Secure Distributed Computing EPFL, Fall 2009
Christian Cachin, IBM Research & EPFL LPD www.zurich.ibm.com/~cca/

3 Byzantine Broadcasts and Randomized Consensus

3.1 Model
The model considered here is motivated by practice. There are n parties or replicas P =
{Py,...,P,,}, of which up to ¢ are subject to Byzantine faults. The parties are connected pair-

wise by reliable authenticated channels. Protocols may use cryptographic methods, such as
public-key cryptosystems and digital signatures. A trusted entity takes care of initially generat-
ing and distributing private keys, public keys, and certificates, such that every party can verify
signatures by all other parties, for example. The system is asynchronous: there are no bounds
on the delivery time of messages and no synchronized clocks. This is an important aspect be-
cause systems whose correctness relies on timing assumptions are vulnerable to attackers that
simply slow down the correct parties or delay the messages sent between them.

3.2 Broadcasts

This section presents three broadcast primitives. Most published Byzantine consensus and
atomic broadcast protocols implicitly or explicitly use one or more of them. As a high-level
protocol usually invokes multiple instances of a broadcast primitive, every implementation-
level message generated by a primitive is tagged by an identifier of the instance in practice
(and where applicable, the identifier is also included in every cryptographic operation).

Every broadcast instance has a designated sender P;, which broadcasts a request m to the
group at the start of the protocol. All parties should later deliver m, though termination is not
guaranteed with a faulty sender. To simplify matters, we assume that the sender is a member
of the group and that all requests are unique.

3.2.1 Consistent broadcast

In consistent broadcast, the sender first executes c-broadcast with request m and thereby starts
the protocol. All parties terminate the protocol by executing c-deliver with request m. Consis-
tent broadcast ensures only that the delivered request is the same for all receivers. In particular,
when the sender is faulty, it does not guarantee that every party terminates and delivers a re-
quest. The following definition models one instance of consistent broadcast.

Definition 1 (Consistent broadcast). A protocol for consistent broadcast satisfies:

Validity: If a correct sender P; c-broadcasts m, then all correct parties eventually c-deliver m.

Consistency: If a correct party c-delivers m and another correct party c-delivers m/, then
!/
m=m'.

Integrity: Every correct party c-delivers at most one request. Moreover, if the sender P; is
correct, then the request was previously c-broadcast by Ps.

The following protocol, called authenticated broadcast, implements consistent broadcast
with a quadratic number of messages and a latency of two message exchanges. Intuitively, the
sender distributes the request to all parties and expects (%t“} parties to act as witnesses for
the request to the others. Every correct party witnesses for the sender’s request by echoing it to
all parties; this authenticates the request. When a correct party has received (%M} such echos
with the same request m, then it c-delivers m. In all upon clauses of the protocol description
below that involve receiving a message, only the first message from each party is considered.

Algorithm 2 (Authenticated broadcast or Srikanth-Toueg broadcast [ST87]).

upon c-broadcast(m): // only P
send message (SEND, m) to all

upon receiving a message (SEND, m) from Piy:
send message (ECHO, m) to all

upon receiving [messages (ECHO, m):

c-deliver(m)
Theorem 3. Algorithm 2 implements consistent broadcast for n > 3t.

Proof. Validity and integrity are straightforward to verify. Consistency follows from the ob-
servation that in order to c-deliver a request m, a correct party needs to receive (%t“} ECHO
messages containing m. A set that corresponds to this number of distinct parties is also called
a Byzantine quorum [MRO98]. Because there are only n distinct parties, every two Byzantine
quorums overlap in at least one correct party. Hence, if some distinct party c-delivers a re-
quest m/, it has received a quorum of ECHO messages containing m/, and since the correct
party in the intersection of the two quorums sent the same ECHO message to all parties, it
follows m = m/'. O

The authenticated broadcast protocol has a latency of two message exchanges, its message
complexity is O(n?), and its communication complexity is O(n?|m|), where |m/| denotes the
length of m.

Another well-known implementation of consistent broadcast exists under the name of echo
broadcast. Compared to the authenticated broadcast protocol, it uses digital signatures and
achieves smaller communication complexity (only a /inear number of messages) at the cost
of higher latency. Again, the idea is that the sender distributes the request to all parties and
expects (%t“} parties to act as witnesses. Compared to the authenticated broadcast protocol,
the witnesses authenticate a request not by sending an ECHO message to all parties but by

issuing a signed statement, which they disseminate through the sender.

Algorithm 4 (Echo broadcast [Rei94]). All parties use digital signatures (see Chapter 1, Sec-
tion 1.2.2). This is the code for P;.

upon c-broadcast(m): // only P
send message (SEND, m) to all

upon receiving a message (SEND, m) from P;:
o « sign;,(ECHO||s||m)
send message (ECHO, m, o) to Py

upon receiving [messages (ECHO, m, 0;) with valid 0}, i.e., // only P
such that verify;(ECHO||s||m, 0;):
let - be the list of all received signatures o;
send message (FINAL,m, X)) to all

upon receiving a message (FINAL, m, X) from P, with ["] valid signatures in 3:

c-deliver(m)
Theorem 5. Algorithm 4 implements consistent broadcast for n > 3t.

Proof. The difference to Algorithm 2 lies only in the use of digital signatures. Consistency
follows from the same observation as before: the request m in any FINAL message with [%’5*1}
valid signatures in X is unique. Because there are only n distinct parties, every two Byzantine
quorums of signers overlap in at least one correct party.]

The latency of the echo broadcast protocol is three message exchanges. Its message com-
plexity is O(n) and its communication complexity is O(n*(k + |m|)), where k denotes the
length of a digital signature. Using a non-interactive threshold signature scheme [Sho00], the
communication complexity can be reduced to O(n(k + |m|)) bits [CKPSO1].

3.2.2 Reliable broadcast

Reliable broadcast 1s characterized by an r-broadcast event and an r-deliver event analogous
to consistent broadcast. Reliable broadcast additionally ensures agreement on the delivery of
the request in the sense that either all correct parties deliver some request or none delivers any
request; this property has been called forality [CKPSO1]. In the literature, consistency and
totality are often combined into a single condition called agreement. This primitive is also
known as the “Byzantine generals problem.”

Definition 6 (Reliable broadcast). A protocol for reliable broadcast is a consistent broadcast
protocol that satisfies also:

Totality: If some correct party r-delivers a request, then all correct parties eventually r-deliver
a request.

The classical implementation of reliable broadcast by Bracha [Bra87] uses two rounds of
message exchanges among all parties. Intuitively, it works as follows. After receiving the
request from the sender, every party echoes the request to all. After receiving such echos from
a Byzantine quorum of parties, a party indicates to all others that it is ready to deliver the
request. When a party receives a sufficient number of those indications, it delivers the request.

3

Algorithm 7 (Bracha broadcast [Bra87]).

upon r-broadcast(m): // only P
send message (SEND, m) to all

upon receiving a message (SEND, m) from P;:
send message (ECHO, m) to all

n+t+1
2

send message (READY, m) to all

upon receiving | | messages (ECHO, m) and not having sent a READY message:

upon receiving t-+1 messages (READY, m) and not having sent a READY message:
send message (READY, m) to all

upon receiving 2t + 1 messages (READY, m):

r-deliver(m)
Theorem 8. Algorithm 7 implements reliable broadcast for n > 3t.

Proof. Consistency follows from the same argument as in Theorem 3, since the request m in
any READY message of a correct party is unique. Totality is implied by the “amplification” of
READY messages from ¢+ 1 to 2t + 1 with the fourth upon clause of the algorithm. Specifically,
if a correct party has r-delivered m, it has received a READY message with m from 2¢+1 distinct
parties. Therefore, at least £ + 1 correct parties have sent a READY message with m, which will
be received by all correct parties and cause them to send a READY message as well. Because
n—t > 2t+1, all correct parties eventually receive enough READY messages to terminate. [

The latency of the Bracha broadcast protocol is three messages, its message complexity
is O(n?), and its communication complexity is O(n?|m/|). It does not need digital signatures,
which are usually computationally expensive operations, but incurs O(n?) messages.

Several complex consensus and atomic broadcast protocols use one of the three broadcast
primitives, and one can often substitute either primitive for another one in these protocols, with
appropriate modifications. Selecting one of these primitives for an implementation involves a
trade-off between computation time and message complexity. It is an interesting question to
determine the experimental conditions under which either primitive is more suitable; Moniz et
al. [MNCVO06] present some initial answers.

3.3 Randomized Byzantine Consensus

A more involved primitive is a protocol to reach consensus on a common value despite Byzan-
tine faults. It is a prerequisite for implementing atomic broadcast, which provides a total order
on multiple requests delivered using reliable broadcast.

The Byzantine consensus problem, also called Byzantine agreement, is characterized by two
events propose and decide; every party executes propose(v) to start the protocol and decide(v)
to terminate it with a value v. We consider binary consensus, where the values are bits.

Definition 9 (Byzantine consensus). A protocol for binary Byzantine consensus satisfies:

Validity: If all correct parties propose v, then some correct party eventually decides v.
Agreement: If some correct party decides v and another correct party decides v', then v = v'.

Termination: Every correct party eventually decides.

The result of Fischer, Lynch, and Paterson [FLP85] implies that every asynchronous proto-
col solving Byzantine consensus has executions that do not terminate. State machine replica-
tion in asynchronous networks is also subject to this limitation. Roughly at the same time, how-
ever, randomized protocols to circumvent this impossibility were developed [Rab83, Ben83,
Tou84]. They make the probability of non-terminating executions arbitrarily small. More pre-
cisely, given a logical time measure 7', such as the number of steps performed by all correct
parties, define termination with probability 1 as

Th_rgO Pr[some correct party has not decided after time 7] = 0.

Algorithm 10 is a consensus protocol that terminates with probability 1. It assumes that a
trusted dealer has shared a sequence sy, s1, ... of random bits, called coins, among the parties,
using (¢ + 1)-out-of-n secret sharing (see Chapter 2). A party can access the coin s, using a
recover(r) operation, which involves a protocol that exchanges some messages to reveal the
shares to all parties, and gives the same coin value to every party.

The protocol works as follows. Every party maintains a value v, called its vote, and the
protocol proceeds in global asynchronous rounds. Every round consists of two voting steps
among the parties with all-to-all communication. In the first voting step, the parties simply
exchange their votes, and every party determines the majority of the received votes. In the
second voting step, every party relays the majority vote to all others, this time using reliable
broadcast and accompanied by a set II that serves as a proof for justifying the choice of the
majority. The set II contains messages and signatures from the first voting step. After receiving
reliable broadcasts from n — ¢ parties, every party determines the majority of this second vote
and adopts its outcome as its vote v if the tally is unanimous; otherwise, a party sets v to the
shared coin for the round. If the coin equals the outcome of the second vote, then the party
decides.

Algorithm 10 (Binary randomized Byzantine consensus [Tou84].). The two upon clauses
below are executed concurrently.

upon propose(v):
r«—0
decided < FALSE
loop
send the signed message (1-VOTE, r, v) to all
wait for receiving properly signed (1-VOTE, r, v') messages
from n — ¢ distinct parties
IT <+ set of received 1-VOTE messages including the signatures
v «— value v’ that is contained most often in 11
r-broadcast the message (2-VOTE, 7, v, IT)
wait for r-delivery of (2-VOTE, r, V', IT) messages from n — ¢ distinct
senders with valid signatures in IT and correctly computed v’
b « value v’ contained most often among the r-delivered 2-VOTE msgs.
¢ < number of r-delivered 2-VOTE messages with v/ = b
s, «— recover(r)
if c =n — ¢ then
vb
else
v S,
if b = s, then
send the message (DECIDE, v) to all /I note thatv = s, = b
re—r-+1

upon receiving t + 1 messages (DECIDE, b):

if decided = FALSE then
send the message (DECIDE, b) to all
decided < TRUE
decide(b)

Lemma 11. If all correct parties start some round r with vote vy, then all correct parties
terminate round r with vote v.

Proof. 1t is impossible to create a valid II for a 2-VOTE message with a vote v # vy because v
must be set to the majority value in n — ¢ received 1-VOTE messages and n — ¢ > 2t.]

Lemma 12. In round r > 0, the following holds:

1. If a correct party sends a DECIDE message for vy at the end of round r, then all correct
parties terminate round r with vote vy.

2. With probability at least % all correct parties terminate round r with the same vote.

Proof. Consider the assignment of b and ¢ in round r. If some correct party obtains c =n — ¢
and b = vy, then no correct party can obtain a majority of 2-VOTE messages for a value
different from v (there are only n 2-VOTE messages and they satisfy the consistency of reliable

broadcast). Those correct parties with ¢ = n — ¢ set their vote v to vy; every other correct party
sets v to s,.. Hence, if s, = vy, all correct parties terminate round r with vote vy.

Claim 1 now follows upon noticing that a correct party only sends a DECIDE message for
vo when vg = b = s,.

Claim 2 follows because the first correct party to assign b and ¢ does so before any informa-
tion about s, is known (to the adversary). To see this note that at least ¢ + 1 shares are needed
for recovering s,., but a correct party only reveals its share after assigning b and c. Thus, s, and
Vg are statistically independent and s,, = vy holds with probability %]

Theorem 13. Algorithm 10 implements binary Byzantine consensus for n > 3t, where termi-
nation holds with probability 1.

The theorem follows easily from the two lemmas. The protocol achieves optimal resilience
because reaching agreement in asynchronous networks with ¢ > n/3 Byzantine faults is im-
possible, despite the use of digital signatures [Tou84]. Since Algorithm 10 terminates with
probability at least % in every round, the expected number of rounds is two, and the expected
number of messages is O(n?).

Using cryptographic randomness. The problem with Algorithm 10 is that every round in
the execution uses up one shared coin in the sequence sg, S1,.... As coins cannot be reused,
this is a problem in practice. A solution for this is to obtain the shared coins from a threshold-
cryptographic function. Malkhi and Reiter [MROO] observe that a non-interactive and deter-
ministic threshold signature scheme already yields unpredictable bits.

More generally, one may obtain the coin value s, from the output of a distributed pseu-
dorandom function (PRF) [KL0O7] evaluated on the round number r and the protocol instance
identifier. A PRF is parameterized by a secret key and maps every input string to an output
string that looks random to anyone who does not have the secret key. A practical PRF construc-
tion is a block cipher with a secret key; distributed implementations, however, are only known
for functions based on public-key cryptosystems. Cachin et al. [CKS05] describe a suitable
distributed PRF based on the Diffie-Hellman problem. With their implementation of the shared
coin, Algorithm 10 is quite practical and has expected message complexity O(n?). It can fur-
ther be improved to a randomized asynchronous Byzantine consensus protocol with O(n?)
expected messages by replacing the reliable broadcasts with a two-phase voting structure that
uses justifications for each vote obtained through threshold signatures on earlier votes [CKS05].

References

[Ben83] M. Ben-Or, Another advantage of free choice: Completely asynchronous agree-
ment protocols, Proc. 2nd ACM Symposium on Principles of Distributed Com-
puting (PODC), 1983, pp. 27-30.

[Bra87] G. Bracha, Asynchronous Byzantine agreement protocols, Information and Com-
putation 75 (1987), 130-143.

[CKPSO1] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, Secure and efficient asyn-
chronous broadcast protocols (extended abstract), Advances in Cryptology:
CRYPTO 2001 (J. Kilian, ed.), Lecture Notes in Computer Science, vol. 2139,
Springer, 2001, pp. 524-541.

[CKSO05]

[FLP85]

[KLO7]

[MNCVO06]

[MRO8]

[MROO]

[Rab83]

[Re194]

[Sho00]

[ST87]

[Tou84]

C. Cachin, K. Kursawe, and V. Shoup, Random oracles in Constantinople: Practi-
cal asynchronous Byzantine agreement using cryptography, Journal of Cryptology
18 (2005), no. 3, 219-246.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed con-
sensus with one faulty process, Journal of the ACM 32 (1985), no. 2, 374-382.

J. Katz and Y. Lindell, Introduction to modern cryptography: Principles and pro-
tocols, Chapman & Hall/CRC, 2007.

H. Moniz, N. E. Neves, M. Correia, and P. Verissimo, Randomized intrusion-

tolerant asynchronous services, Proc. International Conference on Dependable
Systems and Networks (DSN-DCCS), 2006, pp. 568—-577.

D. Malkhi and M. K. Reiter, Byzantine quorum systems, Distributed Computing
11 (1998), no. 4, 203-213.

, An architecture for survivable coordination in large distributed systems,
IEEE Transactions on Knowledge and Data Engineering 12 (2000), no. 2, 187-
202.

M. O. Rabin, Randomized Byzantine generals, Proc. 24th IEEE Symposium on
Foundations of Computer Science (FOCS), 1983, pp. 403—409.

M. K. Reiter, Secure agreement protocols: Reliable and atomic group multicast
in Rampart, Proc. 2nd ACM Conference on Computer and Communications Se-
curity (CCS), 1994, pp. 68—80.

V. Shoup, Practical threshold signatures, Advances in Cryptology: EUROCRYPT
2000 (B. Preneel, ed.), Lecture Notes in Computer Science, vol. 1087, Springer,
2000, pp. 207-220.

T. K. Srikanth and S. Toueg, Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms, Distributed Computing 2 (1987), 80-94.

S. Toueg, Randomized Byzantine agreements, Proc. 3rd ACM Symposium on
Principles of Distributed Computing (PODC), 1984, pp. 163—-178.

