

Practical Multi-Key Homomorphic Encryption for Federated Average Aggregation

2nd Workshop on Principles of Distributed Learning (PODL'23) co-located with the International Symposium on Distributed Computing DISC'23 Friday, 13 October 2023

Alberto Pedrouzo-Ulloa

apedrouzo@gts.uvigo.es , alberto.pedrouzoulloa@cea.fr

Joint work with A. Boudguiga, O. Chakraborty, R. Sirdey, O. Stan, M. Zuber name.surname@cea.fr

Outline

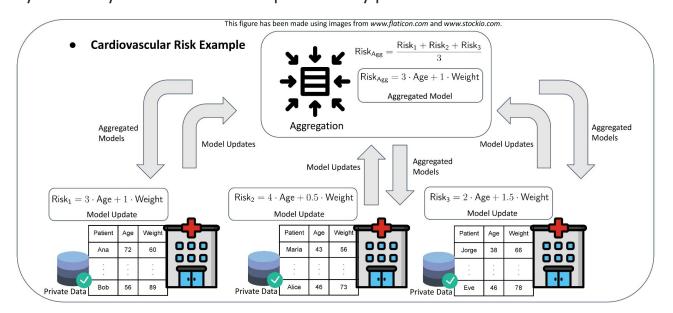
- Introduction
- HE for Secure Aggregation
- Undressing HE
- What's under the clothes
- Some outfit comparisons
- Conclusions

Introduction

A little bit about Federated Learning and its problems

Example scenario for Federated Learning

- FL allows the training of ML models without explicit sharing of training data.
- A central server (Aggregator) aggregates the local training updates from Data Owners (DOs).
- Cross-silo FL: a model is built from the training sets of a reduced number of servers.
 They are always available and computationally powerful.



A toy example and some privacy risks

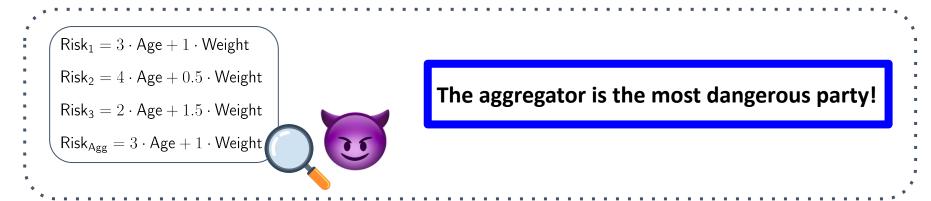
Initially proposed to avoid moving the training data out

- reducing communication costs and "ensuring data privacy."
- Some example attacks:

Ο

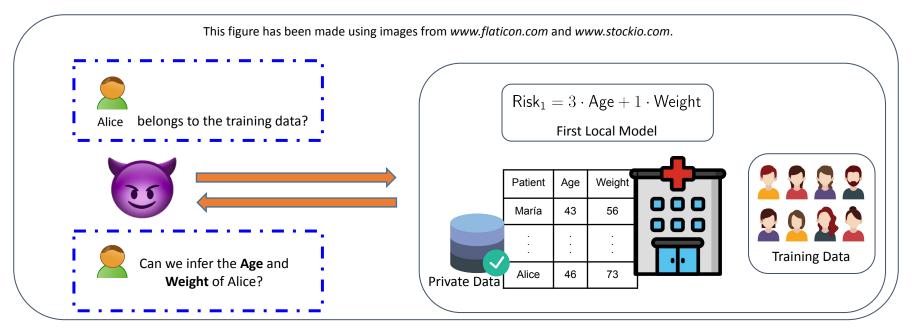
Is 📕 in the database of a particular hospital?

• Can we reconstruct attributes of the people in the database?



A toy example and some privacy risks

Some example attacks:



MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND I'LL TELL YOU WHO YOU ARE

• Membership inference:

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

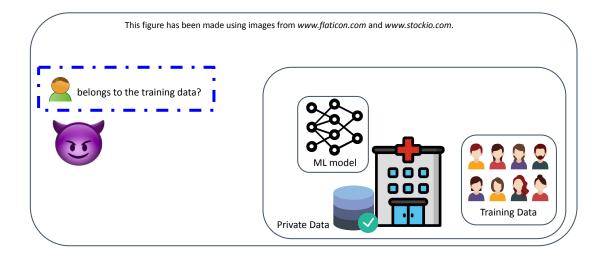
• General cancer risk 🙎 : 350 per 100000 people (aged 45 - 49)

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND I'LL TELL YOU WHO YOU ARE

• Membership inference:

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

• General cancer risk 🙎 : 350 per 100000 people (aged 45 - 49)

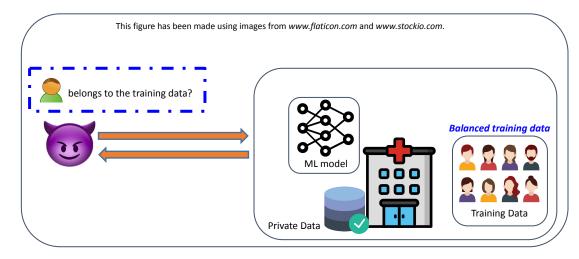


MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND I'LL TELL YOU WHO YOU ARE

Membership inference:

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

- General cancer risk 2: 350 per 100000 people (aged 45 49)
- *"Cancer risk"* knowing that a is contained in the training data: 1 per 2 people

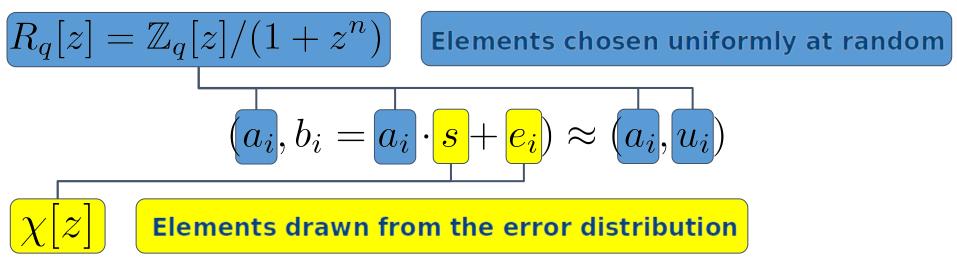


Some basics of HE

RLWE and toy examples with Homomorphic Encryption (HE)

(Polynomial) Ring Learning with Errors

• (P)RLWE problem: RLWE relies upon the computational indistinguishability between the following pairs of samples:



(Polynomial) Ring Learning with Errors

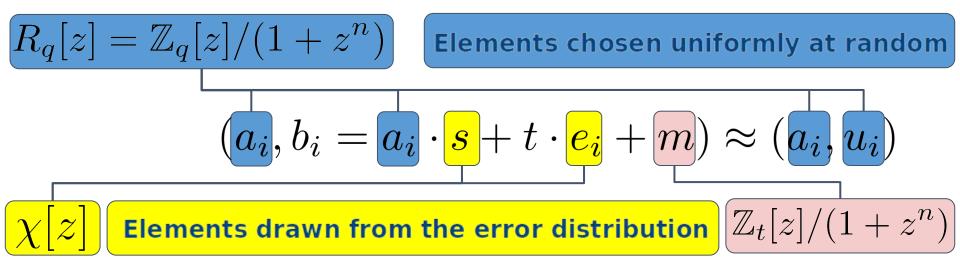
• (P)RLWE problem: RLWE relies upon the computational indistinguishability between the following pairs of samples:

How difficult is to distinguish highly depends on the length of the polynomials.

$$\begin{array}{c} R_q[z] = \mathbb{Z}_q[z]/(1+z^n) & \text{Elements chosen uniformly at random} \\ \hline a_i, b_i = a_i \cdot s + e_i) \approx (a_i, u_i) \\ \hline \chi[z] & \text{Elements drawn from the error distribution} \end{array}$$

PLWE/RLWE: BGV-type example for HE

• (P)RLWE problem: RLWE relies upon the computational indistinguishability between the following pairs of samples:



Consider two encryptions:

$$Enc(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$

$$Enc(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

• Homomorphic Addition:

$$\begin{aligned} &\mathsf{Enc}(m_1 + m_2) = (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ &\mathsf{Enc}(m_1 + m_2) = (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$$

• Consider two encryptions:

$$\mathsf{Enc}(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$
$$\mathsf{Enc}(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

• Homomorphic Addition:

$$\begin{aligned} \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$$

• Consider two encryptions:

$$Enc(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$

$$Enc(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

Homomorphic Addition:

 $\begin{aligned} \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$

• Consider two encryptions:

$$Enc(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$

$$Enc(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

Homomorphic Addition:

 $\begin{aligned} \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$

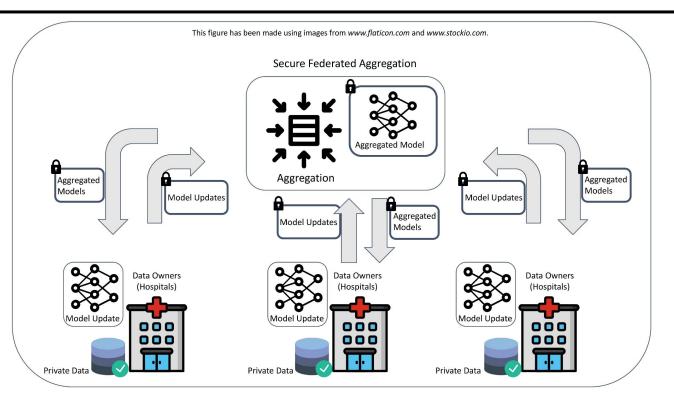
- Homomorphic Multiplication:
 - It is slightly more complicated

HE for Secure Aggregation

Achieving protection against the aggregator

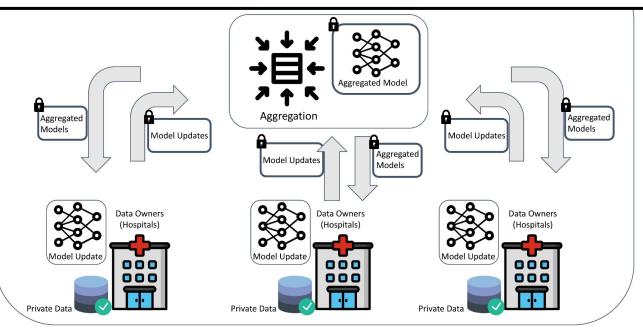
Secure Aggregation: Protection against the aggregator

• Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.



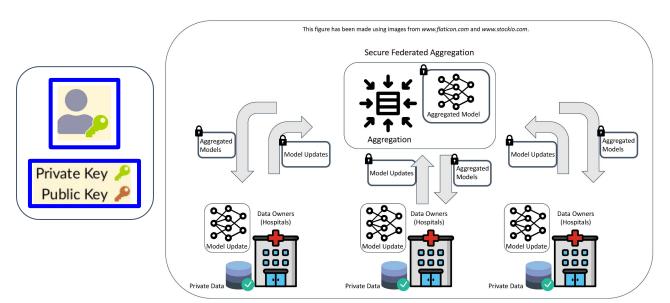
Secure Aggregation: Protection against the aggregator

- Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.
 - It seems to be a perfect fit for secure aggregation.
 - It respects the communication flow of unprotected FL.



Secure Aggregation: Protection against the aggregator

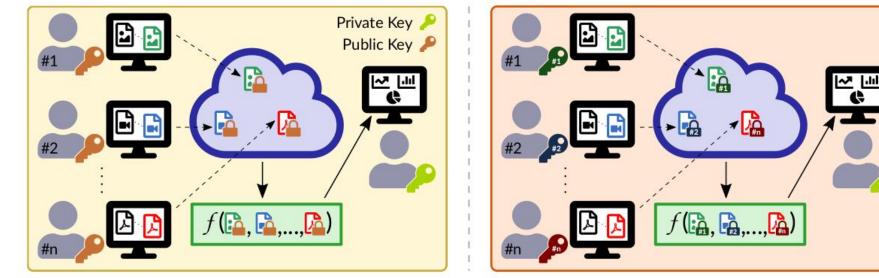
- Single-key HE imposes the need of
 - \circ a trusted decryptor.
 - non-colluding assumption among Aggregator and decryptor.



Single-key HE vs Multi-key HE

Single key

Our scenario requires to incorporate multiple keys into HE.
 Prevents decryption without permission of other participants.



Multiple keys

(S)HE looks nice, but maybe too many clothes for FL

Our motivation:

- Many works address the problem of secure aggregation in FL.
- To the best of our knowledge, HE has not been yet fully optimized for this setting.

Our objective:

• Tailor and optimize HE constructions for secure average aggregation.

We propose:

• A lightweight communication-efficient multi-key approach suitable for the Federated Averaging rule.

Undressing HE: a talk with "streaptease"

This is not what it seems

First outfit: Using a BFV-type encryption

Public key generation:

$$\mathsf{PK} = \mathsf{Enc}(0) = (a, b = -(as + e))$$

- Encryption:
 - We encrypt a message $m \in R_p = \mathbb{Z}_p[X]/(1+X^n)$

$$\mathsf{Enc}(m) = (c_0 = \mathsf{PK}[0]u + e_0, c_1 = \mathsf{PK}[1]u + e_1 + \underbrace{\Delta}_{\lfloor q/p \rfloor} \cdot m) \in R_q^2$$

• Multiple keys with an (L-out-of-L) threshold variant of BFV:

$$\mathsf{SK} = s = s_1 + \ldots + s_L$$

First outfit: Using a BFV-type encryption

• Public key generation:

$$\mathsf{PK} = \mathsf{Enc}(0) = (a, b = -(as + e))$$

- Encryption:
 - We encrypt a message $m \in R_p = \mathbb{Z}_p[X]/(1+X^n)$

$$\mathsf{Enc}(m) = (c_0 = \mathsf{PK}[0]u + e_0, c_1 = \mathsf{PK}[1]u + e_1 + \underbrace{\Delta}_{\lfloor q/p \rfloor} \cdot m) \in R_q^2$$

• Multiple keys with an (L-out-of-L) threshold variant of BFV:

$$\mathsf{SK} = s = s_1 + \ldots + s_L$$

First outfit: Using a BFV-type encryption

• Public key generation:

$$\mathsf{PK} = \mathsf{Enc}(0) = (a, b = -(as + e))$$

• We encrypt a message $m \in R_p = \mathbb{Z}_p[X]/(1+X^n)$

$$\mathsf{Enc}(m) = (c_0 = \mathsf{PK}[0]u + e_0, c_1 = \mathsf{PK}[1]u + e_1 + \underbrace{\Delta}_{\lfloor q/p \rfloor} \cdot m) \in R_q^2$$

Multiple keys with an (L-out-of-L) threshold variant of BFV:

$$\mathsf{SK} = s = s_1 + \ldots + s_L$$

- The public key is not needed:
 - Each Data Owner can encrypt with its own secret key.

$$(a, b_i = as_i + e_i + \Delta \cdot m_i)$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a\left(\sum_{i} s_{i}\right) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

- The public key is not needed:
 - Each Data Owner can encrypt with its own secret key. $(a,b_i=as_i+e_i+\Delta\cdot m_i)$
- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a\left(\sum_{i} s_{i}\right) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

- The public key is not needed:
 - Each Data Owner can encrypt with its own secret key.

$$(a, b_i = as_i + e_i + \Delta \cdot m_i)$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a\left(\sum_{i} s_{i}\right) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

- The public key is not needed:
 - Each Data Owner can encrypt with its own secret key.

$$\mathbf{X}_{i}, b_{i} = as_{i} + e_{i} + \Delta \cdot m_{i}$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(\sum_{i} b_{i} = a\left(\sum_{i} s_{i}\right) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

$$\lfloor as_i \rceil_p = \lfloor p/q \cdot as_i \rceil$$

- The public key is not needed:
 - Each Data Owner can encrypt with its own secret key.

 $(\mathbf{X}_i, b_i = as_i + e_i + \Delta \cdot m_i)$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a(\sum_{i} s_{i}) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

• There is no need to send "*a*".

To have distributed decryption, each DO has to send $\lfloor as_i \rceil_p$ but it also decrypts the input ciphertext!

Proposed solution

Take it off all, but carefully

Proposed solution: You can leave your hat on...

Masking the secret keys: $(a, b_i = a(s_i + \text{share}_i) + e_i + \Delta \cdot m_i)$

$$\left(\sum_{i} b_{i}\right) = a(s + \underbrace{\sum_{i} \text{share}_{i}}_{0}) + e = a\underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

Building blocks:

- Additive secret shares of zero $\sum \text{share}_i = 0$
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:
 Lemma 1 (Lemma 1 [3]). Let p|q, x ← R_q^N and y = x + e mod q for some
 e ∈ R_q^N with ||e||_∞ < B < q/p. Then Pr ([y]_p ≠ [x]_p mod p) ≤ ^{2npNB}/_q.

Proposed solution: You can leave your hat on...

Masking the secret keys: $(a, b_i = a(s_i + \text{share}_i) + e_i + \Delta \cdot m_i)$

$$\left(\sum_{i} b_{i}\right) = a(s + \underbrace{\sum_{i} \text{share}_{i}}_{0}) + e = a\underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

Building blocks:

- Additive secret shares of zero $\sum \text{share}_i = 0$
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:
 Lemma 1 (Lemma 1 [3]). Let p|q, x ← R_q^N and y = x + e mod q for some e ∈ R_q^N with ||e||_∞ < B < q/p. Then Pr ([y]_p ≠ [x]_p mod p) ≤ ^{2npNB}/_q.

Proposed solution: You can leave your hat on...

Masking the secret keys: $(a, b_i = a(s_i + \text{share}_i) + e_i + \Delta \cdot m_i)$

$$\left(\sum_{i} b_{i}\right) = a(s + \underbrace{\sum_{i} \text{share}_{i}}_{0}) + e = a\underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

Building blocks:

- Additive secret shares of zero \sum share_i = 0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:
 Lemma 1 (Lemma 1 [3]). Let p|q, x ← R_q^N and y = x + e mod q for some
 e ∈ R_q^N with ||e||_∞ < B < q/p. Then Pr ([y]_p ≠ [x]_p mod p) ≤ ^{2npNB}/_q.

Proposed solution: You can leave your hat on...

Masking the secret keys: $(a, b_i = a(s_i + \text{share}_i) + e_i + \Delta \cdot m_i)$ $\left(\sum_i b_i\right) = a(s + \sum_i \text{share}_i) + e = a \underbrace{s}_{\sum_i s_i} + \underbrace{e}_{\sum_i e_i} + \Delta \cdot \underbrace{m}_{\sum_i m_i}$

Building blocks:

- Additive secret shares of zero \sum share_i = 0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:
 Lemma 1 (Lemma 1 [3]). Let p|q, x ← R_q^N and y = x + e mod q for some
 e ∈ R_q^N with ||e||_∞ < B < q/p. Then Pr ([y]_p ≠ [x]_p mod p) ≤ ^{2npNB}/_q.

Proposed solution: You can leave your hat on...

Masking the secret keys: $(a, b_i = a(s_i + \text{share}_i) + e_i + \Delta \cdot m_i)$ $\left(\sum_i b_i\right) = a(s + \sum_i \text{share}_i) + e = a \underbrace{s}_{\sum_i s_i} + \underbrace{e}_{\sum_i e_i} + \Delta \cdot \underbrace{m}_{\sum_i m_i}$

Building blocks:

TRUMPET

- Additive secret shares of zero $\sum \text{share}_i = 0$
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \mod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \mod p\right) \leq \frac{2npNB}{q}$.

Proposed solution: You can leave your hat on

- Next lemma is used to remove the error in a distributed way:
 Lemma 1 (Lemma 1 [3]). Let p|q, x ← R_q^N and y = x + e mod q for some
 e ∈ R_q^N with ||e||_∞ < B < q/p. Then Pr ([y]_p ≠ [x]_p mod p) ≤ ^{2npNB}/_q.
- It can be used to show that $\lfloor b \rfloor_p = \lfloor as + e \rceil_p + m \neq \lfloor as \rceil_p + m$ with at most probability $\Pr(Ev)$

• By bounding $\Pr(\mathsf{Ev}) \leq 2^{-\kappa}$:

$$q \ge 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p \cdot L^2 \cdot B^2_{\mathsf{Init}} \cdot 2^{\kappa}$$

Proposed solution: You can leave your hat on

- Next lemma is used to remove the error in a distributed way: Lemma 1 (Lemma 1 [3]). Let p|q, x ← R_q^N and y = x + e mod q for some e ∈ R_q^N with ||e||_∞ < B < q/p. Then Pr ([y]_p ≠ [x]_p mod p) ≤ ^{2npNB}/_q.
- It can be used to show that $\lfloor b \rceil_p = \lfloor as + e \rceil_p + m \neq \lfloor as \rceil_p + m$ with at most probability $\Pr(Ev)$

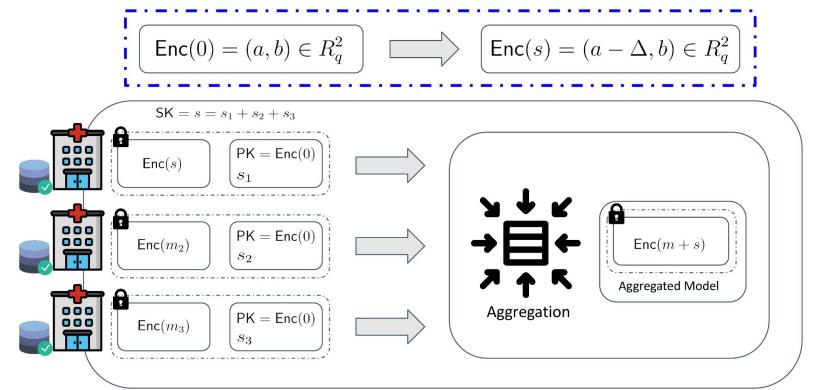
• By bounding $Pr(Ev) \leq 2^{-\kappa}$:

$$q \ge 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts},\mathsf{PerRound}} \cdot p \cdot L^2 \cdot B^2_{\mathsf{Init}} \cdot 2^{\kappa}$$

What's under the clothes

Some nice surprises

Dishonest Data Owners



Some nice properties

- LImiting ciphertexts' malleability
 - By assuming the Common Reference String (*CRS*) model, a different "*a*" term is fixed per each aggregation round.
- Upgrade to malicious aggregators
 - The Aggregator can only apply additive transformations without being detected.
 - An extra condition check can be embedded into ciphertexts to verify honest behavior.
- Stronger semi-honest DOs:
 - As there is no public key, DOs cannot generate encryptions of the global secret key.

Some nice properties

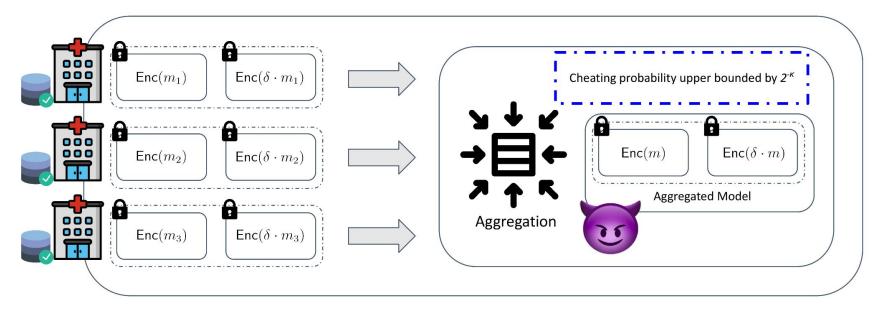
- Limiting ciphertexts' malleability
 - By assuming the Common Reference String (*CRS*) model, a different "*a*" term is fixed per each aggregation round.
- Upgrade to malicious aggregators
 - The Aggregator can only apply additive transformations without being detected.
 An extra condition check can be embedded into ciphertexts to verify honest behavior.
- Stronger semi-honest DOs:
 - As there is no public key, DOs cannot generate encryptions of the global secret key.

Some nice properties

- Limiting ciphertexts' malleability
 - By assuming the Common Reference String (*CRS*) model, a different "*a*" term is fixed per each aggregation round.
- Upgrade to malicious aggregators
 - The Aggregator can only apply additive transformations without being detected.
 - An extra condition check can be embedded into ciphertexts to verify honest behavior.
- Stronger semi-honest DOs:
 - As there is no public key, DOs cannot generate encryptions of the global secret key.

An upgrade to malicious aggregators

• An extra condition check can be embedded into Secret-Key ciphertexts (e.g., $\delta \cdot m$ with δ unknown to aggregator). This verifies the honest behavior during aggregation.



Some outfit comparisons

Comparing with others HE-based solutions

Comparison with other solutions

M: Model Size N: Number of DOs n: lattice dimension M ≈ constant · n	Ours [2]	[5]	[3]	[4]	[6]
Agg. Comp. Cost	<i>O</i> (<i>MN</i>) add.	O(MN) mult.	<i>O</i> (<i>MN</i>) add.	<i>O</i> (<i>MN</i>) add.	O(MN²)
DO Comp. Cost	LWE: O(Mn) mult. RLWE: O(M logM) mult.	<i>O</i> (<i>M</i>) exp.	O(M logM) mult.	O(M logM) mult.	<i>O(MN + N</i> ²)
Total Com. Cost	O(MN)	O(MN)	O(MN)	O(MN)	$O(MN + N^2)$
Multiple Keys	\checkmark	\otimes	\otimes	V	V
Passive parties	\checkmark				V
Malicious Agg.	Verify Agg.	Verify Agg.	Ø	\otimes	✓ only DOs input privacy if <i>T</i> > <i>N</i> /2
Assumptions	LWE/RLWE	Paillier	RLWE	RLWE	T non-colluding DOs
Flexible Dec.	only DOs contributing to aggregated model	\otimes	\otimes	\otimes	✔ required T out of N DOs

Conclusions

When you go to the beach, all you truly need is a bathing suit!

Conclusions

- We tailor and optimize HE constructions for secure average aggregation.
- Multi-key homomorphic encryption mitigates collusion attacks between aggregator and data owners.
- We propose a lightweight communication-efficient multi-key approach suitable for the Federated Averaging rule.
 - Communication cost per party is reduced approximately
 - by a half with RLWE.
 - from quadratic to linear in terms of lattice dimension if considering LWE.
 - Easy to update to be secure against malicious aggregators.

Thanks for your attention!

///////

References:

[1] Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti, "Sok: Secure aggregation based on cryptographic schemes for federated learning," Proc. Priv. Enhancing Technol., vol. 2023, no. 1, pp. 140–157, 2023.

11111111

[2] Alberto Pedrouzo-Ulloa, Aymen Boudguiga, Olive Chakraborty, Renaud Sirdey, Oana Stan, and Martin Zuber, "Practical multi-key homomorphic encryption for more flexible and efficient secure federated aggregation (preliminary work)," IACR Cryptol. ePrint Arch., p. 1674, 2022. Published in IEEE CSR 2023: 612-617.

[3] Arnaud Grivet Sébert, Renaud Sirdey, Oana Stan, and Cédric Gouy-Pailler, "Protecting data from all parties: Combining FHE and DP in federated learning," CoRR, vol. abs/2205.04330, 2022.

[4] Christian Mouchet, Juan Ramón Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-Pierre Hubaux, "Multiparty homomorphic encryption from ring-learning-with-errors," Proc. Priv. Enhancing Technol., vol. 2021, no. 4, pp. 291–311, 2021.

[5] Abbass Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric Gouy-Pailler, and Renaud Sirdey, "A secure federated learning framework using homomorphic encryption and verifiable computing," 2021, pp. 1–8.

[6] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth, "Practical secure aggregation for privacy-preserving machine learning," in ACM SIGSAC CCS. 2017, pp. 1175–1191, ACM.

Consider two encryptions:

$$Enc(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$

$$Enc(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

• Homomorphic Addition:

$$\begin{aligned} &\mathsf{Enc}(m_1 + m_2) = (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ &\mathsf{Enc}(m_1 + m_2) = (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$$

• Consider two encryptions:

$$\mathsf{Enc}(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$
$$\mathsf{Enc}(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

• Homomorphic Addition:

$$\begin{aligned} \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$$

• Consider two encryptions:

$$Enc(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$

$$Enc(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

Homomorphic Addition:

 $\begin{aligned} \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}} = a_1 + a_2, b_{\mathsf{add}} = b_1 + b_2) \\ \mathsf{Enc}(m_1 + m_2) &= (a_{\mathsf{add}}, b_{\mathsf{add}} = -a_{\mathsf{add}}s + t(e_1 + e_2) + (m_1 + m_2)) \end{aligned}$

• Consider two encryptions:

$$\mathsf{Enc}(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$
$$\mathsf{Enc}(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

- Homomorphic Multiplication:
 - It is slightly more complicated $\mathsf{Enc}(m_1m_2) = (a_{\mathsf{mult}}, b_{\mathsf{mult}}, c_{\mathsf{mult}}) = (a_1a_2, a_1b_2 + a_2b_1, b_1b_2)$
 - The number of polynomial elements increases. Decryption is now:

 $(c_{\mathsf{mult}} + b_{\mathsf{mult}}s + a_{\mathsf{mult}}s^2 \mod 1 + z^n) \mod q = m_1 m_2 + t e_{\mathsf{mult}}$

• Consider two encryptions:

$$Enc(m_1) = (a_1, b_1 = -a_1s + te_1 + m_1)$$

$$Enc(m_2) = (a_2, b_2 = -a_2s + te_2 + m_2)$$

• Decryption:

$$(b_1 + a_1 s \mod 1 + z^n) \mod q = m_1 + te_1$$

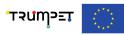
- Homomorphic Multiplication:
 - It is slightly more complicated

 $\mathsf{Enc}(m_1m_2) = (a_{\mathsf{mult}}, b_{\mathsf{mult}}, c_{\mathsf{mult}}) = (a_1a_2, a_1b_2 + a_2b_1, b_1b_2)$

• The number of polynomial elements increases. Decryption is now: $(c_{\text{mult}} + b_{\text{mult}}s + a_{\text{mult}}s^2 \mod 1 + z^n) \mod q = m_1m_2 + te_{\text{mult}}$

• Homomorphic Multiplication:

- It is slightly more complicated $Enc(m_1m_2) = (a_{mult}, b_{mult}, c_{mult}) = (a_1a_2, a_1b_2 + a_2b_1, b_1b_2)$
- The number of polynomial elements increases. Decryption is now: $(c_{\text{mult}} + b_{\text{mult}}s + a_{\text{mult}}s^2 \mod 1 + z^n) \mod q = m_1m_2 + te_{\text{mult}}$
- "Relinearization step" is used to relinearize the "decryption circuit": Relinearization (a_{mult}, b_{mult}, c_{mult}) = (a_{relin}, b_{relin}) (b_{relin} + a_{relin}s mod 1 + zⁿ) mod q = m₁m₂ + t(e_{mult} + e_{relin})



Proposed solution: some extra details

The distributed decryption introduces an extra error component

$$e_{\mathsf{distributed}} = \lfloor as \rceil_p - \sum_i \lfloor as_i \rceil_p$$

The call be removed with an additional rounding phase (q > p > p)

$$\Pr(\mathsf{Ev}) \le \frac{2 \cdot n \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p' \cdot B_{\mathsf{Agg}}}{q}$$
$$q \ge 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p \cdot L^2 \cdot B_{\mathsf{Init}}^2 \cdot 2$$

Input per DO	Decryption share per DO	Aggregator output	Decrypted result
$N_{ModelParam} \cdot \log_2 q$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p$

Table 2. Communication costs per party in each aggregation round.



Proposed solution: some extra details

The distributed decryption introduces an extra error component

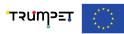
$$e_{\mathsf{distributed}} = \lfloor as \rceil_p - \sum \lfloor as_i \rceil_p$$

• It can be removed with an additional rounding phase (q > p' > p)

$$\Pr(\mathsf{Ev}) \leq \frac{2 \cdot n \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p' \cdot B_{\mathsf{Agg}}}{q}$$
$$q \geq 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p \cdot L^2 \cdot B_{\mathsf{Init}}^2 \cdot 2^{\kappa}$$

Input per DO	${\rm Decryption\ share\ per\ } DO$	Aggregator output	Decrypted result
$N_{ModelParam} \cdot \log_2 q$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p$

Table 2. Communication costs per party in each aggregation round.



Proposed solution: some extra details

The distributed decryption introduces an extra error component

$$e_{\mathsf{distributed}} = \lfloor as \rceil_p - \sum \lfloor as_i \rceil_p$$

• It can be removed with an additional rounding phase (q > p' > p)

$$\Pr(\mathsf{Ev}) \leq \frac{2 \cdot n \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts}.\mathsf{PerRound}} \cdot p' \cdot B_{\mathsf{Agg}}}{q}$$
$$q \geq 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts}.\mathsf{PerRound}} \cdot p \cdot L^2 \cdot B_{\mathsf{Init}}^2 \cdot 2$$

1	Input per DO	Decryption share per DO	Aggregator output	Decrypted result			
	$N_{ModelParam} \cdot \log_2 q$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p$			

 Table 2. Communication costs per party in each aggregation round.

