
Concurrent Algorithms

Lecture Notes

Writing while reading registers

R. Guerraoui
Distributed Programming Laboratory

October 22, 2009

Lecture notes written by Laurent Bindschaedler (SIN).

Contents

1. Foreword 2

2. Bound on SWSR atomic register implementations 2

3. Bound on SWMR atomic register implementations 7

4. Tromp’s algorithm 9

5. Conclusion 13

1

1. Foreword

In the previous lessons, we saw how to implement Multi-Reader-Multi-Writer
(MRMW) atomic registers from Single-Reader-Single-Writer(SRSW) safe regis-
ters. Some of these algorithms made use of many lower-level registers to imple-
ment a single higher-level register. This lesson we will show that we can’t do
better than these algorithms.

We will challenge two assumptions:

• Readers need to write1

• We have an infinite number of registers2

When we say that readers write, we mean that the Read operation on the higher-
level register needs to use write (not only read) operations on the lower-level
register(s).

2. Bound on SWSR atomic register implemen-
tations

Theorem 1. There is no wait-free algorithm that:

• Implements a SRSW atomic register,

• Uses a finite number of bounded SRSW regular registers,

• And where the base registers can only be written by the writer3.

In other words, this theorem states that it is impossible to have a SRSW
atomic register unless you allow infinite memory or readers to write. These
requirements are tight: there is no way to do without them. This is called an
”impossibility result”. This theorem carries very strong implications since it
tells you that there is no point trying to implement a register such as the one
defined above since no such algorithm can possibly exist.

We now prove this theorem. Since this is the first proof, we will go slowly and
try to explain things in as much detail as possible.

Proof of theorem 1. We proceed by contradiction, i.e. we assume that we have
an algorithm that implements a SRSW atomic register using a finite number
of bounded SRSW regular registers and where the base registers can only be
written by the writer. Note that we have no idea what that algorithm could
look like and in fact we don’t care. We will prove that no matter what it does,

1 This is due to the problem we ran into when implementing Multi-Reader (MR) registers
from Single-Reader (SR) registers.

2 This follows from the use of timestamps which we needed to introduce to solve the regular
to atomic transformation. Indeed, timestamps imply infinite memory because we need the
ability to keep incrementing (even after a very long period of time).

3By writer, we mean the writer of the atomic register.

2

it can’t work.

The proof idea is as follows: we will build a counterexample4 where the
above-assumed algorithm fails to provide atomicity. If we succeed in building
that counterexample, we prove the claim. In building that counterexample,
we can carefully craft whatever scenario we want. This is called an ”adversary
model”. In this case, we are the adversary and our goal is to make the algorithm
fail.

Let us begin with setting up the context:

• We will assume that the higher-level register implemented by the algo-
rithm is a binary register. Let us denote that register by Reg . This is
somewhat of a simplification, but it is without loss of generality (WLOG)
since if the algorithm doesn’t work for a binary register, it will necessarily
not work for a multi-valued (M-valued) register.

• We will also assume that we have a single SWSR regular (possibly M-
valued) register at our disposal. Let us call this register reg . This simpli-
fication is also WLOG for the following reason: we can replace n registers
of m bits of memory with a single register of n ∗m bits of memory, en-
coding each of the n registers as an element of an array contained in the
single big register.

Now, we describe a scenario where the algorithm fails.

The writer keeps writing 0s and 1s alternatively and infinitely many times
to Reg , i.e. the sequence of operations looks like (see figure 1):

Write(0), Write(1), Write(0), Write(1), Write(0), ...

Figure 1: Sequence of alternating Write operations.

During these operations, reg may go through several different states5, e.g.
s0, s1, s2, etc. and not necessarily in a deterministic order. However, we know
that reg is bounded, i.e. the number of different internal states is limited (it
may be large, but it is finite). This means that, since we’re writing infinitely
many times to Reg , some state (call it v0) of reg must appear infinitely many

4 This is some kind of a prowess. Again, because we’re building a counterexample for an
algorithm we don’t even know.

5 Remember that, while the user of Reg sees 0 or 1, the internal implementation may
be much more complicated (it could use several bits to encode the value). Note that this
assumption, while potentially counter-intuitive and seemingly not very useful is necessary
since we want to prove that any algorithm will not work.

3

times6 after a Write(0)7. See figure 2.

Figure 2: reg is in state v0 after an infinite sequence of Write(0).

We now consider the subset of Write(1) operations starting when reg is in
state v0. We again use the same argument to state that reg can only go though
a finite number of states (i.e. it can only assume a finite number of values)
after a Write(1). This means that there is a value (or a state) vn which appears
infinitely many times in reg after a Write(1)8. See figure 3.

Figure 3: reg is in state vn following v0 after an infinite sequence of Write(1).

Does vn necessarily follow v0 immediately? Remember that we need to keep
the algorithm general9. We therefore allow intermediate states between v0 and
vn. These occur infinitely many times. We state the following:

There must exist values v0, v1, ... vn
10, such that (see figure 4):

• v0 is the value of reg before infinite Write(1) operations,

• vn is the value of reg after infinite Write(1) operations,

• ∀i < n: reg changes infinitely many times from vi to vi+1 during infinite
Write(1) operations.11

6 Note that we can’t say that several states appear infinitely many times. All we can say
with absolute certainty that at least one such state does.

7 We can’t guarantee that v0 appears after every Write(0), but we know that it occurs at
least in an infinite subsequence and that is what we are interested in.

8 As before, we can’t guarantee that v0 is followed by vn after every single occurrence.
However, we consider subsequences of those occurrences where it is the case. These sequences
occur infinitely many times.

9 Making such an assumption here would reduce the number of possible algorithms and thus
an algorithm that would solve the problem could no longer fall under this proof - rendering it
useless.

10 We can at least guarantee v0 and vn, which corresponds to the simplest transition
possible. However, there could be other intermediate transitions.

11 Once again, we can’t guarantee that the same sequence will occur between every v0
and vn, but we are considering the subsequence of those that do. Again, this subsequence is
infinitely long.

4

Figure 4: The sequence of states v1s ∀i ∈ {0, 1, ...n}.

We now insert the reader in the scenario. Remember that we also control
what the reader does since we control the full scenario. The reader, just as
the writer, does not necessarily perform just one read operation on reg , which
means that we must also consider that reg can go through many different states
(vi) during a Read. We thus consider a sequence of reads.

Let us describe two different executions:

• Execution 1: Consider two Write(1) operations and one Read() operations
on Reg . Furthermore, assume that the reader reads reg when it is in state
vi, concurrently with the first Write(1), and decides to re-read it later, i.e.
it reads reg a second time, concurrently with the second Write(1), and
reg is in state vi again. See figure 5.

Figure 5: Execution 1 - two Write(1) concurrent with one Read() operation.

• Execution 2: Consider one single and long Write(1) operation and one
Read() operation on Reg . Assume, as in case 1 that the reader reads
reg when it is in state vi, concurrently with the Write(1), and decides to
re-read it later, i.e. it reads reg a second time, concurrently with the same
Write(1) - which took a long time to complete -, and reg is still in state
vi. See figure 6.

Remember that the reader is wait-free, that is, it cannot keep reading forever
and that it must return a deterministic value. What are the possible values for
vi? If i = 0, reg is in state v0 and thus the Read() returns value 0. Similarly,

5

Figure 6: Execution 2 - one long Write(1) concurrent with one Read() operation.

if i = n, the Read() returns value 1. What happens when i 6= 0, n? We claim
there is a minimum i with 0 < i ≤ n such that:

• If the reader always reads (through read()) vi, then

– The reader returns (through Read()) 1.

• If the reader always reads (through read()) vi−1, then

– The reader returns (through Read()) 0.

Note that in this situation, because the underlying register reg is regular
(this is where we use the last part of the hypothesis), it may be that reg re-
turns (through read()) vi−1 after returning vi, which will cause the reader to
return (through Read()) 1 and then 0. This clearly violates the assumption that
Reg was atomic: executions 1 and 2 appear indistinguisable to the reader, even
though they should.

Therefore, since Reg is not atomic, we have proven our claim that an algo-
rithm algorithm that implements a SRSW atomic register using a finite number
of bounded SRSW regular registers and where the base registers can only be
written by the writer can’t exist.

Let us now look back on the proof. Consider the simplest candidate for the
above algorithm, which would simply forward the 0 or 1 to the underlying reg-
ister. We know that this algorithm doesn’t work (because of read inversions -
cf. lesson 2). We assumed (in the above proof) a more complicated candidate
algorithm and brought it down to the same problem with 0 and 1 using vi and
vi+1. This somehow conveys philosphically the idea that no matter what we do,
we need to deal with this intrisic property of regular registers differently (e.g.
using infinite memory or readers writing) - there is no escaping it.

Let us also briefly describe why the above proof wouldn’t have worked having
assumed that readers could write (and writers read). If that were the case,

6

we could make it so that executions 1 and 2 be distinguishable to the reader.
Consider the algorithm in which the reader writes a bit before it calls its first
read() operation12 and have the writer read this bit at the end of its Write(1)
operation. All the writer needs to do is write another additional bit at the
beginning of the next transition from Write(0) to Write(1). Since the reader
now reads this additional bit in the second read() operations, along with vi, it
can distinguish between the two executions.

3. Bound on SWMR atomic register implemen-
tations

Theorem 2. There is no wait-free algorithm that:

• Implements a SWMR atomic register,

• Uses any number of SRSW atomic registers,

• And where the base registers can only be written by the writer13.

As for theorem 1, theorem 2 is an impossibility result. In short, it states
that there is no simple solution to implement Single-Writer-Multiple-Readers
(SWMR) registers: we have no choice, readers need to write.

Proof of theorem 1. We proceed again by contradiction, i.e. we assume that we
have an algorithm that implements a SWMR atomic register using any number
of SRSW atomic registers and where the base registers can only be written by
the writer.

We set up the context:

• We will denote the higher-level register implemented by the algorithm by
reg* .

• We will assume one writer pw and two readers p1 and p2 . This assump-
tion of only two readers is a simplification, but it is WLOG since if it
doesn’t work with two readers, it can’t work with more than two.

• We replace all atomic underlying registers read by p1 by a single register
called reg1 and similarly for p2 , we denote the single register by reg2 .

Let us now consider the first write of value 1 (Write(1)) in the high-level
register reg* . This Write operation is implemented as a series of low-level write
operations into registers reg1 and reg2 : w1, w2, ...wj , wj+1, ...wk.14

We now consider the Read() operation which access the state of either reg1
or reg2 at state vij (i.e. when the value is read in regi and when the register
has been written wj - see figure 7). We know that for either p1 or p2 , there
has to be an index ji such that for smaller indices the value read is 0 and for

12 The reader does not change this bit again, until the next Read() operation.
13 By writer, we mean the writer of the atomic register.
14 Note that this sequence can write to reg1 or reg2 in any order - this is WLOG.

7

larger indices it is 1. Furthermore, j1 cannot be equal to j2 since the writer
cannot write to the two underlying registers simultaneously. We have formally:

∀i ∈ {1, 2},∃ji : 1 ≤ ji ≤ k : ∀j < ji : vij = 0 and ∀j ≥ ji : vij = 1

Figure 7: Sequence of low-level writes and Read() finding the register in state
vij .

Assume WLOG that j1 < j2 and now consider a Read() operation by p1
followed by a Read() operation by p2 before the writer gets the chance to move
on to wj+1 (which was going to update reg2 ’s state so its value would be 1).
As a result, it is easy to see that the first Read() by p1 will return 1 whereas
the second Read() by p2 will return 0, thus violating the atomicity property
(see figure 8).

Figure 8: Proof of theorem 2: the execution that violates atomicity.

Let us finish our analysis by considering what would have happened if read-
ers could write. This proof would no longer work since w1 would simply need
to write a timestamp along with the value and then p1 could easily write the
timestamp and value to p2 before completing the Read().

In conclusion, we have shown with theorems 1 and 2 that readers must
write in implementations of multi-reader wait-free atomic registers15. This is
true even when the available space is unbounded.

15 Considering of course that the registers are implemented out of weaker base objects

8

4. Tromp’s algorithm

In this section, we consider the last missing piece: an implementation of a SRSW
atomic binary register using SRSW safe binary registers. We aim for time and
space complexity of O(1) and we allow readers to write.

The first question to ask is how many registers we need. From now on, we shall
use the words bit and register interchangeably (in this context, registers are
binary). Will one bit be enough? Certainly not since theorem 1 proves that
readers need to write. Can two bits be enough then? No, consider the following
simple example (see figure 9) where the writer invoques Write(1) on its high-level
register. This Write(1) is repercuted in a write(1) in the base register. However,
that base register is at best regular and thus the reader could see 0 after seeing 1.

Figure 9: Two bits are not enough.

The last example hints at a fundamental fact: the writer needs (at least) 2
registers so it can indicate that a change was made. Are three bits enough?
The short answer is yes. After decades of research, a Dutch Ph.D student came
up with the solution. This algorithm, which has now become famous, bears his
name: Tromp’s algorithm.

Let us define the setting:

• The writer has two bits: V, holding the value, and W, the control flag.

• The reader has one bit: R, the control flag.

• Notation: if (W = R) then { ... } = { r := read(R); if (W = r) then
... }

Code listing 1 shows the implementation of Write(v) and code listing 2 shows
the implementation of Read(v).

Listing 1: Tromp’s algorithm: Write(v)

Write (v) :
1 change (V)
2 i f (W = R) then
3 change (W)

9

Listing 2: Tromp’s algorithm: Read(v)

Read () :
1 i f (W = R) then return v
2 x := read (V)
3 i f (W != R) then change (R)
4 v := read (V)
5 i f (W = R) then return v
6 v := read (V)
7 re turn x

Behind these seemingly simple 9 lines of code lies probably one of the most
difficult algorithms to understand.

Notice that reader and writer handshake through registers W and R:

• W = R⇔ there is no new value, i.e. the reader knows the latest value.

• W 6= R⇔ there is a new value, i.e. the reader is not up-to-date.

We now give a sketch of the proof. We prove correctness, which means liveness
and safety. Proving liveness is straightforward - there are no locks or loops.
Proving safety is going to be a little more difficult. Recall that atomicity means
that for every execution, each operation can be considered as taking place in-
stantaneously at a serialization point. More precisely, we have:

• For every execution:

– There exists a partial order of operations such that:

∗ All Write operations are ordered,

∗ Each Read operation is ordered with respect to all Write oper-
ations,

∗ Each Read operation returns the value of the immediately pre-
ceding Write operation,

∗ If op1 precedes op2 , then not(op2 < op1) is in the ordering.

We define the above-mentioned ordering:

• Writes are ordered as they are issued.

• Reads are ordered as follows:

– Find the last Read(V) that precedes the return command (in the
Read operation).

– Find the Write(V) that wrote the value returned.

– The Write operation during which the Write(V) was issued is or-
dered before the Read operation.

We start by proving that each Read operation returns the value of the imme-
diately preceding Write operation (safety property). Assume for the sake of
contradiction that a read returns a written value that was written before the
immediately preceding written value (see figure 10). If the Read is concurrent
with the second Write operation, there is no problem - we return a valid value.
If not, we distinguish two cases:

10

• The Read returns on line 5 or 7 (these distinguish from a Read that
returns on line 1 because at least one read occured before the return). In
this case, we return a value read during the Read operation. Since V acts
like a regular register (given the writes are completed), there is no way
that the read returns an old value.

• The Read returns on line 1 (W = R). This means we return the value
of variable v that was read during a previous Read operation. However,
after a Write operation, we have that W 6= R, which means there had to
be a previous Read operation and that Read operation must have read V
(as in case 1 - i.e. return on line 5 or 7) and therefore it can’t return an
old value.

Since both cases end up in a contradiction, we proved the statement.

Figure 10: A read returns a written value that was written before the immedi-
ately preceding written value.

We then prove that a Read returns the value of the concurrent Write or a
previous Write (regularity property). This is pretty easy to see since the writer
can only access the shared memory to change the value of the implemented reg-
ister. If a read is concurrent with a write that changes the value, it is allowed
to return both 0 and 1.

Before proving the atomicity property, we give and prove the following lemma.

Lemma 3. If Read r1 precedes r2 and ri returns the value written by the Write
vi (i = 1, 2), then v1 = v2 or v1 precedes v2, i.e. there is no read inversion
- a Read returns the value of the concurrent Write or a previous Write.

Proof of lemma 3. Proceed by contradiction and suppose that v2 precedes v1 .
If that were the case, then r1 would have to return something which is not
the initial value and r2 would have to return some value coming from a low-
level read of V or the same value as r1 (cf. reader’s code). This is clearly a
contradiction since r2 cannot return the value written by v2 .

We now prove that if Read r1 precedes Read r2 , then not(r2 < r1) (atom-
icity property). Assume for the sake of contradiction that r2 returns a value
which was written before the value read by r1 (see figure 11). Let us denote
the value returned during Read ri by ρi (i = 1, 2). We will need three claims

11

Figure 11: r2 returns a value which was written before the value read by r1 .

in order to prove the above statement.

Claim 1: ρ1 precedes ρ2. We know that ρ1 ∈ r1 (i.e. ρ1 was read during r1)
or ρ1 was read during some Read that preceeded r1 . We then have:

• ρ2 ∈ r2 : The claim trivially holds since r1 is before r2 .

• ρ2 /∈ r2 : Then r2 returns in line 1. Notice that ρ1 6= ρ2. If ρ2 preceeded
r1 , then r1 did not change local variable v , i.e. it returned in line 1 and
we have ρ1 = ρ2. Otherwise, ρ2 ∈ r1 (ρ2 was read during r1), then ρ1
comes from a read in line 2 or 4 of Read r1 or earlier and ρ2 comes from
a read in line 4 or 6 of r1 or later.

In both cases, ρ1 precedes ρ2.

Claim 2: There is a change(V) operation by the writer that started before ρ1
finished and which finished after ρ2 started. It is impossible that the change(V)
be before or during ρ1 and that ρ2 comes after. Hence ρ2 can’t return an old
value.

Claim 3: Every Read(W) operation by the reader which occurs between ρ1
and ρ2 returns the same value. This follows trivially from Claim 2: since the
writer is busy changing V, it can’t change W.

We can now prove the main statement: if Read r1 precedes Read r2 , then
not(r2 < r1) (atomicity property). We distinguish three cases:

• ρ1 is x := read(V) (line 2 of the algorithm). It follows that ρ1 ∈ r1 (i.e.
ρ1 was read during r1) and r1 returns in line 7 (holds by Claim 2). We
then distinguish 2 subcases:

– ρ2 is the read in line 4 of r1 . In this case, r1 does not execute line
6 and r1 returns in line 5 (which contradicts Claim 2).

– ρ2 is some later read. By Claim 3, W=R in line 5 of r1 and r1
returns in line 5 (which contradicts Claim 2).

• ρ1 is v := read(V) (line 4 of the algorithm). It follows that r1 must return
in line 5 after finding W=R. By Claim 3, W is not changed before ρ2 (i.e.
some read(V)) is invoked. However, there is no subsequent read of V (nor
change of R) before W 6= R (line 1), i.e. there is no new read of v before
W is changed, and thus that ρ1 = ρ2, contradicting Claim 1.

12

• ρ1 is v := read(V) (line 6 of the algorithm). In this case, r1 is a subsequent
read that returns in line 1, since otherwise v is overwritten in line 4. Thus,
r1 finds W = R in line 1. By claim 3, W is not changed before ρ2 (i.e.
before some read V) is invoked. However, there is no subsequent read of
V (nor change of R) before W 6= R (line 1), i.e. ρ1 = ρ2, contradicting
Claim 1.

Since every case ends up in a contradiction, we have proven the statement.

Taking the two and a half pages of proof as a witness and despite its small
size, this algorithm is in fact one of the most complicated algorithms. Even
Tromp’s Ph.D supervisor admitted that he still did not fully understand why
the algorithm worked. Understanding why it works is very difficult: it just does.
A good way of practising one’s understanding is to try to remove one line and
analyze what fails in the modified algorithm.

5. Conclusion

We showed that a new concept arises in the implementation of wait-free atomic
multi-reader registers: the fact that readers need to write. This was done
methodologically, using proofs by contradiction to obtain what is called an ”im-
possibility result”. This fact raises one important question: how efficient are
wait-free implementations of registers knowing that writing is on average ten
times slower than reading? However, this tradeoff seems worth it considering
the benefits of using wait-free algorithms (e.g. liveness, safety).

We then presented Tromp’s algorithm implementing a wait-free atomic binary
register using three safe binary registers. This was the missing piece of our
analysis of wait-free register implementations and is a major result in this field.
During the process, we noticed how complex the topic is and how difficult it is
to prove (and to convince ourselves) that a wait-free algorithm (even a short
one) really works.

13

	Foreword
	Bound on SWSR atomic register implementations
	Bound on SWMR atomic register implementations
	Tromp's algorithm
	Conclusion

