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Register

A register has two operations: read()
and w rite()

Sequential specification

read()

return(x)

w rite(v)

x <- v; return(ok)
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Simplifications
We assume that registers contain only 
integers

Unless explicitely stated otherwise, registers
are initially supposed to contain 0
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Space of registers

Dimension 1: binary (boolean) – multivalued

Dimension 2: 
SRSW  (single reader, single writer) 
MRSW (multiple reader, single writer)
MRMW (multiple reader, multiple writer)

Dimension 3: safe – regular – atomic
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Safe execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 25
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Regular execution

p1

p2

p3

write(1) - ok

read() - 0

read() - 1
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Atomic execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 0
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2 decades of hard work

Theorem: A multivalued MRMW atomic 
register can be implemented with binary 
SRSW safe register 
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Algorithms

The process executing the code is implicitely 
assumed to be pi

We assume a system of N processes

NB. We distinguish base and high-level registers 
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Conventions
The operations to be implemented are denoted 
Read() and Write()
Those of the base registers are denoted read()
and w rite()

We omit the return(ok) instruction at the end 
of Write() implementations



11

From (binary) SRSW safe to 
(binary) MRSW  safe 

Read()
return (Reg[i].read());

We use an array of SRSW registers
Reg[1,..,N]

Write(v)
for j = 1  to N 

Reg[j].write(v);
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The transformation works also for multi-
valued registers and regular ones

From (binary) SRSW safe to 
(binary) MRSW  safe 

It does not however work for atomic registers    
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From Binary MRSW safe to 
Binary MRSW regular

We use one MRSW safe register
Read()

return(Reg.read());

• Write(v)
if old ≠ v then 

Reg.write(v);
old := v;
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The transformation works for single reader 
registers

From Binary MRSW safe to 
Binary MRSW regular

It does not work for multi-valued registers

It does not work for atomic registers
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From binary to M-Valued
MRSW regular

Read()
for j = 0 to M 

if Reg[j].read() = 1 then return(j)

We use an array of MRSW registers
Reg[0,1,..,M] init to [1,0,..,0]

Write(v)
Reg[v].write(1);
for j=v-1 downto 0 

Reg[j].write(0);
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The transformation would not work if the 
Write() would first write 0s and then 1 

From binary to M-Valued
MRSW regular

The transformation works for regular but 
NOT for atomic registers
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From SRSW regular to 
SRSW atomic

Read()
(t’,x’) = Reg.read();
if t’ > t then t:=t’; x:=x’;
return(x)

We use one SRSW register Reg and two local 
variables t and x

Write(v)
t := t+1;
Reg.write(v,t);
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The transformation would not work for 
multiple readers  

From SRSW regular to 
SRSW atomic

The transformation would not work without 
timestamps 

(variable t representing logical time)
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From SRSW atomic to 
MRSW atomic

We use N*N SRSW atomic registers
RReg[(1,1),(1,2),..,(k,j),..(N,N)] to 
communicate among the readers

In RReg[(k,j)] the reader is pk and the 
writer is pj

We also use n SRSW atomic registers
WReg[1,..,N] to store new values

the writer in all these is p1
the reader in WReg[k] is pk
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From SRSW atomic to 
MRSW atomic (cont’d)

Write(v)
t1 := t1+1;
for j = 1 to N 

WReg.write(v,t1);
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From SRSW atomic to 
MRSW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = RReg[i,j].read();
(t[0],x[0]) = WReg[i].read();
(t,x) := highest(t[..],x[..]);
for j = 1 to N do 

RReg[j,i].write(t,x);
return(x)

Value with highest 
timestamp
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From SRSW atomic to 
MRSW atomic (cont’d)

The transformation would not work for 
multiple writers  

The transformation would not work if the 
readers do not communicate (i.e., if a reader 
does not write)
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From MRSW atomic to 
MRMW atomic

We use N MRSW atomic registers Reg[1,..,N]; 
the writer of Reg[j] is pj

Write(v)
for j = 1 to N do

(t[j],x[j]) = Reg[j].read();
(t,x) := highest(t[..],x[..]);
t := t+1;
Reg[i].write(t,v);
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From MRSW atomic to 
MRMW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = Reg[j].read();
(t,x) := highest(t[..],x[..]);
return(x)
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