
Secure Distributed Computing EPFL, Fall 2009
Christian Cachin, IBM Research & EPFL LPD www.zurich.ibm.com/˜cca/

5 Proactive Security
Distributed cryptography (or threshold cryptography) protects a private key against exposure
by sharing it among a group of parties. An adversary has to intrude on a fraction of the parties
to obtain the key. In case of a long-lived key, there is still a risk that an adversary breaks
into one party after another during the lifetime of the key. Even when such break-ins can be
detected, the exposure of a key share to the adversary cannot be undone. Proactively secure
systems perform system rejuvenation steps periodically, in anticipation of successful break-ins,
and render leaked key shares harmless to eliminate the long-time exposure problem.

5.1 Model
A proactively secure cryptosystem is a threshold cryptosystem using a group of n parties, where
the shares of the parties are periodically refreshed [HJJ+97].

Recall that in an (t + 1, n)-threshold (public-key) cryptosystem, every party holds a share
of the private key, which is generated using secret sharing with a polynomial of degree t. In
order to execute a cryptographic operation, at least t + 1 parties must collaborate, and up to t
parties may be faulty. Moreover, executing the operation does not leak any information about
one party’s share to another party or require the parties to pool their shares.

For high-value keys with a long lifetime, however, there is a risk that an attack spreads
through the system and over time affects all parties, although not all of them simultaneously.
Proactive cryptosystems protect such keys by periodically refreshing the shares held by the
parties, such that a share exposed in a particular period is useless to an adversary in subsequent
periods, after a refreshment of the shares. The renewed shares still correspond to the same
long-term private key, so that the long-term public key can remain unchanged.

In this section we assume for simplicity that the parties are synchronized and have access
to a common clock and to a synchronous broadcast channel (in contrast to the rest of the
course, which uses an asynchronous system). Furthermore, the parties are connected by secure
channels, i.e., they can send private and authenticated point-to-point messages.

Time is divided into periods, determined by the common clock (for example, one day).
Each time period consists of two phases: (1) a short refresh phase, during which the parties
carry out the refresh protocol so that they hold fresh shares afterwards; and (2) a long compu-
tation phase, where the parties execute operations of the cryptosystem.

Infected parties should be rebooted and re-initialized by a trusted agent (e.g., from a read-
only device) after a corruption has been discovered. We assume the adversary cannot imper-
sonate a disinfected party, send messages in its name, or observe messages addressed to it.
Proactive cryptosystems tolerate up to t corrupted parties during every period, but all parties
may be corrupted over multiple periods. A corrupted party that has been disinfected in one
period will be correct in the subsequent period, and a corrupted party that has not been disin-
fected remains corrupted also in the subsequent period (in particular, it may participate in the
refresh protocol). In order not to leak secrets from past periods, it must be possible for a party
to erase information permanently.

1



5.2 Proactive Refresh Tolerating Passive Attacks
The proactive resharing protocol below offers privacy but no robustness. This means that the
corrupted parties follow the protocol, but they try to obtain more information than they are
entitled to and leak this information to an adversary. The same security notion was already
used for the distributed ElGamal cryptosystem in the lecture notes.

Recall the setting of discrete-log based public-key cryptosystems. Let G =< g > be
a group of prime order q, such that g is a generator of G. Suppose the discrete logarithm
problem (DLP) in G is hard, i.e., for a random y ∈ G, any probabilistic polynomial-time
algorithm computes x ∈ Zq such that y = gx only with negligible probability.

Suppose the n parties hold a polynomial sharing of the private key x for a cryptosystem
with public key y = gx. That is, there exists a polynomial f(X) ∈ Fq[X] of degree t chosen
at random under the condition that f(0) = x. Denote the coefficients of f(X) by f0, f1, . . . , ft

such that f(X) =
∑t

k=0 fkX
k, where f0 = x.

Algorithm 1 (Proactive refresh [HJKY95]). At the begin of the refresh phase, every party Pi

holds a share xi = f(i) =
∑t

k=0 fki
k from the previous period. The refresh protocol consists

of two steps:

1. Every party Pi chooses uniformly at random a polynomial a(i)(X) ∈ Fq[X] of degree t
subject to a(i)(0) = 0. It generates shares rij = a(i)(j) for j = 1, . . . , n, and sends rij to
Pj as a private point-to-point message. (Observe that Pi essentially acts as the dealer to
share the value 0 using polynomial secret sharing.)

2. After receiving n shares rji, for j = 1, . . . , n, party Pi computes its new share in Zq as

x′i = xi +
n∑

j=1

rji.

Then it erases all variables except x′i.

At the end of the refresh phase, Pi uses x′i as its new share for the computation phase of the
period.

Theorem 2. Provided n > 2t, Algorithm 1 ensures that:

1. When the input shares x1, . . . , xn are a sharing of x, then the output shares x′1, . . . , x
′
n

are also a sharing of x.

2. An adversary that observes the secrets of at most t parties in every period learns no
information about the private key x.

Proof (sketch). To show the first condition (correctness), observe that every party Pi basically
shares the value 0 as the dealer in a polynomial secret sharing scheme using a(i)(X). Given the
previous sharing polynomial f(X), the addition of all shares produces a new sharing polyno-
mial

f ′(X) = f(X) +
n∑

j=1

a(j)(X).

And since a(j)(0) = 0 for all j = 1, . . . , n, it holds f ′(0) = f(0).

2



In other words, suppose that there is a group S of t+1 parties that could recover the private
key from the previous sharing as x = f(0) =

∑
i∈S λ

S
0,ixi, with Lagrange coefficients λS0,i for

i ∈ S. Then the recover operation from the new shares gives∑
i∈S

λS0,ix
′
i =

∑
i∈S

λS0,i

(
xi +

n∑
j=1

rji

)

=
∑
i∈S

λS0,ixi +
∑
i∈S

λS0,i

n∑
j=1

a(j)(i) = x+
n∑

j=1

a(j)(0) = x.

To show the second condition (secrecy), suppose the adversary corrupts tprev parties in the
previous period but not in the current period (these parties have been disinfected), tboth parties
in the previous period and in the current period (they remain corrupted during the refresh
protocol), and tcurr parties only in the current period (they may be corrupted already during the
refresh protocol). The assumption means that tprev + tboth ≤ t and tboth + tcurr ≤ t.

For every possible value of x, since the shares rij are sent privately and the adversary never
learns more than t shares of any polynomial a(i) that is generated by a correct Pi, all information
that it observes is consistent with x. Hence, it learns no information about x.

5.3 More Robust Proactive Refresh
Algorithm 1 can be made robust so that it tolerates an active or Byzantine adversary. One
problem with the above protocol is that a corrupted party in step 1 may send inconsistent share
values rij or simply “share” a value 6= 0, so that the parties no longer hold a correct sharing of
the private key.

The following extension [HJKY95] takes up the method of Feldman’s verifiable secret
sharing protocol [Fel87] to prevent this attack. The robust refresh protocol adds five steps to
Algorithm 1 after step 1:

a) Suppose Pi uses polynomial a(i)(X) =
∑t

k=1 aikX
k (recall that a(i)(0) = 0); then it addi-

tionally computes Aik = gaik for k = 1, . . . , t and broadcasts the vector [Ai1, . . . , Ait].

b) After receiving the share rji and the vector [Aj1, . . . , Ajt] from Pj , party Pi verifies that
they are consistent by computing (in Zq)

grji ?
=

t∏
k=1

(Ajk)
ik .

If this check fails, Pi broadcasts a complaint against Pj .

c) For every complaint that was broadcast against Pi by some Pj , party Pi reveals the share rij

by broadcasting rij .

d) Next, for all parties against which a complaint was broadcast, party Pi verifies that the
revealed shares satisfy the above equation. If any revealed share is not valid, then Pi dis-
qualifies the sending party.

e) Finally, every party determines a setQ of parties that have not been disqualified and changes
step 2 of Algorithm 1 to computing x′i = xi +

∑
j∈Q rji.

3



The protocol is robust as long as n > 2t because the consistency checks ensure that every
party Pj , whose shares rji do not satisfy the equation for t + 1 or more indices i of correct
parties, receives a complaint. This follows from the polynomial “verification in the exponent”:
Even if a faulty Pj broadcasts arbitrary values Ãjk = gãjk , if no correct party complains, then
its values have passed t+ 1 or more checks that ensure

grji ?
=

t∏
k=1

(Ãjk)
ik = g

Pt
k=1 ãjkik .

Hence, there are values ãjk that define a polynomial of degree t and represent a sharing of 0 as
required.

Due to the synchronous broadcast channel that carries all messages during the verification
phase, all correct parties compute the same value for Q and update their share using the same
polynomials.

Remarks. Gennaro et al. [GJKR07] point out that this protocol still has some deficiencies
and present a truly robust protocol that eliminates them.

Proactive cryptosystems in asynchronous networks also build on the principles presented
here [CKLS02, ZSvR05].

References

[CKLS02] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, Asynchronous verifiable
secret sharing and proactive cryptosystems, Proc. 9th ACM Conference on Com-
puter and Communications Security (CCS), 2002, pp. 88–97.

[Fel87] P. Feldman, A practical scheme for non-interactive verifiable secret sharing,
Proc. 28th IEEE Symposium on Foundations of Computer Science (FOCS), 1987,
pp. 427–437.

[GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Secure distributed key genera-
tion for discrete-log based cryptosystems, Journal of Cryptology 20 (2007), 51–83.

[HJJ+97] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung, Proactive pub-
lic key and signature systems, Proc. 4th ACM Conference on Computer and Com-
munications Security (CCS), 1997.

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, Proactive secret sharing
or how to cope with perpetual leakage, Advances in Cryptology: CRYPTO ’95
(D. Coppersmith, ed.), Lecture Notes in Computer Science, vol. 963, Springer,
1995, pp. 339–352.

[ZSvR05] L. Zhou, F. B. Schneider, and R. van Renesse, APSS: Proactive secret sharing in
asynchronous systems, ACM Transactions on Information and System Security 8
(2005), no. 3, 259–286.

4


