s algorithm for
a concurrent priority queue [20], since it is based on
recursive helping. Therefore, all the recursive helping done
by a process during the execution of a k-word Com-
pare&Swap has a higher chance to be non-redundant and
for that reason Israeli and Rappoport’s method is expected
to perform better. Our implementation is slightly different
since it uses a 3-word Compare&Swap operation instead of
a 2-word Store—Conditional operation (In fact, using 3-
word Compare&Swap operation simplifies the implemen-
tation since it avoids freezing [20] nodes).
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Fig. 15. Non-blocking comparison: Israeli & Rappoport priority queue

Fig. 16. Sparse access pattern — resource allocation benchmark
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Fig. 17. Sparse access pattern — counting benchmark

The results of the concurrent priority queue bench-
mark are given in Fig. 15. Though the inherent structure of
the algorithm should give the advantage to the Israeli and
Rappoport method, STM gives the highest throughput. As
in the counter and the sequential priority queue bench-
marks, the reason is the high number of failing k-word
Compare&Swap operations in the Israeli and Rappoport
method: up to 2.5 times the number of successful k-word
Compare&Swap operations.

5.3.2 A low load comparison

The experimental results we presented above test the vari-
ous non-blocking methods in high load situations, when
all the processors repeatedly attempt to access the shared
data structure. The reader may ask herself what the rela-
tive overhead of using the various non-blocking methods
might be under sparse access patterns when only a small
number of the processors at a time try to update the shared
data structure. To answer this question, we compared the
performance of the non-blocking methods while varying
access patterns. We present here two benchmarks in
which, each of the processors, after every operation per-
formed on the object, waits rand cycles before accessing the
object again. The value rand is each time chosen randomly
between 0 and some upper bound ¼. We rand the bench-
marks with 30 and 60 processors, varying the value of
¼ between 103 and 106. Since most of the running time is
spent waiting rather than accessing the data structures,
throughput is no longer a good performance measure. We
therefore measured latency: the number of cycles it takes
on average for a processor to complete a single access to
the data structure.

The results of the resource allocation and the counting
benchmarks on a simulated Alewife architecture are
presented in Figs. 16 and 17 respectively. The latency of
Herlihy’s method in the resource allocation benchmark is
completely off the scale and therefore not shown. As ex-
pected, it outperforms other methods in the counting
benchmark (Fig. 17) since it introduces little overhead. In
both benchmarks STM is never worst than Israeli and
Rappoport’s method, but as the access patterns become
sparser the latency of both methods tends to rapidly con-
verge. This is because at low loads every process has

a good chance of accessing the object alone, causing the
differences between the two algorithmic ‘‘helping’’ policies
to have no noticeable affect on the performance.

6 Conclusions

Our paper introduces a non-blocking software version of
Herlihy and Moss’s transactional memory approach.
There are many possible directions in which it can be
extended. One issue is to design better non-blocking trans-
lation engines, possibly by limiting STM’s expressibility to
a smaller set of implementable transactions. Another inter-
esting question is what performance guarantees one can
get with a less robust STM software package, possibly
programmed on the machine’s message passing level.
Finally, the ability to add an STM component to existing
software-based virtual shared memory systems, raises the-
oretical questions of the computational power of
a programming abstraction based on having a variety of
‘‘operations’’ that can be applied to memory locations, vs.
the traditional approach of thinking of synchronization
operations as ‘‘objects.’’
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