
Set Agreement 
Lecture of December 7, 2009 

Until very recently there were only two main object considered in distributed computing: registers and 

consensus. We have also seen that the consensus is impossible in a totally asynchronous shared 

memory system if at least one process can fail. This is because the read/write memory model can 

remain in a bivalent state for an arbitrarily long period (FLP impossibility result). 

The generalization of the consensus we want to present in the lecture is a K-Set Agreement object, 

which is defined with the following properties: 

- Validity: every value decided has been proposed 

- Termination: every correct process eventually decides 

- Agreement: at most k different values are decided 

We can see that the first two properties are the same as the ones of the consensus object, but the 

relaxation lies in the Agreement property, which allows at most k different values to be decided (in 

consensus k = 1). 

Impossibility results 

Although KSA looks much simpler for implementation than Consensus, because of the relaxed 

agreement property, we will now see a few impossibility results which show the contrary. 

Theorem 1. KSA is impossible in an asynchronous shared memory system with k+1 processes, of which k 

might fail. 

As the general proof of the theorem would require a lot of time and since it is not the main topic of this 

lecture, we will now give just the intuition of the proof for k = 2. Let us consider a system of tree 

processes: p1, p2, p3. Furthermore, let us assume such a computational model where each process 

performs execution in rounds and the round of each process consists of the following two phases: 

- writing a value to the shared memory  

-  taking a snapshot of the shared memory 

After a process finishes the first round, it starts the second one and so on. Because of the asynchrony of 

processes, we have that not all processes see same values (for example, the fastest one will see only its 

own written value). We will now look deeply in what can happen in just one round r. Say that in the 

round r each process pi has written a value vi. Then, there exists a triangle T of the execution, where the 

values (colors) in the points of a triangle in some triangulation of T represent a value chosen locally in 

the round r. Corners of the triangle T can have only one value (e.g. the process in that execution was 

very fast so it saw only its own written value). The color of the point on an edge between two corners 

can be any of the colors of the two corners (e.g. this process is neither the slowest nor the fastest, so it 



saw the two values in the snapshot). The third possibility is when the point in somewhere in the triangle, 

in which case the color of such a point is any color of the corners (e.g. this process is the slowest, so it 

saw all the values). One possible execution is shown in the Figure 1, where the sub-triangle P1P2’P3’ 

represents the situation when P1 is the fastest, then comes P3, after which P2 takes the snapshot. Values 

of snapshots are represented in brackets when there are a few possible values. 

 

Figure 1 

Let us see if we can solve KSA at round r. Since every triangle in a triangulation of T is some possible 

execution of the algorithm (where the colors of the points are decided values in round k), we are 

interested in asking if there exist no triangle in the triangulation which contains more than 2 colors (2-

set-agreement in this concrete case). However, because of the two-dimensional case of Sperner ‘s 

lemma, which states that for a given triangle T (where the corners of T are colored differently) and any 

triangulation of T (where the vertices of the triangles in a triangulation get colors as we described 

earlier), there exists at least one triangle in the triangulation whose vertices are colored with three 

different colors. In other words, if we adapt the lemma to our needs, we have that there always exists at 

least one execution where the processes decided on the three different values. Furthermore, it is 

possible to show that no matter how many rounds we execute, if we choose the sub-triangle with three 

colors to be new T, we have that the lemma still holds (as the triangles recursively have also some 3-

colored sub-triangle), so there is always an execution where all the values are decided (none of the 

values is rejected). 

The logical continuation is to see whether more processes will add us some power, so that we can 

implement KSA with more than k+1 process, where k of them can fail. It is shown bellow that this is also 

impossible. 

Theorem 2. KSA is impossible in a system with n process and k failures. 

In order to show this, we will first show one interesting result known as Borowsky-Gafni simulation 

(BGS). 



Theorem 3. Any task which can be solved k resiliently in a system of n process can be solved wait free in a 

system with k+1 process. 

This is because Borowsky and Gafni showed that n processes can be simulated by k + 1 processes, where 

k of them can fail. For showing the simulation, we have to define a Safe agreement object, which has 

two operations propose and decide and is defined with the following properties: 

- Validity: the value decided is one of the proposed values 

- Agreement: no two different values are decided 

- Termination: 

Every correct process that invokes propose eventually returns from the invocation 

Every correct process that invokes decide eventually returns from the invocation, unless 

some process fails while proposing 

Safe agreement can be easily implemented in the following way: 

 

The Validity trivially holds. The Agreement can also be easily proven, because once some value is 

decided, it is the only value possible to be decided later. This is because once there are no values at level 

1, all incoming proposals will read that level 2 is full so new values can be put only at level 0. Therefore, 

no other value can ever be decided since the set at level 2 will remain the same. The only place where a 

process can be blocked is obviously deciding method. However, this will happen only if a process fails 

after it writes its value at level 1, but before moving it to the level 0 or 2. This satisfies the Termination 

property, so the algorithm is correct. 

Now we can show what BGS is all about. It consists of simulating the behavior of n processes by k+1 in 

such a way that each of k + 1 processes simulates the work of n threads. The only important thing is that 

i
th

 thread of each process needs to produce the same result in all processes. For this purpose we use 

Safe agreement, so that i
th

 thread in each process decides on the same value (or stays blocked). Even 

though from the Termination property of safe agreement some thread can stay blocked in while 

deciding, this can happen at most k times, so the remaining n – k threads can solve the problem as in the 

ProposeProposeProposePropose(v):    
   write v at level 1 
   ifififif there is a value at level 2 thenthenthenthen 
      put v at level 0 
   elseelseelseelse    
      put v at level 2 
 
DecideDecideDecideDecide():    
   waitwaitwaitwait until there is no value at level 1 
   returnreturnreturnreturn the smallest value at level 2 



way they would do it if k processes have failed. Let us see how would the propose method would look at 

the process i which proposes a value v. 

 

There is a shared array of safe agreements sa and we consider that each process has its local mutex, 

which is used for controlling the access to the safe agreement array in one process. The simulation 

above shows how we can transform some problem where we need to propose a value, by simulating the 

execution of n processes at k + 1 processes. At each process we create n threads after which we start 

looping until the decision is made, which is determined by the original algorithm. There are n safe 

agreements so that threads can decide between them on the value which should be chosen for passing 

to the original solution. Once this is decided, the value is passed to the original algorithm, which cannot 

make a difference between this execution (when the operations are invoked by threads) from the one 

when different n processes invoke operations. We know that the decide method can block a thread, but 

since no more than k threads can fail, that is at least n – k threads will remain correct at one process, 

which we know the original algorithm can handle since it is k resilient. 

The Theorem 2 follows directly from the Theorem 1 and the Theorem 3. If there exists an algorithm 

which implements KSA with n processes (where k might fail), from Theorem 3 that means there exists 

also an algorithm which implements KSA with k + 1 processes. However, we know that this is impossible 

because of the Theorem 1 (even if none of k + 1 processes fails), so the Theorem 2 holds. 

As a conclusion, we have that the KSA is impossible in an asynchronous system with n processes, where 

k of them are faulty. 

In the partially synchronous model 

The same approach we used for implementing the Consensus object can be used here as well. More 

precisely, we can adapt the algorithm used for the Consensus implementation to implement KSA object, 

provided that we have an access to leader_k method (which can be implemented only in a system with 

some timing assumptions, i.e. partially synchronous). 

ProposeProposeProposePropose(v): 
  create n threads and in eachin eachin eachin each thread j dodododo 
    whilewhilewhilewhile notnotnotnot finished 
      mutex[i] { 
        sa[j].propose(v)  
      } 
      v_j = sa[j].decide()  // can block this thread 
      // do the part of the algorithm as would be done if 
      // process j has proposed value v_j in the solution 
      // with n processes and sets the value of finished  
      // when the algorithm is done  
      // (as in normal case with n processes) 



leader_k – returns a subset of processes of size k such that eventually the set is the same at every 

process and contains at least one correct process 

With leader_k construct, we can implement the KSA consensus with a few modifications of the 

consensus implementation which uses leader. We assume that processes share the array of registers T, 

which hold timestamp values, and the array of registers V, which hold (tsp, value) pairs. In addition, 

highestTspValue returns the value with the highest timestamp among all the pairs (tspi, valuei) in V and 

highestTsp_k returns the k highest timestamps among all the timestamps in T. We then can implement 

the KSA as follows: 

 

The termination property holds, because leader_k will eventually allow execution of only k processes, 

which means that they will be among the highest timestamps, so they will be able to decide. However, it 

is not so obvious that the agreement property also holds. If the decision of some process p is one of the 

first k decisions, then this doesn’t violate the agreement property for sure. However, let us see what 

happens in other case, if the decision of a process p is not among the first k decisions. That means that 

when k processes have decided, p’s timestamp in T was not among the k highest. Consequently, p’s 

timestamp in register V was not among the highest k timestamps in V. Therefore, process p will set val 

to some of the already decided values. Therefore, the agreement property also holds. 

Leaders play the role of failure detectors and what is interesting is that this leader_k as defined above is 

the weakest failure detector which allows us to implement the KSA. However, there is an open problem 

concerning the sufficient (the weakest) base object which allows the implementation of KSA in a 

completely asynchronous system (just as we know that Compare&Swap is sufficient for implementing 

consensus). 

KSA and universality 

We have seen that consensus object is universal in a sense that it is possible to wait-free implement any 

object using consensus as a base object (by replicating object to be implemented in every process and 

ProposeProposeProposePropose(v): 
  whilewhilewhilewhile (truetruetruetrue) 
    ifififif i inininin leader_k() thenthenthenthen 
      T[i].write(ts) 
      val = highestTspValue() 
      ifififif (val = ⊥) thenthenthenthen  
          val = v 
      V[i].write(val, ts) 
      ifififif (ts in highestTsp_k()) thenthenthenthen  
          returnreturnreturnreturn val 
      ts = ts + n 



ordering performed operations of the object by consensus objects). We will now see what kind of 

universality KSA offers. 

K-Vector Consensus (KVC) is defined by the following properties: 

- Validity: any non-nil element returned at position i has been proposed at position i 

- Agreement: no two non-nil elements returned at the same position are different 

- Termination: every correct process that proposes eventually returns and any vector returned 

has exactly one non-nil element 

It can be thought as a vector of k consensus objects. Each process proposes a value to a position in a 

vector and a consensus at that position takes care of returning only one non nil value at that position, 

among all the proposed values for that slot. The difference between the array of k consensus objects 

and k-vector consensus is that in the later can return to some process nil value as a decision at the 

position i, while some other process can get value v at the same position i. 

It can be shown that KVC and KSA are equivalent objects. For that purpose, we will now show one 

possible implementation of the KSA using KVC as base object: 

 

It is obvious that the implementation above is correct (since there are at most k different values in k-

vector consensus), so what we do next is implementation of KVC using KSA as base object, which is a bit 

more complicated. The argument of the propose method is a vector of non-nil values, and the output of 

the method is also a vector, which has exactly one non nil value. 

 

By the definition of KSA we have that at most k different v_d vectors will be returned when proposing a 

vector of values. In addition, we have that the vector will be some of the proposed vectors. Therefore, 

the validity property of KVC holds, because we return the element at some position (which is always 

smaller than k) in some original vector. For checking whether the agreement property is satisfied, we 

will use one characteristic of an atomic snapshot. If we denote as Ci a view that was returned by a scan 

ProposeProposeProposePropose(vector): 
  v_d = ksa.propose(vector) // decided vector, at most k different vects 
  r[i].write(v_d) 
  c = snapshot(r) 
  position = the number of different non-nil elements in c 
  value = the vector in c with the smallest weight 
  returnreturnreturnreturn (position, value[position]) 

ProposeProposeProposePropose(v): 
  vect = kvc.propose(v, v, v, ..., v); 
  returnreturnreturnreturn some non nilnilnilnil value in vect 



at a process pi, we then have that each Ci is either a subset or a superset of some other view Cj (Ci can be 

equal to Cj). With this characteristic we know that if the set c of vectors is of the same size, then the 

elements in it are also the same. Thus, the value determined as the vector in the view with the smallest 

weight will be the same (as the two vectors a and b have different weight if and only if at least one 

position a[i] ≠ b[i]) in each process which has the same number of elements in the snapshot view. With 

this, we can conclude that the value[position] value returned will be the same value in each process 

which has the same position value. This implies that the agreement property is also satisfied. 

If we have KVC (or equivalently KSA), we will now show how we can build k objects (state machines) 

such that at least one of them is highly available (makes progress). We assume that there are n 

processes, each of them has a local copy of k state machines, as well as the list of commands for each 

state machine. There is also an infinite list of k-vector consensus objects which is shared between the 

processes. In proving the universality of the consensus object, we had that each of the processes 

proposes an action, which then waits to get the set of decided actions. This way every process executes 

the same set of actions in the same order. Here, in generalized universality, we have a similar idea. The 

difference is that this time each process has a vector v (of size k) of actions it wants to execute (v[i] is the 

action for the i
th

 object). It proposes the vector to the KVC and we know that at one position i in the 

decided vector there will be a non-nil value and that action will be executed on object i. We will now 

give a few implementations, just to mention problems which exist in some of them. Additionally, we 

assume that (c, i) is the only entry in the decided vector where c is non-nil. 

 

The problem which exists in this implementation is that a process i can get non-nil value at position m, 

so it executes the action on the machine i. However, some other process can get nil value at position m 

(and not nil at some other position) so it will not be aware of the action which process i has performed 

on the state machine m. 

The second implementation is based on sharing the update one process has performed, so that others 

are aware of the action it has performed. 

First_tryFirst_tryFirst_tryFirst_try(): 
        whilewhilewhilewhile(truetruetruetrue) dodododo 
     forforforfor j = 1 totototo k do do do do     
                                    com[j] = myCommands[j].next() 
     kvc = kVectorConsensuses.next() 
     (c, i) = kvc.propose(com) 
     stateMachine[i].perform(c) 



 

The problem in this implementation is that process i which got non nil at position m can be too slow, so 

that some other faster process (which has received nil value for machine m) has found empty register 

for machine m, so it again doesn’t have an accurate state of its local copy of the machine m. 

Before we give the correct implementation of generalized universality, we will first define an Abortable 

consensus object. It has operation propose(v), which proposes value v. The operation returns a pair (v, V) 

which means that value v was decided and, if the returned set V is empty, then we say that process 

commits v. Otherwise, we say that process aborts with v because of V. 

Abortable consensus (AC) has the following properties: 

- Validity: any value returned has been proposed 

- Agreement: if a value v is decided then no other value is decided 

- Termination: every correct process which proposes eventually decides and if all processes 

proposed the same value, then no process aborts 

The implementation of AC is possible only with registers and is given bellow. 

 

We will use a shared list of k-vector abortable consensus objects in order to be sure that the action we 

want to execute on some state machine is known to the others before we really perform it. This way we 

ProposeProposeProposePropose(v): 
  write v at level 1 
  write V (which is the set of all values at level 1) to the level 2 
  ifififif all V at level 2 are the same singleton v thenthenthenthen 
    returnreturnreturnreturn (v) 
  elseelseelseelse ifififif there is some singleton V = v thenthenthenthen 
    returnreturnreturnreturn (v, V) where the V is the union of all values 
  elseelseelseelse    
    returnreturnreturnreturn (v, V) where the V is the union of all values at level 2 

Second_trySecond_trySecond_trySecond_try(): 
        whilewhilewhilewhile(truetruetruetrue) 
     forforforfor j = 1 totototo k dodododo  
        com[j] = myCommands[j].next() 
     kvc = kVectorConsensuses.next() 
     (c, i) = kvc.propose(com) 
     register.write(c, i) 
     stateMachine[i].perform(c)     
     read registers and perform stateMachine[j] if any 



have solved the problem of unsynchronized local copies of the state machines. The whole algorithm is 

given bellow. 

 

As we have said, with the abortable consensus we are sure that if some process commits an action, all 

the processes that come later will get the information about the action. However, if there are many 

processes competing for the same machine, it is possible that an action will be aborted. Still, V will 

contain all the actions proposed and will be stored for proposal in the next iteration (the action might be 

executed or not in the next iteration, which depends again on the abortable consensus). 

The safety of the algorithm above comes from the total order of operations: if a process performs an 

operation c on a state-machine m without having performed the operation c’ on m, then no process 

performs c’ on m without having performed c. This follows from the following two lemmas: 

Lemma 1. All commands executed come from an abortable consensus. 

Lemma 2. Abortable consensus objects are executed in the same order by all processes. 

We can deduce that if one process is correct then at least one state machine progresses (this satisfies 

the liveness property) from the following two lemmas: 

Lemma 3. At least one abortable consensus commits in every iteration. 

Lemma 4. Every correct process executes a command every two steps. 

ThirdThirdThirdThird_try_try_try_try(): 
        whilewhilewhilewhile (truetruetruetrue) 
     forforforfor j = 1 totototo k dodododo  
         com[j] = myCommands[j].next() 
     kvc = kVectorConsensuses.next() 
     kvac = kVectorAbortableConsensuses.next() 
     (c, i) = kvc.propose(com) 
     (vect[i], V[i]) = kvac[i].propose(c) 
  
     forforforfor eacheacheacheach j = 1 totototo k exceptexceptexceptexcept i dodododo 
        (vect[j], V[j]) = kvac[j].propose(com[j]) 
  
     forforforfor j = 1 totototo k dodododo 
        ifififif V[j] is is is is emptyemptyemptyempty thenthenthenthen 
           stateMachine[i].perform(vect[j]) 
           com[j] = myCommands[j].next() 
        elseelseelseelse    
           com[j] = vect[j] 


