
Concurrent Algorithms 2015

Final Exam

January 21, 2016

Time: 12:15–15:15 (3 hours)

Instructions:

• This midterm is ”closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you upon request by the TAs.

Good luck!

Problem Max Points Score
1 1

2 2

3 2

4 2

5 1

6 2

Total 10

1

Problem 1 (1 point)

Give the definitions of non-safe (i.e. weaker than safe), safe, regular, and atomic registers. Additionally,
show four register executions:

• One that is non-safe;

• One that is safe but not regular;

• One that is regular but not atomic, and

• One that is atomic.

Solution

Non-safe register. A read operation can return any arbitrary value.

p
0

p
1

read() → 3

(Safe and regular registers are defined for a single writer.)

Safe register. A read operation on a safe register returns the last written value in the absence of
concurrent writes. In the presence of concurrent writes, a read can return any arbitrary value.

p
0

p
1

read() → 3

write(7)

Regular register. A regular register is a safe register with the additional following property: A read
that is concurrent with one or several writes returns the value written by a concurrent write or the
value written by the last preceding write.

p
0

p
1

read() → 7

write(7)

read() → 0

Atomic register. An atomic register is a multiple-reader multiple-writer register whose execution
histories are linearizable. It is possible to totally order all its read and write operations in such a way
that this total order S respects their real-time occurrence order and each read returns the value written
by the last write operation that precedes it in S.

2

p
0

p
1

read() → 7

write(7)

read() → 7

Problem 2 (2 points)

In the lectures of the course, we introduced the splitter object. The splitter object can return any of three
values: stop, down and right. The splitter object ensures the following:

1. If a single process executes DIRECTION, then the process returns stop;

2. If two or more processes execute DIRECTION, then not all of them return the same value; and

3. At most one process returns stop.

For this problem, we introduce the fair-splitter object. Every fair-splitter object ensures the following:

1. If a single process executes DIRECTION, then the process returns stop;

2. If n processes execute DIRECTION, then exactly one of them returns stop. From the rest of the
processes, half of them return right and half return down. If n is an even number, the processes are
distributed as n/2 and ((n/2)− 1) to right and down, or the opposite (it does not matter which of
the two return values gets the extra process).

Your tasks are the following:

1. Give two implementations for a fair-splitter object using:

• Any number of atomic Compare&Swap objects (i.e., objects that provide the CAS operation)
and atomic registers.

• Any number of atomic Fetch&Increment objects (i.e., objects that provide the FAI operation)
and atomic registers.

2. Construct an algorithm that uses any of the two fair-splitter objects you developed and atomic
registers to solve the renaming problem. What is the largest name that can be given by the
renaming algorithm? Is it adaptive? Explain your answer.

The sequential specifications of the CAS and FAI operations are the following:

1 upon FAI() do
2 temp← value;
3 value← value + 1;
4 return (temp);

3

1 upon CAS(oldvalue, newvalue) do
2 temp← value;
3 if value == oldvalue then
4 value← newvalue

5 return temp

Solution

1. The algorithms are the following:

• Here is a simple implementation using Compare&Swap objects (the implementation does
not use the minimum number of objects required, but does however get all points of the
exercise):

uses: choice[0, . . . , dn/2e − 1] — shared array of atomic Compare&Swap objects
initially: choice[0, . . . , dn/2e − 1]← [0, . . . , 0]

1 upon DIRECTION() do
2 value← choice[0].CAS(0, 1)
3 if value == 0 then
4 return(stop)

5 for i← 1; i up to dn/2e − 1 do
6 value← choice[i].CAS(0, 1)
7 if value == 0 then
8 return(right)

9 return(down)

• Here is an implementation using Fetch&Increment objects:

uses: choice — shared atomic Fetch&Increment object
initially: choice← 0

1 upon DIRECTION() do
2 value← choice.FAI()
3 if value == 0 then
4 return(stop)

5 else if (value % 2) == 1 then
6 return(down)

7 else
8 return(right)

2. The simplest answer to this question relies on the fact that a fair-splitter object returns stop exactly
once. We use a one-dimentional array of fair-splitter objects. Each process goes through the array,
until it gets stop. It then returns the index of the array. The the largest name that can be returned
is p (the number of participating processes) and the algorithm is adaptive, since the largest name
depends only on the number of participating processes.

uses: names[0, . . . , n] — shared fair-splitter object array

1 upon NEWN AME(id) do
2 j← 0
3 while True do
4 if names[j].DIRECTION() == STOP then
5 return(j)

6 j← j + 1

4

Note: there are different solutions to this problem depending on the algorithm devised in the first
question.

5

Problem 3 (2 points)

Recall that if a shared object has consensus number +∞, then it solves consensus in a system of n
processes for any integer n. In the lecture, we show that atomic registers have consensus number 1. This
problem discusses registers augmented with register-to-register primitives.

1. Let R1 and R2 be two atomic registers. The register-to-register move primitive R1.move(R2) moves
atomically the content of R2 into R1 and sets the value of R2 to 0.

2. Let R1 and R2 be two atomic registers. The register-to-register copy primitive R1.copy(R2) copies
atomically the content of R2 into R1 (the content of R2 is not modified).

Your task is to prove that both objects have a consensus number of +∞.

Hint: Use arrays whose size is the number of processes n.

Solution

First, we give the construction based on the register-to-register copy primitives. The processes share
two arrays: pre f er[1, . . . , n] and r[1, . . . , n][1, 2], where r[i, 1] is initialized to 1 and r[i, 2] to 0 for each
i, 1 ≤ i ≤ n.

uses: pre f er[1, . . . , n] – shared atomic registers.
uses: r[1, . . . , n][1, 2] – shared atomic registers augmented with register-to-register copy primitives.

1 upon proposei(vi) do
2 pre f er[i]← vi
3 r[i, 2].copy(r[i, 1])
4 for j := i + 1, . . . , n do
5 r[j, 1]← 0

6 for j := n, . . . , 1 do
7 if r[j, 2] = 1 then
8 return pre f er[j]

Second, we give the construction based on the mem-to-mem move primitives. The processes share
two arrays: pre f er[1 : n] and winner[1 : n], and an extra register x, where x is initialized to 1 and
winner[i] is initialized to 0 for each i, 1 ≤ i ≤ n.

uses: pre f er[1, . . . , n] – shared atomic registers.
uses: winner[1, . . . , n] and x – shared atomic registers augmented with register-to-register copy primitives.

1 upon proposei(vi) do
2 pre f er[i]← vi
3 winner[i].move(x)
4 for j := 1, . . . , n do
5 if winner[j] = 1 then
6 return pre f er[j]

6

Problem 4 (2 points)

Recall that base objects are not always correct and they may fail. In this problem, we assume that at
most t base registers might fail. There are two types of object failures:

Responsive. The object only fails once; but when it fails, it fails forever. If a process calls an operation
on a responsive failed object, it will return a specified value (⊥) and announce the process that it is faulty.
Non-responsive. In this type of failure, if a process calls an operation on a non-responsive failed object, it
will never reply to that process.

In the lecture, we presented an implementation of a failure-free MRSW atomic register from (t + 1)
MRSW responsive base atomic registers. The write (read) operation of this implementation writes
(reads) base registers in a specific order, which prevents parallelization.

You tasks are the following:

1. Re-implement a failure-free SRSW atomic register from (t + 1) MRSW responsive base atomic
objects. Your implementation should write (read) base registers without a specific order, which
can thus be issued in parallel.

2. Explain why your solution produces a failure-free SRSW atomic register, but not a MRSW register.

Hint: Consider the base atomic registers that are potentially unbounded; i.e., those registers can
accommodate an arbitrarily large value.

Solution

The construction is based on sequence numbers. It consequently requires base atomic registers that are
potentially unbounded. The t + 1 registers are denoted R[1, . . . , (t + 1)]. Each register R[i] is made up
of two fields denoted R[i].sn (sequence number part) and R[i].val (value part). Each base register R[i] is
initialized to the pair (vinit, 0) where vinit is the initial value of the constructed register. sn, last and aux
are local variables. last is initialized to (vinit, 0).

uses: R[1, . . . , (t + 1)] – shared atomic registers, last — local variable
initially: R[1, . . . , (t + 1)]← [(0,⊥), . . . , (0,⊥)], last← (0,⊥)

1 upon write do
2 sn← sn + 1
3 invoke write(v, sn) on all R[1, . . . , t + 1]
4 for j ∈ {1, . . . , t + 1} do
5 R[j]← (v, sn)

6 upon read do
7 invoke read() on all R[1, . . . , t + 1]
8 wait for t + 1 responses
9 if any pair (v, sn) has sn > last.sn then

10 last← (v, sn)

11 return last.val

7

Problem 5 (1 point)

Recall that anonymous processes do not have id’s although they may know the total number of processes.
In the lecture, we presented an implementation of a wait-free weak counter from wait-free atomic

registers among anonymous processes. This problem discusses the relation between two different
counters.

A mod-m counter has state set {0, 1, . . . , m− 1}. It has two operations: inc increments the current
state from x to (x + 1) mod m; read returns the current state.

An m-valued counter has state set {0, 1, . . . , m}. It also has two operations: inc and read. However, it
can only increment normally m times. Normally, inc increments the current state from x to x + 1 and
read returns the current state, but after m increments, i.e., in state m, read may return nondeterministally
any of the vaules 0, 1, 2, . . . , m− 1.

Your task is to implement an (m + 1)-valued counter from a mod-m counter and atomic registers
among n anonymous processes. Briefly explain how it is linearized.

Hint: Focus on the corner cases.

Solution

We can implement an (m + 1)-valued counter from a mod-m counter C and an atomic register R.
Assume that C and R are both initialized to 0. The variables x and y are local variables.

uses: C – shared mod-m counter.
uses: R – shared atomic register.

1 upon inc do
2 C.inc()
3 R← 1

4 upon read do
5 y← R
6 x ← C
7 if y = 0 then
8 return 0

9 else
10 if x = 0 then
11 return m

12 else
13 return x

Linearize all inc operations whose accesses to C occur before the first write to R in the execution at
the first write to R (in an arbitrary order). Linearize all remaining inc operations when they access C.

Linearize any read that reads 0 in R at the moment it reads R. Since no inc are linearized before this,
the read is correct to return 0. Linearize each other read when it reads counter C. If at most m inc are
linearized before the read, the read is allowed to return any result.

8

Problem 6 (2 points)

Consider the CASn compare-and-swap operation that atomically compare-and-swaps n given memory
locations. The sequential specification of CASn is:

// n : number of addresses

// addr[n] : the n target addresses. An address can appear in addr[n] only once

// old[n] : the n old values

// new[n] : the n new values

boolean CASn(n , addr [n] , old [n] , new[n]) //sequential specification of CASn
{
for (i = 0 ; i < n ; i ++)
if (∗ addr [i] != old [i])
return f a l s e ;

for (i = 0 ; i < n ; i ++)
∗addr [i] = new[i]

return t rue ;
}

Your tasks are to:

1. Give the definition of the opacity property of software transactional memories (STMs). Explain
which use cases opacity covers while traditional safety properties do not.

2. Implement the CASn operation using STM. You can consider that you have access to an STM
system with the following interface:

• tx-begin() – for starting a new transaction;

• tx-end() – for ending a transaction;

• tx-read(addr) – for loading some shared data within a transaction;

• tx-write(addr, val) – for storing a new value to some shared memory within a transaction.

3. Design and highlight the implementation of an STM algorithm using CASn.

Solution

a. See slides for a definition of opacity. Opacity disallows executions that could potentially result in
irrevocable operations, such as a division by zero.

b. We can easily implement CASn with STM:

boolean CASn(n , addr [n] , old [n] , new[n]) //CASn implementation using STM
{

tx−begin () ;
for (i = 0 ; i < n ; i ++)
if (tx−read (addr [n]) != old [n]) {

tx−end () ;
return f a l s e ;

}

for (i = 0 ; i < n ; i ++)
tx−write (addr [n] , new[n]) ;

9

tx−end () ;
return t rue ;

}

c. The three main “operations” that we have to design for an STM algorithm (if we disregard
contention management) are: (i) the transactional read, (ii) the transactional write, and (iii) the commit
of a transaction.

The CASn operation pinpoints to an STM design that tries to atomically perform the whole set of
writes of a transaction in the commit phase using a single CASn operation. Accordingly, transactional
writes must be buffered. Regarding transactional loads, the simplest approach that fits with the afore-
mentioned design is to employ version numbers and validation of the read set on every transactional
read.

Overall, if we assume that we can read a < version, value > pair of an address at once:

Transactional read:

1. Try to find the address in the write set of the transaction. If found, return the corresponding value.

2. Add the {address,< version, value >} tuple for the target address in the read set if it is not already
in there.

3. Validate that none of the entries of the read set has been modified. This can be performed either
address-by-address, or using CASn. With CASn, we can create two arrays–one with the addresses
(addr) and one with the < version, value > pairs (vv)–and then call CASn(read-set-size, addr,
vv, vv). If this invocation returns true, then the read set has been validated, otherwise we need
to restart the transaction.

4. Return the corresponding value.

Transactional write:

1. Add the {address,< version, value >, newvalue} tuple for the target address in the write set. If an
entry for the target address exists in the write set, update the newvalue field.

Transactional commit:

1. Validate for a last time the read set.

2. Create the following arrays from the write set: (i) addr which includes the target addresses, (ii) old
which includes the < version, value > pairs stored while writing, and (iii) new which includes
< version + 1, newvalue > pairs for the corresponding address.

3. Perform CASn(write-set-size, addr, old, new). If true, then the new values and the new
version numbers of the addresses have been establish and the transaction is committed. If false,
the transaction must be restarted.

10

