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Transactions (Gray) 

• A transaction is an atomic program 
describing a sequence of accesses to 
shared and distributed information 

 

• A transaction can be terminated either 
by committing or aborting 

 



Transactions 

 

• beginTransaction  

–  Pierre.credit(1.000.000) 

–  Paul.debit(1.000.000) 

•  outcome := commitTransaction 

•  if (outcome = abort) then … 
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ACID properties 

Atomicity: a transaction either performs entirely or none at 

all 

Consistency: a transaction transforms a consistent state 

into another consistent state 

Isolation: a transaction appears to be executed in isolation 

Durability: the effects of a transaction that commits are 

permanent 



The Consistency Contract 
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Distributed Transaction 
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Non-Blocking Atomic Commit 
• As in consensus, every process has an initial 

value 0 (no) or 1 (yes) and must decide on a 
final value 0 (abort) or 1 (commit) 

• The proposition means the ability to commit 
the transaction 

• The decision reflects the contract with the 
user 

• Unlike consensus, the processes here seek to 
decide 1 but every process has a veto right 
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Non-Blocking Atomic Commit 

NBAC1. Agreement: No two processes decide 
differently  

NBAC2. Termination: Every correct process 
eventually decides 

NBAC3. Commit-Validity: 1 can only be decided if all 
processes propose 1 

NBAC4. Abort-Validity: 0 can only be decided if 
some process crashes or votes 0 

 

 

 



10 

p1 

p2 

p3 

propose(0) decide(0) 

propose(1) 

propose(0) 

Non-Blocking Atomic Commit 

decide(0) 

decide(0) 



11 

p1 

p2 

p3 

crash 

Non-Blocking Atomic Commit 

propose(1) 

propose(1) 

propose(1) 

decide(0-1) 

decide(0-1) 



12 

p1 

p2 

p3 

propose(1)  decide(1) 

propose(1) 

propose(1) 

2-Phase Commit 

decide(1) 

decide(1) 



13 

p1 

p2 

p3 

crash 

2-Phase Commit 

propose(1) decide(0) 

propose(1) 

propose(1) 
decide(0) 



14 

p1 

p2 

p3 

crash 

2-Phase Commit 

propose(1) 

propose(1) 

propose(1) 



15 

Non-Blocking Atomic Commit 

Events 

 Request: <Propose, v> 

 Indication: <Decide, v’> 

• Properties: 

• NBAC1, NBAC2, NBAC3, NBAC4 
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Algorithm  (nbac) 

Implements: nonBlockingAtomicCommit (nbac).  

Uses:  

BestEffortBroadcast (beb).   

PerfectFailureDetector (P). 

UniformConsensus (uniCons). 

upon event < Init > do  

 prop := 1; 

 delivered := ; correct := P; 
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Algorithm  (nbac – cont’d) 

upon event < crash, pi > do  

 correct := correct \  {pi} 

upon event < Propose, v > do  

 trigger < bebBroadcast, v>; 

upon event <bebDeliver, pi, v> do  

delivered := delivered U {pi}; 

prop := prop * v; 
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Algorithm  (nbac – cont’d) 

upon event correct \ delivered = empty do  

 if correct  P 

 prop := 0; 

 trigger <  uncPropose, prop>; 

 

upon event < uncDecide, decision> do  

trigger < Decide, decision>; 
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 nbac with ucons 
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Non-Blocking Atomic Commit 
• Do we need the perfect failure detector P? 

 

• 1. We show that <>P is not enough 

• 2. We show that P is needed if one process 
can crash 

 

• NB. Read DFGHTK04 for the general case 
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Non-Blocking Atomic Commit 
• Do we need the perfect failure detector P? 

 

• 1. We show that <>P is not enough 

• 2. We show that P is needed if one 
process can crash 

 

• NB. Read DFGHTK04 for the general case 



28 

p1 

p2 

p3 

crash 

2. P is needed with one crash 

NBAC(1,1) 

NBAC(1,1) 

NBAC(1,1) 

NBAC(1,0) 

NBAC(1,0) 

 

suspect(p2) 

 

suspect(p2) 


