
Concurrent Algorithms October 25, 2016

Exercise 4

Problem 1. As given in the lecture, a queue is a shared object with two operations: enq(x) and deq(). Now
we augment the queue object with an operation peek that returns but does not remove the first element in
the queue. You task is to find an algorithm that implements consensus among n processes using the aug-
mented queue object and atomic registers for an arbitrary n. (You may use any number of the augmented
queue objects and atomic registers.)

Problem 2. A queue is implemented using two objects: fetch&inc (augmented with operation read) and
swap as follows. A swap object is a shared object with an operation swap(v) that atomically replaces the
current value of the object with v and returns the prior value. (The swap object has also operation read.)

Using a fetch&inc object head, initialized to 0.

Using an array of swap objects (of infinite length) items, initialized to ⊥.

enq(x):

slot = head.fetch&inc();

items[slot].swap(x);

return ok

deq():

while(true) do

limit = head.read();

for j = 0 to limit - 1 do

y = items[j].swap(⊥);
if (y is not ⊥) then

return y

You may assume this queue is linearizable, and wait-free as long as deq() is never applied to an empty
queue.

Consider the following sequence of statements:

• Both fetch&inc and swap objects have consensus number 2 (i.e., there is an algorithm that implements
consensus using the shared object and atomic registers among two processes, while there is no algo-
rithm that implements consensus using the shared object and atomic registers among three or more
processes).

• We can add an operation peek() simply by taking a snapshot of the queue (using the snapshot algo-
rithm studied in previous lectures) and returning the item at the head of the queue.

• Using the protocol devised for Problem 1, we can use the resulting queue to implement consensus
among n processes for an arbitrary n.

We have just implemented consensus using only objects with consensus number 2. Your task is to identify
the faulty step in this chain of reasoning, and explain what went wrong.

p-1



Problem 3. A k-set-agreement object is a generalization of a consensus object in which processes could de-
cide up to k different values. Formally, k-set-agreement is defined as follows. It has an operation propose(v)
that returns (or we say decides) a value, which satisfies the following properties:

1. Validity: Decided values are proposed values.

2. Agreement: At most k different values could be decided.

3. Termination: Every correct process eventually decides a value.

A k-simultaneous-consensus object is another generalization of a consensus object in which processes
could decide k values simultaneously. Formally, k-simultaneous consensus is defined as follows. It has
an operation propose(v1, . . . , vk) that returns (or we say decides) a pair (index, value) with index ∈ {1, . . . , k},
which satisfies the following properties:

1. Validity: If a process decides (i, v), then some process proposed (v1, . . . , vk) with vi = v.

2. Agreement: If two processes decide (i, v) and (i′, v′) with i = i′, then v = v′.

3. Termination: Every correct process eventually decides a value.

Your task is to show that k-set-agreement and k-simultaneous-consensus are equivalent. That is, you
have to show that one implements the other.

Hint: When implementing k-consensus using k-set-agreement, an algorithm that solves the problem is the
following:

1: function KSC.PROPOSE(v1, . . . , vk)
2: Vi ← [v1, . . . , vk]
3: dVi ← kSA.PROPOSE(Vi)
4: REG[i]← dVi
5: snapi ← REG.snapshot()
6: ci ← number of distinct (non-⊥) vectors in snapi
7: di ←minimum (non-⊥) vector in snapi
8: return〈ci, di[ci]〉
9: end function

Where REG[0, . . . , n− 1] is an array of single-writer multi-readers atomic registers initialized at ⊥. Pro-
cesses write atomically a vector of values in their register (Line 4). REG.snapshot() returns an atomic snapshot
of this array of registers. Consequently, snapi[0, . . . , n− 1] is an array of vectors, possibly containing ⊥ val-
ues for some indices. We suppose that there is an order on the set of values that can be proposed, and we
use the induced lexicographic order on vectors at Line 7.

Your task is then to (1) prove that the algorithm above implements a k-simultaneous consensus from
k-set agreement objects and atomic registers; and (2) find an algorithm that implements a k-set agreement
object using k-simultaneous consensus objects and atomic registers.

p-2


