
Passing Messages
while Sharing Memory

Naama Ben-David

1

Based on joint work with
Marcos Aguilera, Irina Calciu, Rachid Guerraoui, Virendra Marathe,

Erez Petrank, Sam Toueg, Igor Zablotchi

Distributed Computation
Many computation units communicate with each other

2

• Data centers, internet

• Operating System
Scheduling

Message Passing
Message Passing

• Application: Data centers, internet
• Point-to-point messages over links

Shared Memory
Shared Memory

• Application: Multiprocessor computers
• Write and read common memory

4

Two Models
Message Passing Shared Memory

• Application: Data centers, internet
• Point-to-point messages over links

• Application: Multiprocessor computers
• Write and read common memory

Was my message
received?

Did the recipient
crash?

Did p2 see my
message?

5

• Processes can crash (fail)
• Asynchrony

Two Models

6

Message Passing Shared Memory

Computers in data center Processes in one machine

Consensus impossible
deterministically

Consensus impossible
deterministically

Consensus with randomization
and partial synchrony

Consensus with randomization
and atomic primitives

Concurrent data
structures

Distributed graph
algorithms

New Technology: RDMA
Remote Direct Memory Access

7

Memory

CPU

NICMemory

CPU

NIC

RDMA: No
involvement of

host CPU!

(Network Interface Card)

New Technology: RDMA

8

Memory

CPU

NIC

Who can
access my
memory?

p1

p2

p3

p4

p5

p6

p1, p3, p6

• Can choose RDMA connections

•Must maintain information about open

connections in NIC’s cache

Two Models

9

Message Passing Shared Memory

Computers in data center Processes in one machine

Consensus impossible
deterministically

Consensus impossible
deterministically

Consensus with randomization
and partial synchrony

Consensus with randomization
and atomic primitives

Concurrent data
structures

Distributed graph
algorithms

Today:
The M&M model

What do we gain by combining
the two models?

10

Equivalence
ABD’95:

“Message passing and shared memory are equivalent!”

11

computationally

“The models can solve the same set of problems”

What about tolerance to process failures?

What about synchrony requirements?

What about efficient algorithms?

Outline
• Unifying Model: message-and-memory (M&M) model

• Consensus

• Part 1: Process Crashes

• Simulation Algorithm

• Tolerance lower bound

• Part 2: Memory Crashes

• Definition and Intuition

• Disk Paxos and Disk Permissions

• Leader election requires less synchrony in the M&M model

12

The M&M model
• Asynchronous network of n processes with up to f crash failures

• Fully-connected message passing network: nodes=procs, edges=links

13

• Each node owns a piece of memory

• Shared memory graph, GSM = (V, E)

• Nodes u and v can access each other’s memory iff (u,v) 𝟄 E

• Processes may crash, but their memory remains accessible

p1

p2

p3

p4

p5

p6

p2 was here

p2 was there

Consensus: Definition
• Input: every process gets either 0 or 1 as input

• Output: Every process outputs either 0 or 1

• Agreement: All live processes output the same value

• Validity: output value must be input of some process

• Termination: must terminate

In: 1
Out: 1

In: 0
Out: 1

In: 1
Out: 1

In: 1
Out: 1

In: 1
Out: 1

In: 0
Out: 1

In: 0
Out: 0

In: 0
Out: 0

In: 0
Out: 0In: 0

Out: 0

In: 0
Out: 0

In: 0
Out: 0

14

Outline
• Unifying Model: message-and-memory (M&M) model

• Consensus

• Part 1: Process Crashes

• Simulation Algorithm

• Tolerance lower bound

• Part 2: Memory Crashes

• Definition and Intuition

• Disk Paxos and Disk Permissions

• Leader election requires less synchrony in the M&M model

15

Part 1:
Process Crashes

16

Published in PODC’18

Consensus: Fault Tolerance

17

Goal: Tolerate f > n/2 failures when solving consensus
in M&M network

Message Passing: Cannot solve consensus with less than
n/2 +1 live processes

Shared Memory: Can solve consensus even with
1 live process

All processes must agree on the same value

Fault Tolerance: Take 1
Idea: Connect all nodes over shared memory!
Now we can run any shared memory algorithm on this network

Require only 1 process alive instead of n/2 + 1

… max degree is n-1

Can we do better?

18

Infeasible to share memory
with many processes

Goal: Keep max degree
of GSM low

Everyone uses this memory location

M&M Consensus
Idea: Use shared memory to speak for your neighbors in a

black-box message passing algorithm

1

0

1

0

0

1

I’ll simulate my
SM neighbors

Message:
[(p2, (R, k, 1)),
(p4, (R, k, 1)),
(p6, (R, k, 0))]

Instead of sending just your message, agree with each neighbor
using shared memory consensus, then send a list of messages

19

p1

p2

p3

p4

p5

p6

Consensus:
p2.propose(1)
P6.propose(0)
P3.propose(0)

Consensus:
0

Consensus:
p2.propose(1)
P6.propose(0)

Consensus:
1

Consensus:
p2.propose(1)
P6.propose(0)

M&M Consensus
Idea: Use shared memory to speak for your neighbors in a

black-box message passing algorithm

Original Algorithm M&M Algorithm

1

0

1

0

0

1

1

0

1

0

0

1

Algorithm is doomed
I’ll simulate my
SM neighbors

Message:
[(me, (R, k, 1)),
(p4, (R, k, 1)),
(p6, (R, k, 0))]

Instead of sending just your message, agree with each neighbor
using shared memory consensus, then send a list of messages

20

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

How Much Did We Gain?
Depends on the shared memory graph GSM

• More specifically, the number of neighbors of correct
processes

Adversary chooses the set of correct processes

Want graphs with the following property:

All sets of at least n-f processes have many neighbors

More than half -> Success!Exactly half -> Failure!

21

p1

p2

p3

p4

p5

p6

Detour: Expander Graphs
Extremely well studied class of graphs

22

Let G=(V, E) be an undirected graph.

1. The vertex boundary of a set S⊂V is δS = { u𝞊V | {u,v} 𝞊 E, v 𝞊 S} \ S.

2. The vertex expansion ratio of G, denoted h(G), is defined as:

h(G)=minS s.t. |S|≤|V|/2 |δS|/|S|

Detour: Expander Graphs
Extremely well studied class of graphs

Neighbors of set S,
not including S itself

Let G=(V, E) be an undirected graph.

1. The vertex boundary of a set S⊂V is δS = { u𝞊V | {u,v} 𝞊 E, v 𝞊 S} \ S.

2. The vertex expansion ratio of G, denoted h(G), is defined as:

h(G)=minS s.t. |S|≤|V|/2 |δS|/|S|

23

Detour: Expander Graphs
Extremely well studied class of graphs

Let G=(V, E) be an undirected graph.

1. The vertex boundary of a set S⊂V is δS = { u𝞊V | {u,v} 𝞊 E, v 𝞊 S} \ S.

2. The vertex expansion ratio of G, denoted h(G), is defined as:

h(G)=minS s.t. |S|≤|V|/2 |δS|/|S|

Neighbors of set S,
not including S itself

Min ratio of vertex boundary
of S and the set S itself

Expansion: 0

|S| = 1
|δS| = 0

|S| = 3
|δS| = 3

Expansion: 1

|S| = 3
|δS| = 1

Expansion: 1/3

24

“G has high expansion!”
≣

“Every subset of the vertices has many neighbors!”

Putting it Together
• Think of set of live processes as S

• Adversary will pick S to be the set with the least expansion

GSM with high expansion can tolerate more failures

25

Theorem: If GSM has vertex expansion ratio h, then we can

tolerate f <(1- 1/(2(1+h)))n failuresf < (1 − 1
2 ⋅ (1 + h)) ⋅ n

Proof: The set of live processes, S, is of size |S| ≥ n-f.
The original algorithm tolerates up to n/2 failures.
We simulate that algorithm with |S| + |δS| live processes.
So, we can solve consensus if:

simul procs = |S| + |δS|
 ≥ n-f + (n-f)*h > n/2

f < (1-1/(2(1+h)))*n

≥ (n-f)*h

Outline
• Unifying Model: message-and-memory (M&M) model

• Consensus

• Part 1: Process Crashes

• Simulation Algorithm

• Tolerance lower bound

• Part 2: Memory Crashes

• Definition and Intuition

• Disk Paxos and Disk Permissions

• Leader election requires less synchrony in the M&M model

26

Message Passing: Partition
Majority requirement is inherent.

 [Ben-Or’83]

Assume by contradiction that algorithm A implements
consensus in a system where f ≥ n/2

X ≤ n-f

• send M to S⊆{p1, …, pn}
• wait to hear back from S’

Algorithm A Send “blah” to everyone.
Wait to hear back from X people.

Then you’re done!
I will partition the network!

No one will crash,
but each person will think that

the others did!

Adversary

messages across
this line are delayed

1

1

1

0

0

0
Output: 1

Output: 0

≥ n-f

≥ n-f

27

M&M Lower Bound
Where does partitioning fail in M&M?

• Shared memory links are stronger

Partitioning still works for a cut with no shared memory links

messages across
this line are delayed

1

1

1

0

0

≥ n-f

≥ n-f0
If there is a shared

memory link across the
cut, maybe an algorithm

could use it

…but not if its endpoints
crash!

28

Define Shared-Memory Cut C=(B, S, T):

Partitions graph into 3 parts: S, T, and B (boundary), such that
1. There are no edges between S and T, and
2. B can be partitioned into B1 and B2 where there are no edges {s, b2} and no
edges {t, b1}

M&M Lower Bound

S T

Intuition: Adversary cuts in the middle of B, and crashes all nodes in B.
Then S and T cannot communicate.

B

Note: It must hold that |S| ≥ n-f and |T| ≥ n-f

I can wait for n-f
people

29

Theorem: In an M&M network with shared
memory graph G = (V, E), consensus cannot be

solved if f > min(B,S,T) in Cuts(G) n-|S|

To tolerate many failures, need to have large SM-cuts

i.e., every set S where |S| ≥ n-f must have many neighbors

M&M Bound vs Expansion

S TB

30

Recall: Expansion ration considers all sets S where |S| < |V|/2
and requires all such sets to have many neighbors

To tolerate many failures, relatively large sets must have a
large vertex boundary

Outline
• Unifying Model: message-and-memory (M&M) model

• Consensus

• Part 1: Process Crashes

• Simulation Algorithm

• Tolerance lower bound

• Part 2: Memory Crashes

• Definition and Intuition

• Disk Paxos and Disk Permissions

• Leader election requires less synchrony in the M&M model

31

Part 2:
Memory Failures

32

Disclaimer: Ongoing research.

Memory Failures

33

How do we define memory failures?

• Responsive: failed memory returns NACK

• Unresponsive: failed memory hangs forever

What happens if memory crashes too?

?

p6’s memory
crashed!… still waitingp1

p2

p3

p4

p5

p6

Tougher to deal with, but
requires less synchrony

Memory Failures in
Simulation

34

How do we deal with memory failures in our simulation?

• Do not simulate memory-and-process crashed nodes

1

0

1

0

0

1

I’ll simulate my SM
neighbors, except the

ones that don’t respond

Message:
[(me, (R, k, 1)),
(p4, (R, k, 1)),
(p6, (R, k, 0))]

p1

p2

p3

p4

p5

p6

Message:
[(me, (R, k, 1)),
(p6, (R, k, 0))]

Must send value of each
neighbor as soon as we
know it, without waiting

for all of the others

Message:
[(me, (R, k, 1))]

Message:
[(p6, (R, k, 0))]

I’ll simulate my
SM neighbors

Fully Connected Graph

35

Not clear what to do even when graph is fully connected

Can no longer run a shared memory algorithm unchanged

Everyone uses this memory location

M&M Partitioning
Where does partitioning fail in M&M?

• Shared memory links are stronger

Partitioning still works for a cut with no shared memory links

messages across
this line are delayed

1

1

1

0

0

≥ n-f

≥ n-f0
If there is a shared

memory link across the
cut, maybe an algorithm

could use it

…but not if its endpoints
crash!

36

I could pretend the
endpoints crashed by
delaying the memory’s

response.

With memory failures,
partition can cut through

shared memory links

If fm memories can fail, I
can only make processes

wait for n-fm of their
memory accesses

Output: 1
Output: 0

only if memory can’t fail!

Quorums

37

How can we prevent a partition from occurring (in any model)?

If the set of processes I sent information to overlaps with the
set of processes others receive information from

p1

p2

p3

p4

p5

p6

Everyone can
access p5 so I will
only write there

If agents are reliable,
accessing one is enough

Memory,
processes,

etc

I got p1’s
message :-)

I don’t know what
p1 said :-(

If X agents can fail, I
will send my message

to X+1 of them

If agents may fail, must
contact enough to ensure
at least one remains alive

Quorum: A set of agents
that has overlap with
every other quorum

Set p1 contacted

Set p2 contacted

I got p1’s
message :-)

Outline
• Unifying Model: message-and-memory (M&M) model

• Consensus

• Part 1: Process Crashes

• Simulation Algorithm

• Tolerance lower bound

• Part 2: Memory Crashes

• Definition and Intuition

• Disk Paxos and Disk Permissions

• Leader election requires less synchrony in the M&M model

38

Disk Paxos

39

Consensus using disks and processes [GafniLamport’02]

m disks

n processes

Stops executing

Unresponsive memory failure

In disk model, consensus can be solved with
1 process and m/2+1 disks alive

Disk Paxos

40

[GafniLamport’02]

m disks

n processes

Idea: run classic message passing algorithm, but replace
sends and receives with reads and writes

p1 p2 p3 p4

p1 p2 p3 p4

To send: write your message in your slot in all disks;
wait for majority to respond

To receive: read others’ slots in all disks;
wait for majority to respond

Quorum on disks
instead of processes

Disks vs RDMA

41

How similar is the disk model to RDMA?

p1 p2 p3 p4

p1

p2

p3

p4

p5

p6

• In RDMA, memory is associated with a specific process
• Process-only failures make sense; CPU error
• Memory-only failures make less sense, but interesting to study
• RDMA can also send messages!

Memory

CPU

NIC

Can we run disk paxos on RDMA?

Yes!

Disk Paxos in RDMA

42

Can solve consensus in RDMA with 1 process and n/2+1 “disks” alive

Can we do better?

Idea: use messages to expand quorum to include processes.

Algorithm for each step of Paxos:

• Do one step of paxos on processes and one step of disk paxos on disks.

• Wait until a majority of (Process ⋃ Disks) respond.

Take away: if there are too few disks, processes can help, and vice versa

Partition argument shows that this is optimal.

RDMA: More details

43

Memory

CPU

NIC

Who can
access my
memory?

p1

p2

p3

p4

p5

p6

p1, p3, p6

• Can choose RDMA connections

i.e., open and close RDMA connections

• Can specify read and write permissions

dynamically

p1, p3, p6, p2p3, p6, p2

p3: read & write
p6, p2: read only

Can we gain something
over the disk model

using dynamic
connections?

Disk Paxos with Permissions

44

In the Paxos algorithm, a proposer waits to hear back from others to
know whether there is someone competing with it.

In Disk Paxos, this means reading every value from every disk.

Idea: leverage RDMA dynamic connections to get rid of this step.

p1

p2

p3

p4

p5

p6

I will give write
permission only to
the last person who

requested it.

Request permission
from p4

Now I can write.

Request permission
from p4

I’ve lost my
permission

If a proposer finished
writing without losing
permission, there is no
one competing with it

Replicated State Machine

45

Got rid of one operation on each disk, but only when
there is only one proposer

But we might run consensus many times!

In practice, the system is well behaved most of the time

i.e., one designated leader proposes values

p1
p2

p3

p4

p5

p6

Byzantine Faults in RDMA

46

A byzantine fault is when a faulty process becomes
evil instead of crashing

Message Passing Shared Memory

A LOT of research Barely studied

Cannot solve consensus
with n/3 byzantine

processes

• Byzantine faults unlikely
within one machine

• A Byzantine process could
completely corrupt the
memory!

RDMA

Can use permissions
to block byzantine

process

Well motivated

• Hackers, software bugs
• Blockchains

Might be able to
tolerate more failures

by preventing lies

Outline
• Unifying Model: message-and-memory (M&M) model

• Consensus

• Part 1: Process Crashes

• Simulation Algorithm

• Tolerance lower bound

• Part 2: Memory Crashes

• Definition and Intuition

• Disk Paxos and Disk Permissions

• Leader election requires less synchrony in the M&M model

47

Summary
• Message-and-memory (M&M) model

• Consensus:

• Expanders tolerate many process failures

• Disk model & permissions with memory failures

Thank you!
48

New exciting model, many new questions!

