
Distributed Systems
 Non-Blocking Atomic Commit

Prof R. Guerraoui

Distributed Programming Laboratory

2

Non-Blocking Atomic Commit:
An Agreement Problem

B

A

C

 0-1

 0-1

 0-1

3

Transactions (Gray)

• A transaction is an atomic program
describing a sequence of accesses to
shared and distributed information

• A transaction can be terminated either
by committing or aborting

Transactions

• beginTransaction

– Pierre.credit(1.000.000)

– Paul.debit(1.000.000)

• outcome := commitTransaction

• if (outcome = abort) then …

4

5

ACID properties

Atomicity: a transaction either performs entirely or none at

all

Consistency: a transaction transforms a consistent state

into another consistent state

Isolation: a transaction appears to be executed in isolation

Durability: the effects of a transaction that commits are

permanent

The Consistency Contract

6

Atomicity

Isolation

Durability
Consistency (local)

Consistency (global)

(system)

(programmer)

7

Distributed Transaction

B

A

C

 abort-commit

abort-commit

 abort-commit

8

Non-Blocking Atomic Commit
• As in consensus, every process has an initial

value 0 (no) or 1 (yes) and must decide on a
final value 0 (abort) or 1 (commit)

• The proposition means the ability to commit
the transaction

• The decision reflects the contract with the
user

• Unlike consensus, the processes here seek to
decide 1 but every process has a veto right

9

Non-Blocking Atomic Commit

NBAC1. Agreement: No two processes decide
differently

NBAC2. Termination: Every correct process
eventually decides

NBAC3. Commit-Validity: 1 can only be decided if all
processes propose 1

NBAC4. Abort-Validity: 0 can only be decided if
some process crashes or votes 0

10

p1

p2

p3

propose(0) decide(0)

propose(1)

propose(0)

Non-Blocking Atomic Commit

decide(0)

decide(0)

11

p1

p2

p3

crash

Non-Blocking Atomic Commit

propose(1)

propose(1)

propose(1)

decide(0-1)

decide(0-1)

12

p1

p2

p3

propose(1) decide(1)

propose(1)

propose(1)

2-Phase Commit

decide(1)

decide(1)

13

p1

p2

p3

crash

2-Phase Commit

propose(1) decide(0)

propose(1)

propose(1)
decide(0)

14

p1

p2

p3

crash

2-Phase Commit

propose(1)

propose(1)

propose(1)

15

Non-Blocking Atomic Commit

Events

 Request: <Propose, v>

 Indication: <Decide, v’>

• Properties:

• NBAC1, NBAC2, NBAC3, NBAC4

16

Algorithm (nbac)

Implements: nonBlockingAtomicCommit (nbac).

Uses:

BestEffortBroadcast (beb).

PerfectFailureDetector (P).

UniformConsensus (uniCons).

upon event < Init > do

 prop := 1;

 delivered := ; correct := P;

17

Algorithm (nbac – cont’d)

upon event < crash, pi > do

 correct := correct \ {pi}

upon event < Propose, v > do

 trigger < bebBroadcast, v>;

upon event <bebDeliver, pi, v> do

delivered := delivered U {pi};

prop := prop * v;

18

Algorithm (nbac – cont’d)

upon event correct \ delivered = empty do

 if correct  P

 prop := 0;

 trigger < uncPropose, prop>;

upon event < uncDecide, decision> do

trigger < Decide, decision>;

19

 nbac with ucons

 decide(1)

propose(1)

propose(1)

propose(1)

p1

p2

p3

 decide(1)

 decide(1)

UCons(1,1)

UCons(1,1)

UCons(1,1)

20

 nbac with ucons

 decide(0)

propose(1)

propose(1)

propose(1)

p1

p2

p3 decide(0)

UCons(0,0)

UCons(0,0)

crash

21

 nbac with ucons

 decide(0-1)

propose(1)

propose(1)

propose(1)

p1

p2

p3 decide(0-1)

UCons(0,0-1)

UCons(1,0-1)

crash

22

Non-Blocking Atomic Commit
• Do we need the perfect failure detector P?

• 1. We show that <>P is not enough

• 2. We show that P is needed if one process
can crash

• NB. Read DFGHTK04 for the general case

23

Non-Blocking Atomic Commit
• Do we need the perfect failure detector P?

• 1. We show that <>P is not enough

• 2. We show that P is needed if one process
can crash

• NB. Read DFGHTK04 for the general case

24

p1

p2

p3

crash

1. Run 1

decide(0)

propose(0)

propose(1)

decide(0) propose(1)

25

p1

p2

p3

crash

1. Run 2

decide(0)

propose(1)

propose(1)

decide(0) propose(1)

26

1. Run 3

decide(0)

propose(1)

propose(1)

decide(0) propose(1)

p1

p2

p3

<>P becomes P

27

Non-Blocking Atomic Commit
• Do we need the perfect failure detector P?

• 1. We show that <>P is not enough

• 2. We show that P is needed if one
process can crash

• NB. Read DFGHTK04 for the general case

28

p1

p2

p3

crash

2. P is needed with one crash

NBAC(1,1)

NBAC(1,1)

NBAC(1,1)

NBAC(1,0)

NBAC(1,0)

suspect(p2)

suspect(p2)

