
Lecture Notes for Concurrent Algorithms

Lecture of November 9, 2009

Implementing the Consensus object with Timing Assumptions

1 Introduction

So far in the course, we have kept ourselves confined to completely asynchronous
systems. These systems provided us with Single Reader Single Writer (SRSW)
safe binary registers and we were able to construct Multi Reader Multi Writer
(MRMW) M-valued atomic registers using them. We also showed how we can
construct more objects such as a counter or a snapshot object. However, we
also faced restrictions on what was achievable (FLP). We also showed that if
one had a consensus object, which was impossible to make using only registers,
then we could use it as a Universal constructor to construct any other shared
object. However, we would need support from hardware to make such an object.

In this lecture we investigate the question whether we can construct such a
consensus object exploiting knowledge about the nature of synchronicity (rela-
tive speed of processes) the system can minimally guarantee. This indeed is the
case in most situations, where such a guarantee may be implied by the nature
of scheduling (round robin) or may be provided with probability tending to one
with time.

Finally, we consider the question of what is the weakest assumption which
still allows us to construct the consensus object.

2 Modular approach

The construction is done by assuming presence of other structures and showing
that provided the smaller structures, we can arrive at the final consensus object.
Wait-free consensus is constructed using:

• Registers (Atomic), and,

• Lock-free Consensus (L-Consensus) which is in turn constructed with:

– Obstruction-free Consensus (O-Consensus)

– Leader abstraction which utilizes certain timing assumptions

The approach is illustrated in figure 1.

2.1 Requirements for Consensus

A consensus object need to meet the following requirements:

1. Wait-free-termination: If a correct process proposes, then it eventually
decides.

1

Figure 1: A modular approach

2. Agreement: No two processes decide differently.

3. Validity: The agreed value is a proposed value.

2.2 Requirements for L-Consensus

For lock-free consensus, we retain the conditions 2 and 3 and weaken condition
1 to the following:

1. Lock-free-termination: If a correct process proposes, then at least one
correct process eventually decides.

This does not ensure that all the processes will decide, but instead, at least
one process will. Hence, it guarantees that the collection of processes collectively
proceed forward, without ensuring that all of the processes make progress. To
add this capability, we would require a MRMW atomic shared register (see
figure 1).

2.3 Requirements for O-Consensus

For the Obstruction free consensus, we further weaken condition 1 to the fol-
lowing:

1. Obstruction-free-termination: If a correct process proposes and even-
tually executes alone, then the process eventually decides.

Hence, if a process is allowed to execute alone, with no other process com-
peting with it (reading/writing to the same registers) then the process will be
able to eventually arrive at a consensus. It is interesting to note that while
FLP proves that an algorithm which implements wait-free consensus is impos-
sible, obstruction free consensus is possible to implement even on a completely
asynchronous system.

2

3 Implementing O-Consensus

The idea behind the implementation is that several processes may keep trying
to concurrently decide, until some time (unknown): and agreement and validity
must not be violated in this preliminary period.

The processes will keep track of activities of other processes and if it finds
that no process is competing to decide a consensus value, it chooses the last
suggested value and marks it as available for other processes.

The algorithm requires the following data structures:

• A local time stamp ts for process pi initialized to i. It will be incremented
by N (the number of processes) each time to ensure that each process
maintains a unique timestamp, different from all other processes.

• An array of shared registers is maintained Reg[1 .. N]. Each register
contains a pair of values:

– Reg[i].T contains a timestamp (initialized to 0)

– Reg[i].V contains a pair (proposed value, timestamp). Each pair is
initialized to (⊥, 0).

Notice that the array of registers Reg[1..N] contains two distinct copies of
timestamps. Reg[i].T will contain the value of the timestamp which the process
is at, while Reg[i].V.ts will contain the timestamp when Reg[i].V.value was
suggested by process i.

To further simplify the presentation, the following two functions are defined:

• highestTsp() : returns the highest time stamp among all elements Reg[1..N].T .
Defined in 2

• highestTspValue() : returns the value Reg[idx].V.value corresponding
the the highest timestamps Reg[1..N].V.ts. Defined in 1.

Output: The highest time stamp

maxTS := −1
maxV := 0
for i← 1 to N do

if max < Reg[i].V.ts then
maxTS := Reg[i].V.ts
maxV := Reg[i].V.value

return maxV
Function highestTstValue()

It is important to note that while highestTsp() works on the timestamps
Reg[1 .. N].T, the function highestTspValue() works on the timestamps
Reg[1 .. N].V.ts. Also, these functions need not be atomic.

3

Output: The highest time stamp

max := −1
for i← 1 to N do

if max < Reg[i].T then max := Reg[i].T
return max

Function highestTsp()

3.1 O-consensus Algorithm

Input : v, the value proposed by process i
Output: The decided consensus value

while (true) do
Reg[i].T.write(ts)1

val := highestTspV alue()2

if val = ⊥ then val := v3

Reg[i].V.write(val, ts)4

if ts = highestTsp() then return (val)5

ts := ts + N6

Function propose(i,v)

In words:

• pi announces its timestamp in step 1

• pi selects the value with the highest time stamp in step 2

• pi announces the value with its (pi’s) new timestamp in step 4

• If pi’s time stamp is the highest, then pi decides in step 5

It is easy to see that this algorithm can continue to loop indefinitely even if
just two processes move in lock steps. And example execution would be if process
p1 is at step 5 and p2 executes step 1, making p1 to loop instead of returning.
When p2 reaches step 5, p1 executes step 1, making p2 loop. And this process
can repeat potentially forever, which will not allow wait free termination.

3.2 Proving correctness

It is easy to see that this simple algorithm implements Obstruction free con-
sensus. To see this, consider a process executing alone. If it does not have the
highest timestamp (in step 5), then it continues to loop until its own times-
tamp becomes the highest and agrees on the value last proposed by it on step
4. However, we need to ensure that in presence of contention, it still preserves
the other two properties.

4

If a process i returns value val, then all processes that execute step 2 after
process i returns will find the same proposed value and will eventually return it.
The only case agreement might be violated is when a process is executing the
interim step 4, and changing the val with highest timestamp while process i is
on step 5. However, if a process comes to the then clause of step 5 successfully, it
means that no competing process has executed step 1, which must be executed
before step 4. Thus, if another process introduces a newer value while this
process is on step 5, this process will not return a value at all. Hence, if a value
is decided, it will be the same for all processes, satisfying property 2 required
for consensus.

Step 3 insures that the first process chooses a proposed value (its own).
Also, all values written to Reg[i].V.value are proposed values. Hence, property
3 required for consensus is always satisfied.

Hence, this object satisfies all requirements for a O-Consensus object.

4 Implementing L-Consensus

Consider an object Leader which provides us with a function leader() with the
following properties:

• Does not take any input arguments (uses only local/shared variables)

• Returns a Boolean as output : the process receiving a true considers itself
a leader.

• If a correct process invokes leader, then the invocation returns and even-
tually, some correct process is permanently the only leader.

Hence, for an unknown time, more than one process may be returned true,
but eventually only one process will be returned true. Hence, we can condi-
tion the execution of processes based on the Boolean returned by the leader()
function, thereby making sure that eventually, there is only one process which is
executing alone. Under these conditions, we can ensure the conditions necessary
for Obstruction free consensus.

Implementing this idea, we can implement L-consensus as follows:

4.1 Proving correctness

Properties 2 and 3 hold naturally as the algorithm is the same as that for L-
consensus.

Also, since the property of the leader() functions ensure that eventually a
correct process gets returned true permanently, we have eventually exactly one
process which is running the loop and making progress. Hence, the condition
for lock-free termination are met, and at least one process eventually decides a
value.

5

Input : v, the value proposed by process i
Output: The decided consensus value

while true do
if leader() then

Reg[i].T.write(ts)1

val := highestTspV alue()2

if val = ⊥ then val := v3

Reg[i].V.write(val, ts)4

if ts = highestTsp() then return (val)5

ts := ts + N6

Function proposeL(i,v)

5 Implementing W-Consensus

Actually, exactly one process gets to continue for lock-free consensus, since all
other processes remain in the infinite while loop. However, this situation can
be remedied by making the process which finally reaches step 4 announce to all
other processes the value which has been decided. This can be easily achieved
by using a shared register Dec. The implementation of Consensus would then
be the following:

Input : v, the value proposed by process i
Output: The decided consensus value

while Dec.read() = ⊥ do
if leader() then

Reg[i].T.write(ts)1

val := highestTspV alue()2

if val = ⊥ then val := v3

Reg[i].V.write(val, ts)4

if ts = highestTsp() then Dec.write(val)5

ts := ts + N6

return Dec.read()
Function proposeW (i,v)

This ensures that eventually all correct processes terminate, satisfying the
final property 1 required for wait-free consensus.

6 Leader object

Hence, if we are able to finally implement the Leader object, we will be able
to attain wait-free consensus. However, we would require certain assumptions

6

about the synchronicity of the system.

6.1 The Assumption

There is a time after which there is a lower and an upper bound on the delay
for a process to execute a local action, a read or a write in shared memory.

On the face of it, it does not seem like a very strong assumption at all,
stating only that no process step would take an infinite time to complete and
most systems can guarantee the same. However, this assumption is enough for
implementing the Leader object.

The property ensures that each correct process will eventually take a step,
and there is an upper bound on the time it takes. The leader() function will
aim at choosing the correct process with the lowest id (i). Also, assuming that
at least one process keeps making progress, if the leader() function notices that
no process has made any progress, then it knows that either the processes have
crashed, or else, the upper bound is larger than the bound chosen, and it can
improve the estimate for the upper bound and check again.

However, as one of the processes themselves would invoke the leader() func-
tion, we are assured of correctness of this process and if all processes with id
less than it are considered crashed, then it should select itself to be the leader.
However, if it was the leader and one of the processes with a smaller id has made
progress, then it would mean that the estimate for the upper bound of time was
not good enough. Hence, the delay before the next check is incremented and
the other process is elected the leader.

The algorithm is defined in 6 and elect() is defined as shown in 7.

currentLeader initialized to self
check and delay initialized to 1
clock, last[j] and Reg[j] initialized to 0

Input : i, the id of the process
Output: Whether process i is the leader

return (currentLeader == self)

Task:
while true do

if leader = self then Reg[i].read() + 1
clock := clock + 1
if clock = check then elect()

Function leaderi()

Hence, we see that given such a weak guarantee of an unknown upper bound,
we can write a function which will eventually find a good enough estimate of it
and help us in choosing a single leader among a group of processes. With this,
we conclude our construction of the consensus object.

7

Input : i, the id of the process

noLeader := true
for j ← 1 to i− 1 do

if Reg[j].read() > last[j] then
last[j] := Reg[j].read()
if leader 6= pj then delay := delay × 2
leader := pj

noLeader := false
break(for)

check := check + delay
if noLeader then leader := self

Function electi()

7 Looking back on the minimal assumptions

This was the first assumption which asynchronous systems seemed to guarantee,
this result was found independently by many groups. Ever since, the search for
weaker assumptions has been progressing forward, and much work as been done
in attempting to define what one means by an assumption being weaker than
another.

The set of results we have are:

• Consensus is impossible in an asynchronous system with registers.

• Consensus is possible in an eventually synchronous system with registers

However, there are some questions which are yet to be answered:

• What is the minimal synchrony assumption needed to implement Consen-
sus with registers?

• Is there a weaker timing abstraction then Leader that helps registers solve
consensus?

The research is ongoing in these areas and has provided many insights in the
working of concurrent systems. A direct result of these are Failure detectors.
However, discussing them is out of the scope of this lecture.

8

	Introduction
	Modular approach
	Requirements for Consensus
	Requirements for L-Consensus
	Requirements for O-Consensus

	Implementing O-Consensus
	O-consensus Algorithm
	Proving correctness

	Implementing L-Consensus
	Proving correctness

	Implementing W-Consensus
	Leader object
	The Assumption

	Looking back on the minimal assumptions

