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Overview
Intuitions: what is total order broadcast?

Specifications of total order broadcast

Consensus-based total order algorithm
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Intuitions (1)
In reliable broadcast, the processes are free 
to deliver messages in any order they wish
In causal broadcast, the processes need to 
deliver messages according to some order 
(causal order) 
The order imposed by causal broadcast is 
however partial: some messages might be 
delivered in different order by the processes
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Causal Broadcast
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Intuitions (2)

In total order broadcast, the processes must 
deliver all messages according to the same 
order (i.e., the order is now total)
Note that this order does not need to respect 
causality (or even FIFO ordering) 
Total order broadcast can be made to respect 
causal (or FIFO) ordering



Total Order Broadcast (I)
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Total Order Broadcast (II)
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Intuitions (3)
A replicated service where the replicas need 
to treat the requests in the same order to 
preserve consistency 

(we talk about state machine replication)

A notification service where the subscribers 
need to get notifications in the same order 
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Total order broadcast (tob)
Events

Request: <toBroadcast, m>
Indication: <toDeliver, src, m>

• Properties:
• RB1, RB2, RB3, RB4
• Total order property



Specification (I)

Validity: If pi and pj are correct, then every message 
broadcast by pi is eventually delivered by pj

No duplication: No message is delivered more than once
No creation: No message is delivered unless it was

broadcast
(Uniform) Agreement: For any message m. If a correct 

(any) process delivers m, then every correct process
delivers m



Specification (II)
(Uniform) Total order:

Let m and m’ be any two messages. 
Let pi be any (correct) process that delivers m 
without having delivered m’ 
Then no (correct) process delivers m’ before m  



Specifications

Note the difference with the following properties: 
Let pi and pj be any two correct (any) processes that deliver

two messages m and m’. If pi delivers m’ before m, then pj
delivers m’ before m.

Let pi and pj be any two (correct) processes that deliver a 
message m. If pi delivers a message m’ before m, then pj
delivers m’ before m.
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Overview
Intuitions: what total order broadcast can bring?
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(Uniform) Consensus
In the (uniform) consensus problem, the 
processes propose values and need to agree on 
one among these values

C1. Validity: Any value decided is a value proposed 
C2. (Uniform) Agreement: No two correct (any) 

processes decide differently 
C3. Termination: Every correct process eventually 

decides
C4. Integrity: Every process decides at most once



Consensus
Events

Request: <Propose, v>
Indication: <Decide, v’>

• Properties:
• C1, C2, C3, C4
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Algorithm
Implements: TotalOrder (to).
Uses: 

ReliableBroadcast (rb).  
Consensus (cons);

upon event < Init > do
unordered: = delivered: = Æ;
wait := false;
sn := 1;



Algorithm (cont’d)
upon event < toBroadcast, m> do

trigger < rbBroadcast, m>;
upon event <rbDeliver,sm,m> and  (m Ï delivered) 
do

unordered := unordered U {(sm,m)};

upon (unordered ¹ Æ) and not(wait) do
wait := true:
trigger < Propose, unordered>sn;



Algorithm (cont’d)
upon event <Decide,decided>sn do

unordered := unordered \ decided;
ordered := deterministicSort(decided);
for all (sm,m) in ordered:

trigger < toDeliver,sm,m>;
delivered := delivered U {m};

sn : = sn + 1;
wait := false;



Equivalences

1. One can build consensus with total order broadcast
2. One can build total order broadcast with consensus 

and reliable broadcast

Therefore, consensus and total order
broadcast are equivalent problems in a 
system with reliable channels


