Demystifying Bitcoin

Prof R. Guerraoui EPFL

'S

\ =

Demystifying

Bitcoin .
Blockchain
Ethereum

Proof of work Smart contracts

Leader
Consensus Broadcast

Snapshot

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(1) The Journalist

2008: Financial crisis — Nakamoto (1/21m)
» From 1c to 10000$ through 20000$ (16.000%)

From trading hardware to general trading

- 2014: Ethereum (CH) - Now 555 $

2l L AP L
Sery7 I
‘ ot Iovyau‘! o1y IS

g
o 7]eR%

b U
(08

Nhf OO

A=W

“+
4

O Un

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(2) The User

BLOCKCHAIN
®

{x} DASHBOARD BE YOUR OWN BANK.
Transactions

& Send & Request
® siTcoN

ETHER New! & SENT RECEIVED

C’\
i} BUY & SELL " SENT To: 0x9970b7e233555a037311be1f3261b59393d6981f
P — . July 21 @ 10:10 AM From: My Ethereum Wallet
»5:% SETTINGS ['_7‘1 Transaction Confirmed v/
® raQ

> SENT
July 18 @ 02:54 PM

> RECEIVED
July 17 @ 11:44 AM

> RECEIVED
July 13 @ 03:03 PM

To: 0x16a6920db114fc473325cf94a5e2d20c1 fba868
From: My Ethereum Wallet

To: My Ethereum Wallet
From: 0x3b0bc51ab9dele5b7b6e34e5b960285805¢41736

To: My Ethereum Wallet
From: Oxeed16856d551569d134530ee3967ec79995e2051

test, hey jamie! &

A ¢ SIGNouT

0.00000546 BTC | ¢0.102338636803627092 ETH

$23.08

Export Private Key | Search Q

0.0001 ETH

Transaction Fee:

0.0001416.. ETH

0.08380039 ETH

0.01966193 ETH

(2) The User

" The wallet: 1 private key + several public keys

- Transaction validation
» Signing + gossiping + mining + chaining

Transaction commitment
» After time t: thousands of users have seen it

(3) The Participant

Honey, I'm home!
| found a block today!

5 7
6 95

6

8 6 3

4 -3 1

7 2 6
278

19| |5

8 719

+

”Miner Jack"

2

P vs NP (Nash/GV 50 — Ford 70

53 7
2 %9 =0] 6 195
98 6
8 6 3
4 8 (3] | |1
7 2 6
7*13="7 6 IBEEE
419 | |5
8 7.9

Block:

Nonce:

Data:

Hash:

(3) The Participant

2790
NCore

0000cS51693ac7 7alBae7 Jace5df93245 7fcb2e8dfa23¢2f3chd8ebb125ba7843

(3) The Participant

" To validate a transaction, a miner has to
solve a puzzle including it

» Fairness and cooperation

- Incentive: 6.25 bitcoins / puzzle
» 50 bitcoins 3 years ago

"Total: 21 millions bitcoins
» Now: 18 millions

(4) The Engineer
~ Joinning (a P2P network)

~ Signing (a transaction) 0

~ Gossiping (the transaction)

~ Gathering (a block)

~ Mining (proof of work - nonce)
~ Chaining (hash)

~ Gossiping (the block)
~ Committing/Aborting

Hashing

Input Data Output Hash
Hashing Algo

5] Blockgeeks

NOT POSSIBLE

PLAINTEXT h ash N HASHED VALUE

L —

HASHING

Input Hash sum

Hash
function

Hash
function

Hash
function

The Big Picture

Bitcoin block

Special Reward TX Special Re
TX-2 (signed) TX-2 (si

'ward TX
gned)

DB |
Mining: find [| suchthat| | <d

How? By trying different nonces (brute force)

signed)

Smart Contracts

Option contract written as Contract is part of the Parties involved in the
code into a blockchain. i public blockchain. i contract are anonymous.

. "
... ‘-.-.-.I.I---.....-.I.I....r.-...-.-..I.---.I.-.I..--‘..II.I.I.I-...I.I.I.I..l.l.-.I.I.-.I-.---...-.I.I-.
.

" AL

Contract executes itself Regulators use blockchain to
when the conditions are met. : keep an eye on contracts.

Happy Hustlin’ https://codebrahma.com

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(5) The Scientist
State Machine Replication (78)

Basic consensus

Machine

Machine Machine

Consensus Universality (78)

Darth J|J | love],I

won't |- winter! N/

approve }/ <,
R

4)

Safety: No two nodes must choose different values.

The chosen value must have been proposed by a node.

KLiveness: Each node must eventually choose a value.)

Every service can be implemented in a highly
available manner using Consensus

Consensus Impossibility (84)

Consensus is impossible in an
asynchronous system

~ X000 implementations

~ « Computing’s central challenge is how not to make a
mess of it ...» E. Dijkstra

‘Payment System

Can we implement a payment
system asynchronously?

Pvs NP

7*13=7 ?7 %7 =91

Asynchronous vs Synchronous

Is payment an asynchronous problem?

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

The infinitely big

The infinitely small

Message Passing

Send

N

p2

p3 \ /
Recelve

Shared Memory

Write() 1

N7

Registers

N

Read() 1

p2

<~ Message Passing

Atomic Shared Memory

write(l) - ok

Atomic Shared Memory

write(l) - ok

Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

« Optimization is the source of all evil » D. Knuth

Pvs NP

7*13 =7 ?7 %7 =01

Asynchronous vs Synchronous

‘Payment System

“Atomicity

"Wait-freedom

Can we implement a payment
system asynchronously?

Counter: Specification

A counter has two operations /nc() and
read();, it maintains an integer x /nit to 0

read():

» return(x)

nc():
X:=X+1;
return(ok)

Counter: Algorithm

The processes share an array of registers
Reg[1,..,N]

nc():
Reqgl[i].write(Reqgl[i].read() +1);
return(ok)
read():
sum := 0;
forj=1to N do
sum := sum + RegJ[j].read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

2-Consensus with Counter*

» Registers RO and R1 and Counter* C - initialized to 1

» Process pI.
propose(VvI)
RI.write(vI)
res := C.dec()
if(res = ok) then
return(vI)
else return(R{1-I}.read())

AN

Impossibility [FLP85,LA87]

« Theorem: no asynchronous algorithm implements
consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

« Theorem: no asynchronous algorithm implements
set-agreement using registers

The consensus number of an object is the maximum
number of processes than can solve consensus with it

' e
[l HHHABAHE
W% AEEEEE
3 HEEEERREHEEEREREEREE
3 [HEJERBRBREBRBEHEEBBERE
3 HENEBRBEEBEEEREEEEE
vl%.%&gmwmagmvwmwwg
IHERBEREREEEE R
IIIIIIIIIIIIII

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b if a >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations upadate() and
scan();, it maintains an array x of size N

scan():
» return(x)
update(i,v):
X[1] i=vV;
return(ok)

Algorithm?

The processes share one array of N registers
Reg[1,..,N]

scan():
forj=1to Ndo
X[J] := Reg[j].read();
return(x)
update(i,v):
- Req[i].write(v); return(ok)

Atomicity?

update(1,1) - ok

update (3,2) - ok

——o—————

Atomicity?

update(1,1) - ok

update (3,2) - ok

——o—————

Atomicity?

scan () - [0,0,10]
P E—
update (2,1) - ok

p—f——t————

update (3,10) -0k

e e

Key idea for atomicity

- To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

Key idea for wait-freedom

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a

collect if it did not change, or some collect returned
by a concurrent scan

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current

balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance

PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(K) is k

Payment System (AT2)

AT2_S
AT2_D
AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)

References

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej

Pavlovic, Dragos-Adrian Seredinschi: The Consensus Number of a
Cryptocurrency. PODC 2019: 307-316

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej

Pavlovic, Dragos-Adrian Seredinschi: Scalable Byzantine Reliable
_Broadcast. DISC 2019: 1-16 (Best Paper Award)

Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr
Kuznetsov, Matteo Monti, Matej Pavlovic, Yvonne Anne
Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, Athanasios
Xygkis: Online Payments by Merely Broadcasting

Messages. DSN 2020: 26-38 (Runner for the Best Paper Award)

https://dblp.org/pid/k/PetrKouznetsov.html
https://dblp.org/pid/207/4337.html
https://dblp.org/pid/178/5515.html
https://dblp.org/pid/178/5504.html
https://dblp.org/db/conf/dsn/dsn2020.html
https://dblp.org/pid/k/PetrKouznetsov.html
https://dblp.org/pid/207/4337.html
https://dblp.org/pid/178/5515.html
https://dblp.org/pid/178/5504.html
https://dblp.org/db/conf/dsn/dsn2020.html
https://dblp.org/pid/44/5966.html
https://dblp.org/pid/256/9434.html
https://dblp.org/pid/k/PetrKouznetsov.html
https://dblp.org/pid/207/4337.html
https://dblp.org/pid/178/5515.html
https://dblp.org/pid/90/5323.html
https://dblp.org/pid/178/5504.html
https://dblp.org/pid/263/9938.html
https://dblp.org/pid/221/2897.html
https://dblp.org/db/conf/dsn/dsn2020.html

References

Rachid Guerao ——
. FOR CONCURRENT
SYSTEMS Siram

Introduction to

Reliable and
Secure Distributed
Programming

Second Edition

‘a Springer

........

