
Distributed systems

Total Order Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory

Overview
Intuitions: what is total order broadcast?

Specifications of total order broadcast

Consensus-based total order algorithm

Broadcast

B

A

C

m

m

deliver

broadcast

deliver

Intuitions (1)
In reliable broadcast, the processes are free
to deliver messages in any order they wish
In causal broadcast, the processes need to
deliver messages according to some order
(causal order)
The order imposed by causal broadcast is
however partial: some messages might be
delivered in different order by the processes

Reliable Broadcast

p1

p2

p3

m2

m1

m1

m2

m1

m3

m1 m2 m3

m3

m3

m2

Causal Broadcast

p1

p2

p3

m2

m1

m1

m2

m1

m3

m1 m2 m3

m3

m3

m2

Intuitions (2)

In total order broadcast, the processes must
deliver all messages according to the same
order (i.e., the order is now total)
Note that this order does not need to respect
causality (or even FIFO ordering)
Total order broadcast can be made to respect
causal (or FIFO) ordering

Total Order Broadcast (I)

p1

p2

p3

m2

m1

m3

m2

m1

m3

m1m2 m3

m1

m3

m2

Total Order Broadcast (II)

p1

p2

p3

m1

m2

m3

m1

m1

m3

m2m1 m3

m2

m3

m2

Intuitions (3)
A replicated service where the replicas need
to treat the requests in the same order to
preserve consistency

(we talk about state machine replication)

A notification service where the subscribers
need to get notifications in the same order

Modules of a process

request

indication

indication

indication

request

Overview

Intuitions: what is total order broadcast?

Specifications of total order broadcast

Consensus-based algorithm

Total order broadcast (tob)
Events

Request: <toBroadcast, m>
Indication: <toDeliver, src, m>

• Properties:
• RB1, RB2, RB3, RB4
• Total order property

Specification (I)

Validity: If pi and pj are correct, then every message
broadcast by pi is eventually delivered by pj

No duplication: No message is delivered more than once
No creation: No message is delivered unless it was

broadcast
(Uniform) Agreement: For any message m. If a correct

(any) process delivers m, then every correct process
delivers m

Specification (II)
(Uniform) Total order:

Let m and m’ be any two messages.
Let pi be any (correct) process that delivers m
without having delivered m’
Then no (correct) process delivers m’ before m

Specifications

Note the difference with the following properties:
Let pi and pj be any two correct (any) processes that deliver

two messages m and m’. If pi delivers m’ before m, then pj
delivers m’ before m.

Let pi and pj be any two (correct) processes that deliver a
message m. If pi delivers a message m’ before m, then pj
delivers m’ before m.

p1

p2

p3

m1

m2
p4

crash

crash

m2m1

m2

p1

p2

p3

m1

m2
p4

crash

crash
m2

m1

Overview
Intuitions: what total order broadcast can bring?

Specifications of total order broadcast

Consensus-based algorithm

(Uniform) Consensus
In the (uniform) consensus problem, the
processes propose values and need to agree on
one among these values

C1. Validity: Any value decided is a value proposed
C2. (Uniform) Agreement: No two correct (any)

processes decide differently
C3. Termination: Every correct process eventually

decides
C4. Integrity: Every process decides at most once

Consensus
Events

Request: <Propose, v>
Indication: <Decide, v’>

• Properties:
• C1, C2, C3, C4

Modules of a process

request

indication

indication

indication

requestindicationrequest

Algorithm
Implements: TotalOrder (to).
Uses:

ReliableBroadcast (rb).
Consensus (cons);

upon event < Init > do
unordered: = delivered: = Æ;
wait := false;
sn := 1;

Algorithm (cont’d)
upon event < toBroadcast, m> do

trigger < rbBroadcast, m>;
upon event <rbDeliver,sm,m> and (m Ï delivered)
do

unordered := unordered U {(sm,m)};

upon (unordered ¹ Æ) and not(wait) do
wait := true:
trigger < Propose, unordered>sn;

Algorithm (cont’d)
upon event <Decide,decided>sn do

unordered := unordered \ decided;
ordered := deterministicSort(decided);
for all (sm,m) in ordered:

trigger < toDeliver,sm,m>;
delivered := delivered U {m};

sn : = sn + 1;
wait := false;

Equivalences

1. One can build consensus with total order broadcast
2. One can build total order broadcast with consensus

and reliable broadcast

Therefore, consensus and total order
broadcast are equivalent problems in a
system with reliable channels

