
Distributed Algorithms

Midterm Exam

26th November, 2018

Name:

Sciper number:

Time Limit: 1 hour 45 minutes

Instructions:
• This exam is closed book: no notes, electronics, nor cheat sheets allowed.

• Write your name and SCIPER on each page of the exam.

• If you need additional paper, please ask one of the TAs.

• Read through each problem before starting to solve.

• When solving a problem, do not assume any known result from the lec-
tures, unless it is explicitly stated that you might use some known result.

Good Luck!

Problem Max Points Score

1 14

2 14

3 14

4 14

Total 56

1



1 Broadcast (14 points)

1.1 Question 1

1. Provide the properties of (a) Uniform reliable broadcast (U), and (b) an
eventually perfect failure detector along with a brief and concise descrip-
tion of each property.

Answer :
Uniform reliable broadcast (U):
URB1. Validity: If pi and pj are correct, then every message broadcast
by pi is eventually delivered by pj .

URB2. No duplication: No message is delivered more than once.

URB3. No creation: No message is delivered unless it was broadcast

URB4. Uniform Agreement: For any message m, if a process delivers
m, then every correct process delivers m.

Eventually perfect failure detector:
EPFD1: Strong completeness: Eventually, every process that crashes is
permanently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

2. Can we devise a uniform reliable broadcast algorithm with an eventually
perfect failure detector but without assuming a majority of correct pro-
cesses? If yes, then explain how to devise such an algorithm. If no, then
give a counter-argument.

Answer: No, a majority of correct processes is necessary. We explain why
this is the case, using a system of four processes p, q, r, s by giving a
so-called partitioning argument. Suppose it could indeed be implemented
in this system when two out of the four processes may fail.

Consider an execution where process p urb-broadcasts a message m and
assume that r and s crash in that execution without receiving any message
either from p or from q. Because of the validity property of uniform reliable
broadcast, there must be a time t at which p urb-delivers message m.

Consider now an execution that is similar to this one except that p and
q crash right after time t, but r and s are correct. However, r and s
have been falsely suspected by the failure detector at p and q, which is
possible because the failure detector is only eventually perfect. In this
execution, p has urb-delivered a message m whereas r and s have no way
of knowing about the existence of m and they never urb-deliver it. This
violates the uniform agreement property and shows that a majority of
correct processes is necessary.

2



1.2 Question 2

1. Provide the properties of (a) Total order broadcast (T), and (b) Causal
broadcast (C) along with a brief and concise description of each property.

Answer :
Total order broadcast (T):

TOB1. Validity: If pi and pj are correct, then every message broadcast
by pi is eventually delivered by pj .

TOB2. No duplication: No message is delivered more than once.

TOB3. No creation: No message is delivered unless it was broadcast

TOB4. Agreement: For any message m, if a correct process delivers m,
then every correct process delivers m.

TOB5. Total order: The processes must deliver all messages according
to the same order (i.e., the order is now total).

Causal broadcast (C):
CO1. Validity: If pi and pj are correct, then every message broadcast by
pi is eventually delivered by pj .

CO2. No duplication: No message is delivered more than once.

CO3. No creation: No message is delivered unless it was broadcast

CO4. Agreement: For any message m, if a correct process delivers m,
then every correct process delivers m.

CO5: Causal order: If any process pi delivers a message m2, then pi
must have delivered every message m1 such that m1− > m2.

2. Consider the broadcast executions shown below. Which of the following
statements are true about this execution? Use the notations from ques-
tions 1.1 and 1.2.

3



(a) C

(b) T

(c) U

(d) C & T

(e) T & U

(f) C & U

(g) C & T & U

(h) None of the above.

Answer: C & T & U (g)

4



2 Safety/Liveness and NBAC (14 points)

2.1 Question 1

Mark S for safety and L for liveness, X for neither. Justify your answer.

1. If a process p broadcasts a message m, then p eventually delivers m.

S. if p crashes before delivering, the ppty is violated and cannot be satisfied
later.

2. If a process p crashes, then eventually all other processes stop making
progress (i.e., they break any liveness property).

L. if p crashes and some other process q keeps working, the property is
violated but will be satisfied later, as soon as q stops.

3. If a process p crashes, then no other process makes progress.

S. If p crashes and some process q makes progress, the property is violated
for ever.

4. If a process p broadcasts a message m, then every correct process delivers
m.

L. If a process q does not deliver m, the property is violated, but can be
satisfied as soon as q crashes.

5. If a particular process p broadcasts a message m, then no correct process
ever delivers m.

L. like the previous case, the property can be satisfied as soon as q crashes.

6. If a particular process p broadcasts a message m, then no process delivers
m.

S. in this case once violated, the property is violated forever because we
would like that no other process (even if it crashes later) delivers the
message from the particular process p.

2.2 Question 3

You saw in the class that you could use NBAC to implement a perfect failure
detector (when one process can crash).

1. Recall the specifications of NBAC (no need to name them exactly).
NBAC1. (Agreement): No two processes decide differently. NBAC2. (Ter-

mination): Every correct process eventually decides. NBAC3. (Commit-Validity):
1 can only be decided if all processes propose 1. NBAC4. (Abort-Validity): 0
can only be decided if some process crashes or votes 0.

2. Which of those specifications you could tweak to obtain only an even-
tually perfect detector? (justify on how you could guarantee eventual eventual
accuracy instead of strong accuracy)

Eventual accuracy: add ”eventually” before NBAC4.

5



3 Consensus (14 points)

3.1 Question 1

Explain the four properties of consensus. Give four executions, each of which
violates exactly one of the consensus properties.
Answer :
C1. Validity: Any value decided is a value proposed.
Validity violation: p1 and p2 propose 1. p1 and p2 decide 0.
C2. Agreement: No two processes decide differently.
Agreement violation: p1 proposes 1 and p2 proposes 0. p1 decides 1 and p2
decides 0.
C3. Termination: Every correct process eventually decides.
Termination violation: p1 proposes 1 and p2 proposes 0. p1 decides 1 and p2
never decides.
C4. Integrity: No process decides twice.
Integrity violation: p1 proposes 1 and p2 proposes 0. p1 decides 1. p2 decides 1
twice.

3.2 Question 2

Algorithm 1 implements a consensus using a perfect failure detector and best
effort broadcast (beb). How would you change Algorithm 1 to make a uniform
consensus? Explain your changes and apply them to the code.
Answer :
In Algorithm 1, a process decides in its corresponding round. First of all, we
make the processes only broadcast their current value and not decide on its
corresponding round. Secondly, the processes decide after exactly n round to
ensure the uniform consensus. So, we go to the next round till round == n and
the process has not decided yet (indicated as a new parameter decided). The
changes are made in Algorithm 2.

6



Algorithm 1 Consensus Using a Perfect Failure Detector and Beb

Upon event < Init > do

1: suspected = Ø
2: round = 1
3: currentProposal = nil
4: broadcast = false
5: delivered[] = false

Upon event < Crash, pi > do

1: suspected = suspected ∪ {pi}
Upon event < Propose, v > do

1: if currentProposal == nil then
2: currentProposal = v
3: end if

Upon event < bebDeliver, pround, value > do

1: currentProposal = value
2: delivered[round] = true

Upon event delivered[round] == true or pround ∈ suspected do

1: round = round + 1

Upon event pround == self and broadcast == false and currentProposal 6=
nil

1: trigger < Decide, currentProposal >
2: trigger < bebBroadcast, currentProposal >
3: broadcast = true

7



Algorithm 2 Uniform Consensus Using a Perfect Failure Detector and Beb

Upon event < Init > do

1: suspected = Ø
2: round = 1
3: currentProposal = nil
4: decided = false
5: broadcast = false
6: delivered[] = false

Upon event < Crash, pi > do

1: suspected = suspected ∪ {pi}
Upon event < Propose, v > do

1: if currentProposal == nil then
2: currentProposal = v
3: end if

Upon event < bebDeliver, pround, value > do

1: currentProposal = value
2: delivered[round] = true

Upon event delivered[round] == true or pround ∈ suspected do

1: if round == n and decided == false then
2: trigger < Decide, currentProposal >
3: decided = true
4: else
5: round = round + 1
6: end if

Upon event pround == self and broadcast == false and currentProposal 6=
nil

1: trigger < bebBroadcast, currentProposal >
2: broadcast = true

8



4 Terminating Reliable Broadcast (TRB) and
Group Membership (GM) (14 points)

4.1 Question 1 – Multiple choice questions

For each of the items below, identify all the choices which are correct (true).

1. The perfect failure detector P in relation with TRB:

(a) P is both necessary and sufficient for the TRB algorithm.

(b) P is not necessary for the TRB algorithm.

(c) P is necessary for the TRB algorithm.

(d) None of the above.

Answer : (a) and (c).

2. The GM abstraction ensures:

(a) The uniform variant of agreement on each view (j,M) which
they install.

(b) Integrity: If a process p installs a view (j,M), then p ∈M .

(c) Validity: Once a process installs a view (j,M), then any process p,
such that p 6∈M , is a crashed process.

Answer : (a), (b), (c).

9



4.2 Question 2

1. Explain the difference between the Agreement and the Uniform Agree-
ment properties in the context of Terminating Reliable Broadcast (TRB).

Answer : In the non-uniform version of agreement, a process may deliver
m (or ϕ) and then crash, without requiring correct processes to also deliver
m (or ϕ).

2. In the description of the TRB problem, it is stated that:

Process src [i.e., the broadcasting process] is supposed to broad-
cast a message m (distinct from ϕ).

Explain the purpose of the special message ϕ by answering these questions:

A. How would a process interpret the delivery of this message ϕ?

B. Why is it important that the broadcast message m is distinct from
the special message ϕ? Namely, sketch or explain an execution of
a problematic situation that can arise if m == ϕ. Explain, in this
context, which property – if any – of TRB breaks in such a case.

Answer :
A. The process interprets the delivery of ϕ as the failure of the sender to
successfully broadcast the indented a message m. In most situations, this
is interpreted as the fact that the sender src crashed.
B. In case m == ϕ is allowed by TRB, then it is possible that a process
believes the sender to have crashed, and consequently treat m as a no-
tification that a failure occurred in the system – but no failures actually
occurred. This ambiguity would prevent the implementation of useful ap-
plications on top of TRB: this abstraction becomes useless in many cases,
e.g., to implement failure detection. Surprisingly, none of the four prop-
erties of GM breaks, but higher-level application semantics may break if
the application expects ϕ to be a special message.

10



3. Consider a modified, weaker algorithm for GM, called wGM, which lacks
the Local Monotonicity property of GM.

A. Describe the properties of wGM.

B. Explain briefly the different between wGM and the perfect failure
detector P .

Hint: Informally, Local Monotonicity ensures that subsequent views
have increasing view numbers and smaller process sets.

Answer :
A. Agreement, Completeness, and Accuracy – see their complete defini-
tions in the class’ slides.
B. The most important distinction is the lack of coordinated views in P ;
this is given by the Agreement property in wGM, which is inherited from
GM.

4. Consider a distributed algorithm that runs on small sensors and builds
on the GM protocol and the uniform reliable broadcast (urb) protocol. A
sensor may fail at any time with crash-stop. This sensor algorithm uses
GM to maintain the set of active processes and it uses urb to periodically
exchange sensor data (i.e., signals about their surroundings) among all
the active processes. Is it possible, given the properties provided by GM,
for a process to urb.deliver sensor data which was sent from some process
p, after p is no longer in the view of active processes? Explain why or why
not.

Answer :
Yes, it is possible. The installing of new views through GM at processes
is not coordinated with the delivery of messages through urb. Thus, it
may happen that p crashes, GM detects it and all processes install a view
which does not include p anymore, and in parallel urb is still delivering
messages from p. This is a motivating example for a different abstraction:
View-Synchronous Broadcast.

11



12


