
Secure Distributed Computing EPFL, Fall 2009
Christian Cachin, IBM Research & EPFL LPD www.zurich.ibm.com/˜cca/

2 Distributed Cryptography

2.1 Motivation
Distributed cryptography spreads the operation of a cryptosystem among a group of servers
(parties) in a fault-tolerant way [Des94]. We consider the threshold failure model with n
servers, of which up to t are faulty; such distributed cryptosystems are called threshold cryp-
tosystems.

Distributed cryptosystems are based on secret sharing and are typically known only for
public-key cryptosystems because of their “nice” algebraic properties. Here we consider a
public-key cryptosystem and a digital signature scheme.

2.2 Secret Sharing
Secret sharing forms the basis of threshold cryptography. In a (t + 1)-out-of-n secret sharing
scheme, a secret s, element of a finite field Fq, is shared among n parties such that the cooper-
ation of at least t+ 1 parties is needed to recover s. Any group of t or fewer parties should not
get any information about s.

Algorithm 1. To share s ∈ Fq, a dealer Pd 6∈ {P1, . . . , Pn} chooses uniformly at random a
polynomial f(X) ∈ Fq[X] of degree t subject to f(0) = s, generates shares si = f(i), and
sends si to Pi for i = 1, . . . , n. To recover s among a group of t + 1 servers with indices S,
every server reveals its share and they publicly recover the secret by computing

s = f(0) =
∑
i∈S

λS0,isi,

where
λS0,i =

∏
j∈S,j 6=i

j

j − i

are the (easy-to-compute) Lagrange coefficients. The scheme has perfect security, i.e., the
shares held by every group of t or fewer servers are statistically independent of s (as in a
one-time pad).

Verifiable Secret Sharing. If the dealer Pd may also be faulty (i.e., malicious and actively
deviating from the protocol), we need a verifiable secret sharing (VSS), a fault-tolerant protocol
to ensure that Pd distributes “consistent” shares in the sense that (1) if some server terminates
the sharing successfully, then every other correct server eventually also terminates successfully,
and (2) every group of servers qualified to recover the secret will recover the same value. VSS
is an important building block for secure multi-party computation.

1

Distributed Key Generation. There are also distributed key-generation protocols (DKG) for
generating a public key and a sharing of the corresponding secret key. They must ensure that the
corrupted parties learn no information about the secret key. Such protocols exist and have been
implemented for the common public-key types, those based on discrete logarithms and on RSA.
Usually these protocols work only in synchronous networks and tolerate a passive adversary.
Under weaker assumptions (asynchrony and active adversary), they are less practical.

2.3 Threshold ElGamal Encryption
Discrete Logarithms. Let G =< g > be a group of prime order q, such that g is a generator
of G. The discrete logarithm problem (DLP) means, for a random y ∈ G, to compute x ∈ Zq

such that y = gx. The Diffie-Hellman problem (DHP) is to compute gx1x2 from two random
values y1 = gx1 and y2 = gx2 .

It is conjectured that there exist groups in which solving the DLP and DHP is hard, for
example, the multiplicative subgroup G ⊂ Z∗p of order q, for some prime p = mq + 1 (recall
that q is prime). For example, |p| = 2048 and |q| = 256 for 2048-bit discrete-logarithm-based
cryptosystems, which is considered secure today. Using the language of complexity theory,
to say that a problem is hard means that any efficient algorithm solves it only with negligible
probability. (Formally, this is defined using complexity-theoretic notions [Gol04]: there is a
security parameter k, an efficient algorithm is probabilistic and runs in time bounded by a fixed
polynomial in k, and a negligible function is smaller than any polynomial fraction.)

Public-key Cryptosystems. A public-key cryptosystem is a triple (K,E,D) of efficient al-
gorithms. Algorithm K generates a pair of keys (pk , sk) and is probabilistic. The encryption
algorithm E is probabilistic and the decryption algorithm D is (usually) deterministic; they
have the property that for all (pk , sk) generated by K and for any plaintext message m, the
probability that D(sk ,E(pk ,m)) 6= m is negligible.

A public-key cryptosystem is semantically secure if no efficient adversary A can find two
messages m0 and m1 such that A can distinguish their encryptions. More precisely, A runs
in two stages and first outputs m0 and m1; then a random bit b is chosen and A is given
c = E(pk ,mb); A can distinguish encryptions if it can guess b from c correctly with more than
negligible probability. Semantic security provides security against a passive adversary, but not
against an active one.

ElGamal Encryption. The ElGamal cryptosystem is based on the Diffie-Hellman problem:
Key generation chooses a random secret key x ∈ Zq and computes the public key as y = gx.
The encryption of m ∈ {0, 1}k under public-key y is the tuple (c1, c2) = (gr,m ⊕ H(yr)),
computed using a randomly chosen r ∈ Zq and a hash function H : G → {0, 1}k. The
decryption of a ciphertext (c1, c2) is m̂ = H(c1

x) ⊕ c2. One can easily verify that m̂ = m
because c1x = grx = gxr = yr, and therefore, the argument to H is the same in encryption and
decryption. The scheme is considered secure against passive adversaries. (For actually proving
that breaking semantic security is as hard as solving the DHP, one has to use the random-oracle
model.)

Threshold ElGamal Encryption. The following (t + 1)-out-of-n threshold ElGamal cryp-
tosystem tolerates the passive corruption of t < n/2 parties.

2

Let the secret key x be shared among P1, . . . , Pn using a polynomial f of degree t over Zq

such that Pi holds a share xi = f(i). The global public key y = gx is known to all parties, and
encryption proceeds as in standard ElGamal above. For decryption, a client sends a decryption
request containing c1, c2 to all servers. Upon receiving a decryption request, server Pi computes
a decryption share di = c1

xi and sends it to the client. Upon receiving decryption shares from
a set of t+ 1 servers with indices S, the client computes the message as

m = H
(∏
i∈S

di
λS0,i

)
⊕ c2.

This works because ∏
i∈S

di
λS0,i =

∏
i∈S

c1
xiλ

S
0,i = c1

P
i∈S xiλ

S
0,i = c1

x

from the properties of Algorithm 1. Note that the decryption operation only requires the coop-
eration of t+ 1 ≤ n− t servers.

This is an example of a non-interactive threshold cryptosystem, as no interaction among the
parties is needed. It can also be made robust, i.e., secure against an active adversary [SG02].
Such threshold cryptosystems can easily be integrated in asynchronous distributed systems; but
many threshold cryptosystems are only known under the stronger assumption of synchronous
networks with broadcast.

2.4 Threshold RSA Signatures
Threshold versions of the RSA cryptosystem and the RSA signature scheme are more difficult
to obtain than for discrete-logarithm-based schemes. The reason is that the order of the group,
from which the secret exponents are drawn, must not be revealed.

Digital Signature Schemes. A digital signature scheme is a triple (K,S,V) of efficient al-
gorithms. The key generation algorithm K outputs a public key/private key pair (pk, sk). The
signing algorithm S takes as input the private key and a messagem, and produces a signature σ.
The verification algorithm V takes the public key, a message m, and a putative signature σ, and
outputs a bit that indicates whether it accepts or rejects the signature. The signature is valid for
the message when V accepts. All signatures produced by the signing algorithm must be valid.

A digital signature scheme is secure against existential forgery if no efficient adversary A
can output any message together with a valid signature that was not produced by the legitimate
signer. More formally, A is given pk and is allowed to request signatures on a sequence of
messages of its choice, where any message may depend on previously obtained signatures. If
A can output a message whose signature it never requested, then the adversary has successfully
forged a signature. A signature scheme is secure if any efficient A can forge a signature only
with negligible probability.

RSA Signatures. Let N = pq be the product of two primes of approximately equal length.
For example, |p| = |q| ≈ 1024 in the case of RSA with 2048 bits, which is considered secure
today. The group Z∗N has order ϕ(N) = (p − 1)(q − 1); it is believed that the only way to
compute ϕ(N) requires knowledge of the prime factorization of N . RSA also uses a hash
function H : {0, 1}∗ → Z∗N .

3

Algorithm K chooses two random primes p and q and a (potentially fixed) prime e. Then it
computes N = pq and d ≡ e−1 mod ϕ(N), and outputs sk = d and pk = (N, e).

To sign a message m, algorithm S computes σ = H(m)d in Z∗N , i.e., modulo N . The
verification algorithm tests if a signature σ is valid for a message m by checking whether
σe

?
= H(m) in Z∗N .

Threshold RSA Signatures. Given the number-theoretic structure of RSA, one cannot per-
form interpolation “in the exponent” as in the discrete-log setting because the order of the
group, ϕ(N), must remain secret.

A simple n-out-of-n threshold signature scheme can be obtained nevertheless, by using
additive sharing of the private key over the integers. It provides security against a passive
adversary. The dealer chooses random values di ∈ Z for i = 1, . . . , n such that d ≡

∑n
i=1 di

mod ϕ(N). In order not to reveal information about d or ϕ(N), the di are chosen with bit
length significantly larger than d, e.g., |di| ≈ |d|+ 160. This method hides d statistically.

To set up the scheme, the dealer generates an RSA key pair and shares d among P1, . . . , Pn
over the integers, such that Pi receives di.

To sign a message m, a client sends the request to all servers; a server Pi computes a
signature share σi = H(m)di and returns σi to the client. From n received signature shares,
the client computes the signature σ =

∏n
i=1 σi in ZN . Note that

σ =
n∏
i=1

σi =
n∏
i=1

H(m)di = H(m)
Pn

i=1 di = H(m)d

because d ≡
∑n

i=1 di mod ϕ(N). Verification is the same as with ordinary RSA signatures.
The drawback of this scheme is that the cooperation of all n servers is required for sign-

ing because additive sharing is used. Nevertheless, it is also possible to use a polynomial
sharing and to obtain a truly fault-tolerant RSA-based threshold signature scheme. Shoup’s
scheme [Sho00, GHKR08], for example, is robust, i.e., secure against an active adversary, and
is also non-interactive, which makes it suitable for use in asynchronous distributed systems.

References

[Des94] Y. Desmedt, Threshold cryptography, European Transactions on Telecommunica-
tions 5 (1994), no. 4, 449–457.

[GHKR08] R. Gennaro, S. Halevi, H. Krawczyk, and T. Rabin, Threshold RSA for dynamic
and ad-hoc groups, Advances in Cryptology: Eurocrypt 2008 (N. Smart, ed.), Lec-
ture Notes in Computer Science, vol. 4965, Springer, 2008, pp. 88–107.

[Gol04] O. Goldreich, Foundations of cryptography, vol. I & II, Cambridge University
Press, 2001–2004.

[SG02] V. Shoup and R. Gennaro, Securing threshold cryptosystems against chosen ci-
phertext attack, Journal of Cryptology 15 (2002), no. 2, 75–96.

[Sho00] V. Shoup, Practical threshold signatures, Advances in Cryptology: EUROCRYPT
2000 (B. Preneel, ed.), Lecture Notes in Computer Science, vol. 1087, Springer,
2000, pp. 207–220.

4

