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Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist



(1) The Journalist

2008: Financial crisis — Nakamoto (1/21m)
» From 1c to 10000$ through 20000$ (16.000%)

From trading hardware to general trading

- 2014: Ethereum (CH) - Now 555 $
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Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist



(2) The User

BLOCKCHAIN
®

{x} DASHBOARD BE YOUR OWN BANK.
Transactions

& Send & Request
® siTcoN

ETHER New! & SENT RECEIVED

C’\
i} BUY & SELL " SENT To: 0x9970b7e233555a037311be1f3261b59393d6981f
P — . July 21 @ 10:10 AM From: My Ethereum Wallet
»5:% SETTINGS ['_7‘1 Transaction Confirmed v/
® raQ

>  SENT
July 18 @ 02:54 PM

> RECEIVED
July 17 @ 11:44 AM

>  RECEIVED
July 13 @ 03:03 PM

To: 0x16a6920db114fc473325cf94a5e2d20c1 fba868
From: My Ethereum Wallet

To: My Ethereum Wallet
From: 0x3b0bc51ab9dele5b7b6e34e5b960285805¢41736

To: My Ethereum Wallet
From: Oxeed16856d551569d134530ee3967ec79995e2051

test, hey jamie! &

A ¢ SIGNouT

0.00000546 BTC | ¢0.102338636803627092 ETH

$23.08

Export Private Key | Search Q

0.0001 ETH

Transaction Fee:

0.0001416.. ETH

0.08380039 ETH

0.01966193 ETH



(2) The User

" The wallet: 1 private key + several public keys

- Transaction validation
» Signing + gossiping + mining + chaining

Transaction commitment
» After time t: thousands of users have seen it



(3) The Participant

Honey, I'm home!
| found a block today!
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P vs NP (Nash/GV 50 — Ford 70
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Block:

Nonce:

Data:

Hash:

(3) The Participant

2790
NCore

0000cS51693ac7 7alBae7 Jace5df93245 7fcb2e8dfa23¢2f3chd8ebb125ba7843



(3) The Participant

" To validate a transaction, a miner has to
solve a puzzle including it

» Fairness and cooperation

- Incentive: 6.25 bitcoins / puzzle
» 50 bitcoins 3 years ago

"Total: 21 millions bitcoins
» Now: 18 millions



(4) The Engineer
~ Joinning (a P2P network)

~ Signing (a transaction) 0

~ Gossiping (the transaction)

~ Gathering (a block)

~ Mining (proof of work - nonce)
~ Chaining (hash)

~ Gossiping (the block)
~ Committing/Aborting




Hashing

Input Data Output Hash
Hashing Algo

5] Blockgeeks



NOT POSSIBLE

PLAINTEXT h ash N HASHED VALUE

L —

HASHING




Input Hash sum

Hash
function
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function
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function




The Big Picture

Bitcoin block

Special Reward TX Special Re
TX-2 (signed) TX-2 (si

'ward TX
gned)

DB |
Mining: find [ | suchthat| | <d

How? By trying different nonces (brute force)

signed)




Smart Contracts

Option contract written as Contract is part of the Parties involved in the
code into a blockchain. i public blockchain. i contract are anonymous.

. "
................................................... ‘-.-.-.I.I---.....-.I.I....r.-...-.-..I.---.I.-.I..--‘..II.I.I.I-...I.I.I.I..l.l.-.I.I.-.I-.---...-.I.I-.
.

" AL

Contract executes itself Regulators use blockchain to
when the conditions are met. : keep an eye on contracts.

Happy Hustlin’ https://codebrahma.com
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(5) The Scientist
State Machine Replication (78)

Basic consensus

Machine

Machine Machine




Consensus Universality (78)

Darth J|J | love ],I

won't |- winter! N/

approve }/ <,
R

4 )

Safety: No two nodes must choose different values.

The chosen value must have been proposed by a node.

KLiveness: Each node must eventually choose a value. )

Every service can be implemented in a highly
available manner using Consensus



Consensus Impossibility (84)

Consensus is impossible in an
asynchronous system



~ X000 implementations

~ « Computing’s central challenge is how not to make a
mess of it ...» E. Dijkstra



‘Payment System

Can we implement a payment
system asynchronously?



Pvs NP

7*13=7 ?7 %7 =91

Asynchronous vs Synchronous

Is payment an asynchronous problem?

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister



The infinitely big

The infinitely small



Message Passing

Send

N

p2

p3 \ /
Recelve




Shared Memory

Write() 1

N7

Registers

N

Read() 1

p2

<~ Message Passing



Atomic Shared Memory

write(l) - ok




Atomic Shared Memory

write(l) - ok




Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)



« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

« Optimization is the source of all evil » D. Knuth



Pvs NP

7*13 =7 ?7 %7 =01

Asynchronous vs Synchronous




‘Payment System

“Atomicity

"Wait-freedom

Can we implement a payment
system asynchronously?



Counter: Specification

A counter has two operations /nc() and
read();, it maintains an integer x /nit to 0

read():

» return(x)

nc():
X:=X+1;
return(ok)



Counter: Algorithm

The processes share an array of registers
Reg[1,..,N]

nc():
Reqgl[i].write(Reqgl[i].read() +1);
return(ok)
read():
sum := 0;
forj=1to N do
sum := sum + RegJ[j].read();
return(sum)



Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?



2-Consensus with Counter*

» Registers RO and R1 and Counter* C - initialized to 1

» Process pI.
propose(VvI)
RI.write(vI)
res := C.dec()
if(res = ok) then
return(vI)
else return(R{1-I}.read())

AN



Impossibility [FLP85,LA87]

« Theorem: no asynchronous algorithm implements
consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers



« Theorem: no asynchronous algorithm implements
set-agreement using registers




The consensus number of an object is the maximum
number of processes than can solve consensus with it
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Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b if a >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?



Snapshot: Specification

A snapshot has operations upadate() and
scan();, it maintains an array x of size N

scan():
» return(x)
update(i,v):
X[1] i=vV;
return(ok)



Algorithm?

The processes share one array of N registers
Reg[1,..,N]

scan():
forj=1to Ndo
X[J] := Reg[j].read();
return(x)
update(i,v):
- Req[i].write(v); return(ok)



Atomicity?

update(1,1) - ok

update (3,2) - ok

——o—————




Atomicity?

update(1,1) - ok

update (3,2) - ok

——o—————




Atomicity?

scan () - [0,0,10]
P E—
update (2,1) - ok

p—f——t————

update (3,10) -0k

e e




Key idea for atomicity

- To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

Key idea for wait-freedom

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a

collect if it did not change, or some collect returned
by a concurrent scan



The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current

balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance



PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(K) is k



Payment System (AT2)

AT2_S
AT2_D
AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)
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