
Concurrent Algorithms 2018

Midterm Exam

November 26th, 2018

Time: 1h45

Instructions:

• This midterm is “closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you upon request by the TAs.

Good luck!

Problem Max Points Score
1 2

2 3

3 3

4 2

Total 10

1



2



Problem 1 (2 points)

Task. Write an algorithm that implements a MRSW atomic multi-valued register using (any number
of) SRSW regular multi-valued registers.

Solution

First implement SRSW atomic multi-valued registers using SRSW regular multi-valued registers. Then
implement MRSW atomic multi-valued registers using SRSW atomic multi-valued registers. The
implementations can be found in the lecture slides (slides 17-21).

3

https://lpd.epfl.ch/site/_media/education/ca18-registers.pdf


Problem 2 (3 points)

The register-swap operation is an atomic operation with the following sequential specification.

1 Variables:
2 Shared MWMR atomic registers A and B.
3 procedure register-swap(A, B)
4 tempA← A.read()
5 tempB← B.read()
6 A.write(tempB)
7 B.write(tempA)

Figure 1: Sequential specification of the register-swap atomic operation.

Consider an asynchronous shared-memory system with n processes, n − 1 of which may fail
by crashing. Assume atomic MRMW registers, on which you can perform atomic read, write, and
register-swap operations.

Task. Write an algorithm that implements wait-free consensus for n processes in this setting.

Solution

Processes share two arrays of registers R[1, . . . , n], and Winner[1, . . . , n], whose initial values are all ⊥.
They also share a register Decider, with initial value won. The algorithm proceeds as follows.

Each process i first writes its proposal value val to R[i]. It then uses a register-swap operation to swap
the contents of the Winner[i] register with the contents of the Decider register. The key idea is that the
process that manages to get the won value into its Winner[i] register will impose its decision value on
the consensus object.

More precisely, after the register-swap(Winner[i], Decider) operation, the process collects all the values
in the Winner array. Let j be the unique index such that Winner[j] = won in the collected array. Each
process decides R[j].

1 procedure proposei(v)
2 R[i]← v
3 register-swap(Winner[i], Decider)
4 j← unique index in Winner with Winner[j] = won

5 return R[j]

Figure 2: Consensus out of register-swap.

4



Problem 3 (3 points)

The sequential specification of a test-and-set object is the following.

1 Variables:
2 Binary Register V, initially 0.
3 procedure test-and-set()
4 temp← V.read()
5 if temp = 0 then

6 V.write(1)
7 return temp

Figure 3: Sequential specification of test-and-set.

Consider an asynchronous shared-memory system with three processes, two of which may fail by
crashing. Assume that atomic multi-reader multi-writer registers and test-and-set objects are available.

Task. Prove that one cannot solve wait-free consensus in this system.

Solution

The solution is a variant of the FLP argument seen in class. You can find the proof in the paper Wait-free
synchronization by Maurice Herlihy, available on the course website. Alternatively, you can prove that
test-and-set can be implemented with a queue, and then follow the proof of Theorem 6 in that paper to
prove that a queue cannot implement consensus, therefore test-and-set cannot implement consensus.

5



Problem 4 (2 points)

The augmented double-ended queue object is the same as the queue object except that it supports
enqueue and dequeue operations on both of its ends (HEAD or TAIL). In addition, processes can invoke
a total of 3 peek operations. Each of the first 3 peek calls returns the value at the selected end of the
queue. Every subsequent peek call returns ⊥.

1 Variables:
2 elements := List(), the list of elements in the queue
3 peeks invoked := 0, the number of invoked peeks

4 procedure enqueue(end,val)
5 if end = HEAD

6 elements.add first(val)
7 else
8 elements.add last(val)

9 procedure dequeue(end)
10 if end = HEAD

11 val← elements.first()
12 elements.remove first()
13 else
14 val← elements.last()
15 elements.remove last()
16 return val

17 procedure peek(end)
18 if peeks invoked = 3
19 return ⊥
20 peeks invoked← peeks invoked + 1

21 if end = HEAD

22 return elements.first()
23 else
24 return elements.last()

Figure 4: Sequential specification of the augmented double-ended queue.

The sequential specification of the object using a doubly linked list is given in Figure 4.

Task. Write an algorithm that implements a wait-free consensus object in a system of at most 4

processes using augmented double-ended queue objects that support at most 3 peek operations and
registers.

Solution

The fact that the queue is double-ended is a red-herring: the same solution can apply for a regular
queue. All the processes first enqueue their proposed values at either end of the queue, provided they
use the same end. The winning value will be at the front of the queue and the processes can call peek to
read it. 1 out of the 4 processes will read ⊥, indicating that everyone else has read the winning value.
That process can then safely call dequeue to read the winning value.

6



1 Variables:
2 deque := Deque(), a double-ended queue object

3 procedure propose(val)
4 deque.enqueue(HEAD, val)
5 winner ← deque.peek(TAIL)
6 if winner != ⊥
7 return winner

8 else
9 return deque.dequeue(TAIL)

Figure 5: Sample implementation of wait-free consensus for 4 processes.

7


