CA'09: Exercise 1

September 28, 2009

1 Problem 1

A *binary consensus* shared object has a single operation *propose* that takes a value v equal to 0 or 1 as an argument and returns 0 or 1. When a process p_i invokes propose(v), we say that p_i proposes value v. When p_i is returned value v' from propose(v), we say that p_i decides value v' (v' does not have to be equal to v). A binary consensus object satisfies the following properties:

Agreement No two processes decide different values.

Validity The value decided is one of the values proposed.

A *write-once register* is a shared object with the following sequential specification (x is initially equal to \bot and v is always different than \bot):

```
upon write(v)
  if x = ⊥ then x := v
  return ok

upon read
  return x
```

Your tasks are:

- 1. To implement a binary consensus object using any number of write- once registers;
- 2. To implement a binary consensus object using one or more queue objects in a system of 2 processes.
- 3. Explain briefly why your algorithms satisfy the Agreement and Validity properties.

Remark: Unless stated otherwise, we assume the following:

- 1. Every shared object is atomic and wait-free (so, in this exercise, the binary consensus object, write-once registers and queues are atomic and wait-free).
- 2. Every shared object implementation can use any number of atomic wait-free multi-valued MRMW registers (so, in this exercise, you can use atomic registers, together with write-once registers/queues, in the two binary consensus implementations).
- 3. The queues you use may be initialized with whatever you want.