Algorithms that Adapt to
Contention

Hagit Attiya and Arie Fouren

Fast Mutex Algorithm

[Lamport, 1986]

* In a well-designed system, most of the time only a
single process tries to get into the critical section...

¢ Will be able to do so in a constant number of steps.

When processes try to get into the critical
section?

May require

Asynchronous Shared-Memory
Systems

Need to collect information in order to coordinate...

When only few processes participate,
reading one by one is prohibitive ...

Outline

e How to be adaptive in a global sense?

— The and its applications:
renaming and collect.

e How to adapt dynamically?

— Long-lived and its applications:
, renaming and collect.

¢ Extensions and connections.

Adaptive Step Complexity

e The step complexity of the algorithm
depends only on the number of active
processes.

Total contention: The number of processes
that (ever) take a step during the execution.

A Splitter
[Moir & Anderson, 1995]

J k processes

right

stop —

< k-1 processes

<1 process

left J < k-1 processes

A process stops if it is alone in the splitter.

Splitter Implementation

[Moir & Anderson, 1995][Lamport, 1986]

1. X = id; // write your
identifier
2. 1f Y then return/()
3. Y=
4. if (X == id,) // check identifier
then return ()

5.else return()

Splitter Implementation

[Moir & Anderson, 1995][Lamport, 1986]

2. 1f Y then return/()
3. Y=

Splitter Implementation

[Moir & Anderson, 1995][Lamport, 1986]
1. X = id; // write your

identifier

4. if (X == id,) // check identifier
then return ()
5.else return()

Requires < 5 read [write operations, and two shared registers.

Putting Splitters Together

e Atriangular matrix of right

splitters. -

left

e Traverse array,

starting at the top left, =7~ —
according to the s
values returned by
splitters

e Until stopping in some
splitter.

Putting Splitters Together

= one process does not

go in each direction. b

= After < k movements,

a processisaloneina | T
splitter. yEN

= A process stops at
row, column < k

= At most O(k) steps.

Renaming

e A process has to acquire a unique new name
It may later release it

e The range of new names must be as small as
possible

— Preferably adaptive: depending only on the number of
active processes

— Must be at least 2k-1

Renaming is a building block for adaptive algorithms
— First obtain names in an adaptive range

— Then apply an ordinary algorithm using these names

Putting Splitters Together:
k’ -Renaming

Diagonal association of
names with splitters.

=>Take a name < k2.

:,2

LN

5

12

9

13

14

Better Things with a Splitter: Store

e Associate a register
: . =
with each splitter. tpb{2]]4]]|7] |1

e Aprocess writesits Ll
. . 3015|812
value in the splitter F
where it stops. 6 || 9|13
r

e Mark a splitter if
accessed by some |
process. 15

10 14

Better Things with a Splitter: Collect

e Associate a register

-

with each splitter. o2 | A | | p
e The current values ATA AT,
can be collected from — -
the associated 6|19 | P
registers. I
10 14
e Going in diagonals, =1/
until reaching an IS

unmarked diagonal.

Even Better Things with a Splitter:
Store and Collect

e The first store
accesses < ksplitters. |1 b{2] |4 |7 |1

e A collect may need to
access k?splitters... 6 19|13

10 14

Can we do better?

15

Binary Collect Tree

e To store:

traverse the tree until / \
stopping in some

register associated

A
|

e Later, write in the / \

M

with this splitter.

Binary Collect Tree

e To collect:

DFS traverse the /
marked tree, and i

read the associated
registers. / \
3

e Marked tree contains / \
J I$J N

< 2k-1 splitters. J

Size of Marked Sub-Tree

In a DFS ordering of the

marked sub-tree, / \
There is an acquired

between every pair of

it /8
N |

marked nodes. \

Simple Things to Do
with a Linear Collect

e Every algorithm with f(k) iterations of collect
and store operations can be made adaptive.

— Atomic snapshots
[Afek et al. 1991]
O(k) iterations.
=0(k?) steps.
— Renaming.

More Sophisticated Things to Do
with a Linear Collect

e At each spine node:

— Collect.

2—J, —
— If # processes < label
e continue left
— Else
e continue right
remember values.

More Sophisticated Things to Do

with a Linear Collect

e At most 2, 4, 8, etc.

processes move to

8

2\4\
the left sub tree.

=# participantsin a
sub-tree is bounded.

e Perform an ordinary
algorithm in sub-tree.

More Sophisticated Things to Do
with a Linear Collect

 If move right, at
east 2, 4, 8,...
participants.

= The extra step
complexity is
justified.

K‘Z

More Sophisticated Things to Do:
Efficient Atomic Snapshot

e E.g., atomic

snapshot algorithm.
[Attiya & Rachman, 1998]

= An O(k log k) atomic
snapshot algorithm.

K‘Z

Be More Adaptive?

* In a long-lived algorithm...
... processes come and go.

e What if many processes start the execution,
then stop participating?

...then starts again...
...then stops again...

Who’s Active Now?

contention during an operation:
The number of processes (ever) taking a

step during the operation.
[Afek, Stupp &Touitou, 1999]

Who’s Active Now?

contention of an operation:
Max number of processes taking steps
during the operation.

Clearly, point contention < interval contention.

Safe Agreement: Specification

Separate the voting [negotiation on a decision

from figuring out the outcome
Propose (view))
Two wait-free procedures: ack < safe
Propose and Read agreement
Read () > object
. - (
of non-@ views view or O

on non-@ views
returned by Read

If all processes that invoked Propose return,
then Read returns non-@ view

Safe Agreement: Implementation

Use an atomic snapshot object and an array R

Propose(info)
update(info) <:::::::>
scan
write returned view to R[1i]
Read () returns view
find minimal view C written in R
if all processes in C wrote their view

return C
else return 9@

U U S U U S

Safe Agreement: Safety

Let C be the minimal view returned by any scan

Can prove that all non-@ views are equal to C

Safe Agreement: Liveness

Clearly, both procedures are wait-free

— But Read may return
a meaningless value, @ @

If some process invokes Propose, then after
all processes that invoke Propose return,
a Read returns a non-@ value

Safe Agreement: Winners

Even better...

A Read by some process in C
returns a non-@ value

E.g., the last process in C to write its view
These processes are called winners

U U S U U S

Safe Agreement & BG Simulation

Safe agreement was introduced by Borowsky & Gafni for
fault-tolerant simulation of wait-free algorithms
— Abstracted by Lynch & Rajsbaum

e Different interface
— Propose and Read not separated
— No @response for read
— Complicates the simulation

¢ They also missed an interesting feature...
[Attiya & Fouren]

Safe Agreement: Concurrency

All processes in C execute
Propose concurrently ©

In particular, all winners

Safe Agreement: Concurrency

All processes in C execute

Propose concurrently ;.. ose (view)]

. . ack < adaptive
In particular, all winners safe

agreement
> object

Read ()

. €
view or @

Use a doorway variable
inside to avoid
unnecessary update / scan

Safe Agreement: Concurrency

All processes in C execute

Propose concurrently ;.. ose (view)]

. . adaptive
In particular, all winners true / false i

agreement
> object

Read ()

. <€
view or @

Use a doorway variable
inside to avoid
unnecessary update / scan

Adaptive Safe Agreement

Propose(info)

if not inside then

Propose (view))

inside = true < adaptive
: t fal
update(info) rue / false Sl
agreement
scan Read () > object

.] <
write returned view view or @

return(true)
else return(false)

Concurrency: If a process returns false then some
““concurrent” process is accessing the object

Long-Lived Adaptive Safe Agreement

Enhance the interface with
Propose(view;

a generation number >
(nondecreasing counter) Beolean.c

Read (c) >
. €

view or @

Release (c) >

long-lived
adaptive
safe
agreement
object

Validity, agreement and termination as before but

relative to a single generation

Concurrency: If a process returns false, c then some
process is concurrently in generation ¢ of the object

Long-Lived Adaptive Safe Agreement

Synchronization: processes are inside the
same generation simultaneously

= Their number =< point contention

= Can employ algorithms adaptive to total
contention within each generation

" e.g., atomic snapshots

Long-Lived Adaptive Safe Agreement:
Implementation

e Many copies of one-shot count
safe agreement

— count points to the current copy

e Winners of each copy are synchronized
— Increase count by 1.
— Monotone...

When all processes release a generation, open the
next generation by enabling the next copy

Catching Processes

with Safe Agreement

 When processes access an adaptive long-
lived safe agreement object simultaneously,

at least one wins 9@

e If a process accesses an adaptive long-lived
safe agreement object and does not win,
some other process is accessing the object

Good for adaptivity...

Things to do with Long-Lived
Safe Agreement: Renaming

Place objects in a row...

ARVARER

1

2

3

4

|

2n—1

return (4, rank in C)

Agreement in each long-lived safe agreement object

of names.

Renaming: Size of Name Space

3 4

2n—1

|

return (4, rank in C)

Concurrency for each long-lived safe agreement object
= An object is skipped only due to a concurrent process

= A process skips = r objects
= ristheinterval contention

* Range of names = r?

Renaming: Size of Name Space
A1 14

contention

E We promised point m

P, skips because of P, SN oo ort e SO,
= P;skips because of P,

= P, skips because of ...

They all overlap

Renaming: Complexity & Size of Name Space

Proof is subtle since a process skips
either due to a concurrent winner
or due to a concurrent non-winner in C

(which it can meet again later in the row)

e Use a potential-function proof to show that
a process skips =< 2k-1 objects

— k is the point contention
=Name = k?
=f(k) step complexity

Store

Place objectsin a row..m

1 2 3 4

p, €EC

Agreement on set of candidates and
uniqueness of copies

=p,, writes the values of all candidatesin a
register associated with the sieve.

2n— 1

Collect

e Go over the associated registers and read...

Collect

* p,,and all other operations complete.

e A collect still has to reach the splitterin
which p,, has written its value!

2n— 1

Bubble-Up

[Afek, Stupp & Touitou, 2000]

e Before completing an operation,
move information from far away objects
to the top.

Other Things We can Do

Long-lived adaptive safe agreement objects
with bubble-up yield adaptive (to point
contention) algorithms for:

— Gathering & collecting information
— Atomic snapshots

— Immediate snapshots

— (2k-1)-renaming (optimal)

Even More...

* The algorithms can be made fully adaptive

— Step complexity depends on processes really
participating, not just “signing in”
e Especially relevant in renaming-based algorithms

e Can bound their memory requirements
— But the bounds are not adaptive...

What About Mutex?

e Cannot have adaptive step complexity...

e Can have adaptive system response time.
[Attiya & Bortnikov, 2002]

— Some techniques are similar.
— Renaming, adaptive binary tree (bottom-up!)...

Space: The Final Frontier

e Improve the step complexity of the algorithms and

reduce their space complexity
— Lots of improvement recently for total contention

- E.g., using randomization

e Algorithms whose space complexity is truly
adaptive to point contention?

— Currently, number of registers used depends on total
contention

— Allocated vs. used registers

Space: The New Frontier

* Our results are based on a collect algorithm.

— Either O(K?) step complexity (K is total
contention),

- Or space complexity.
* A better collect algorithm?
— O(K) step complexity, and
space complexity.

e Alower bound proof?

Other Aspects

e Using stronger primitives (CAS...)
— Promising for adaptive space complexity

e More modularity...

— We made some progress with the long-lived
adaptive safe agreement object

— What about bubble-up?

L.ower Bounds

Non-constant number of multi-writer registers is
needed for adaptive weak test&set

= Holds also for renaming and long-lived collect

Non-constant number of multi-writer registers is
needed for adaptive generalized weak test&set

= Holds also for one-shot collect

Linear number of multi-writer registers is needed for
adaptive and efficient one-shot collect

Taking a Broader Perspective

Connections with recent research trends:

— Obstruction-free algorithms
e Adapting to step contention

— Abortable [failing objects

— Population-oblivious algorithms

Mostly based on

e Attiya and Fouren,
Adapting to Point Contention with a Sieve,
Journal of the ACM, Vol. 50, No. 4 (2003).

e Attiya, Fouren and Gafni,
An Adaptive Collect Algorithm with Applications,
Distributed Computing, Vol. 15, No. 2 (2002).

THANK YOU!

