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1 Introduction

1.1 Topics
Rough outline of the first part:

1. Secret sharing

2. Distributed/threshold cryptosystems

3. Asynchronous Byzantine agreement using randomization and using eventual synchrony

4. Atomic broadcast (Byzantine-fault tolerance, BFT)

5. BFT services and storage

6. Proactive cryptosystems

7. Untrusted storage

The second part of the course will be a seminar-style interactive presentation of classic research
papers and recently developed systems by the participants.

1.2 Distributed storage tolerating Byzantine faults
1.2.1 Definitions

Byzantine quorum system. Quorum systems are a fundamental concept for synchronizing
access to replicated data. Quorum systems usually address systems where servers are subject
to crash failures.

Consider a set of n servers P = {P1, . . . , Pn, }, of which up to f may deviate arbitrarily
from their specification, i.e., a system of n servers with f Byzantine faults. A Byzantine quorum
system for P is a set of subsets of P such that every two subsets intersect in at least one non-
faulty server. Every such set is called a [Byzantine] quorum [MR98].

The canonical example of a Byzantine quorum system treats all servers uniformly and is
based on a majority: its quorums are all sets Q ⊂ P such that |Q| = dn+f+1

2
e.

Abstract storage. A read/write register is a simple and useful abstraction for shared data
storage. Registers were formalized by Lamport [Lam86] in the so-called shared-memory
model, where multiple processes access data objects concurrently and asynchronously [AW04].
We use the register abstraction to define the interaction of multiple clients with a storage device
connected to clients over a network.

1



Definition 1 (Register). A register r is accessed by two operations:

write(r, x)→ OK: writes a value x to register r and returns the symbol OK;

read(r)→ x: reads the register r and returns its value x.

A register is characterized along three dimensions:

1. the domain of values that it stores;

2. the number of processes that may write to or read from it; and

3. its behavior under concurrent access.

We consider here only one register; it has arbitrary domain (equivalently, its domain is the
set of strings) and it can be accessed by a single writer process and by many reader processes,
a so-called SWMR register.

We now address the behavior of registers under concurrent access. Every process executes
at any time only one operation. An operation is invoked at some point in time and returns at a
later point in time. When a write operation with value x returns OK, we say that it writes x.

The sequential specification of a register requires that each read operation returns the value
written by the most recent preceding write operation.

For two operations o1 and o2, we say that:

• o1 precedes o2 whenever o1 returns before o2 is invoked (they are sequential), and

• o1 is concurrent with o2 when neither operation precedes the other one.

Lamport [Lam86] has introduced the following three semantics of a register under concur-
rent access. W.l.o.g. assume there is an initial write operation that writes ⊥.

Safe: A register is safe when every read not concurrent with a write returns the most recently
written value. Reads that are concurrent with at least one write may return any value in
the domain.

Regular: A register is regular if it is safe and any read concurrent with a write returns either
the most recently written value or a concurrently written value.

Atomic: A register is atomic whenever the read and write operations are linearizable [HW90],
which means that there exists an equivalent totally ordered sequential execution of them.
In other words, there exists a permutation π of all invocations and responses in the exe-
cution such that the sequential specification of every register holds and such that for any
two operations o1 and o2 where o1 precedes o2 in the execution, o1 also precedes o2 in π.

(For one writer only, a simpler definition is to require that the register is regular and
ensures that if an operation r1 returns a value written by w1, an operation r2 returns a
value written by w2, and r1 precedes r2, then w2 does not precede w1.)
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1.2.2 Distributed implementation of regular storage

Suppose there are is a writer process Cw and multiple reader processes C1, C2, . . . ; they are
collectively called clients. A register accessed by the clients can be implemented in a fault-
tolerant way on a distributed system, consisting of n storage servers or replicas, P1, . . . Pn.
Up to f servers may fail by behaving in arbitrary ways (Byzantine faults). We assume that
clients do not fail.

The servers communicate with the reader and writer processes by sending messages over
an asynchronous network. The network provides a reliable and authenticated point-to-point
FIFO channel between every client and every server. The servers do not communicate with
each other.

We present a protocol that emulates a register to the reader and to the writer processes,
despite the failure of some servers. For tolerating faults, the value in the register is stored
collectively by all servers. A wait-free protocol here means that clients complete all operations
independently from server failures and independently of the speed of other clients.

The writer may use a digital signature scheme to sign messages, which uses two operations,
sign and verify. The first operation can only be run by the writer Cw; calling signw(m) with
m ∈ {0, 1}∗ returns a signature σ ∈ {0, 1}∗. The second operation can be run by all clients;
verifyw(m,σ) takes m,σ ∈ {0, 1}∗ as inputs and returns a Boolean value b ∈ {FALSE, TRUE}
such that verifyw(m,σ) = TRUE if and only if σ was returned to Cw by signw(m) before.

Algorithm 2 (Distributed implementation of a SWMR regular register [MR98]).

Algorithm for the clients. The writer Cw stores a timestamp t.

write(x): // writer Cw only
t← t+ 1
σ ← signw(t‖x)
send message (WRITE, t, x, σ) to P1, . . . , Pn

wait for a message (ACK) from dn+f+1
2
e servers

return OK

read(): // client Cj

send message (READ) to P1, . . . , Pn

wait for messages (VALUE, ti, xi, σi) such that verify(ti‖xi, σi) = TRUE

from dn+f+1
2
e servers

let x be the value xi received in the message with the largest timestamp ti
return x

Algorithm for the servers. Every server Pi stores a tuple (ti, xi, σi).

upon receiving message (WRITE, t, x, σ) from Cw: // server Pi

if t > ti then
(ti, xi, σi)← (t, x, σ)

send message (ACK) to Cw

upon receiving message (READ) from Cj: // server Pi

send (VALUE, ti, xi, σi) to Cj

3



Theorem 3. Assuming at most f < n/3 faulty servers, Algorithm 2 implements a SWMR
regular register.

Proof sketch. The read and the write operations each access a Byzantine quorum of servers.
Hence, after a write operation terminates, every server in some Byzantine quorum stores the
value and the highest timestamp so far. If no other write starts, then at least one server in the
Byzantine quorum accessed by the reader will send the written value with the highest time-
stamp so far in its VALUE message to the reader, and the read returns the most recently written
value. If another write operation is concurrent to the read, the unforgeability of digital signa-
tures implies that the reader returns either the most recently written value or the concurrently
written value.
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