
1© R. Guerraoui

Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Register

A register has two operations: read()
and w rite()

Sequential specification

read()

return(x)

w rite(v)

x <- v; return(ok)

3

Simplifications
We assume that registers contain only
integers

Unless explicitely stated otherwise, registers
are initially supposed to contain 0

4

Space of registers

Dimension 1: binary (boolean) – multivalued

Dimension 2:
SRSW (single reader, single writer)
MRSW (multiple reader, single writer)
MRMW (multiple reader, multiple writer)

Dimension 3: safe – regular – atomic

5

Safe execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 25

6

Regular execution

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

7

Atomic execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

8

2 decades of hard work

Theorem: A multivalued MRMW atomic
register can be implemented with binary
SRSW safe register

9

Algorithms

The process executing the code is implicitely
assumed to be pi

We assume a system of N processes

NB. We distinguish base and high-level registers

10

Conventions
The operations to be implemented are denoted
Read() and Write()
Those of the base registers are denoted read()
and w rite()

We omit the return(ok) instruction at the end
of Write() implementations

11

From (binary) SRSW safe to
(binary) MRSW safe

Read()
return (Reg[i].read());

We use an array of SRSW registers
Reg[1,..,N]

Write(v)
for j = 1 to N

Reg[j].write(v);

12

The transformation works also for multi-
valued registers and regular ones

From (binary) SRSW safe to
(binary) MRSW safe

It does not however work for atomic registers

13

From Binary MRSW safe to
Binary MRSW regular

We use one MRSW safe register
Read()

return(Reg.read());

• Write(v)
if old ≠ v then

Reg.write(v);
old := v;

14

The transformation works for single reader
registers

From Binary MRSW safe to
Binary MRSW regular

It does not work for multi-valued registers

It does not work for atomic registers

15

From binary to M-Valued
MRSW regular

Read()
for j = 0 to M

if Reg[j].read() = 1 then return(j)

We use an array of MRSW registers
Reg[0,1,..,M] init to [1,0,..,0]

Write(v)
Reg[v].write(1);
for j=v-1 downto 0

Reg[j].write(0);

16

The transformation would not work if the
Write() would first write 0s and then 1

From binary to M-Valued
MRSW regular

The transformation works for regular but
NOT for atomic registers

17

From SRSW regular to
SRSW atomic

Read()
(t’,x’) = Reg.read();
if t’ > t then t:=t’; x:=x’;
return(x)

We use one SRSW register Reg and two local
variables t and x

Write(v)
t := t+1;
Reg.write(v,t);

18

The transformation would not work for
multiple readers

From SRSW regular to
SRSW atomic

The transformation would not work without
timestamps

(variable t representing logical time)

19

From SRSW atomic to
MRSW atomic

We use N*N SRSW atomic registers
RReg[(1,1),(1,2),..,(k,j),..(N,N)] to
communicate among the readers

In RReg[(k,j)] the reader is pk and the
writer is pj

We also use n SRSW atomic registers
WReg[1,..,N] to store new values

the writer in all these is p1
the reader in WReg[k] is pk

20

From SRSW atomic to
MRSW atomic (cont’d)

Write(v)
t1 := t1+1;
for j = 1 to N

WReg.write(v,t1);

21

From SRSW atomic to
MRSW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = RReg[i,j].read();
(t[0],x[0]) = WReg[i].read();
(t,x) := highest(t[..],x[..]);
for j = 1 to N do

RReg[j,i].write(t,x);
return(x)

Value with highest
timestamp

22

From SRSW atomic to
MRSW atomic (cont’d)

The transformation would not work for
multiple writers

The transformation would not work if the
readers do not communicate (i.e., if a reader
does not write)

23

From MRSW atomic to
MRMW atomic

We use N MRSW atomic registers Reg[1,..,N];
the writer of Reg[j] is pj

Write(v)
for j = 1 to N do

(t[j],x[j]) = Reg[j].read();
(t,x) := highest(t[..],x[..]);
t := t+1;
Reg[i].write(t,v);

24

From MRSW atomic to
MRMW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = Reg[j].read();
(t,x) := highest(t[..],x[..]);
return(x)

	Registers�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

