
Concurrent Algorithms 2019

Final Exam Solutions

January 27th, 2020

Time: 12h15 - 15h15 (3 hours)

Instructions:

• This exam is “closed book”: no notes, electronics, or cheat sheets are allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variable represents which shared object (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for linearizable and wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you (available upon request).

Good luck!

Problem Max Points Score
1 6

2 2

3 2

4 6

5 2

6 2

Total 20

1

Problem 1 (6 points)

1. Any execution in which a read concurrent with a write returns a value other than the value being
written or the previous value, or any execution that exhibits new-old inversion.

2. The transformations can be found in the “Registers” lecture (slides 19–24).

2

https://dcl.epfl.ch/site/_media/education/ca19-registersnew.pdf

Problem 2 (2 points)

One possible solution is to read the registers in reverse order, i.e. from 3 to 1. This way the reader can
read an inconsistent state from at most one register. If the reader finds two consecutive registers having
the same value, this value must be a consistent value and can be returned. Otherwise, it follows that
only one of these two registers could hold an inconsistent value, so the value in the other register is
returned.

uses: c[3×M] local array of single-bit registers

1 upon read() do
2 for i = 1 to M do
3 c[2×M + i]← b[2×M + i]

4 for i = 1 to M do
5 c[M + i]← b[M + i]

6 for i = 1 to M do
7 c[i]← b[i]

8 if c[M + 1 . . . 2M] = c[2M + 1 . . . 3M] then
9 return Base10Conversion (c[2M + 1 . . . 3M])

10 else
11 return Base10Conversion (c[1 . . . M])

3

Problem 3 (2 points)

1. The obstruction-free consensus object satisfies 3 properties:

Obstruction-free consensus satisfies the following three properties:

• obstruction-free termination: If a correct process proposes and eventually executes alone,
then the process eventually decides

• agreement: No two processes decide differently

• validity: Any value decided must have been proposed

Lock-free consensus and wait-free consensus differ on the termination property. The properties
are seen below:

lock-free termination: If a correct process proposes, then some process eventually decides

wait-free termination: Every correct process eventually decides

However, since the consensus object is a single-shot object, the lock-free consensus object is
equivalent to the wait-free consensus object and they both satisfy the wait-free termination
property.

2. Figure 1 presents an execution that violates agreement. The problem arises due to the ts := ts + 1
line of code, since this way different processes could get the same ts value. In the original algorithm
presented in class, ts is updated by n in every iteration of the while loop, where n is the number
of processes. Therefore, in the original algorithm it is impossible for two different processes to get
the same ts value and hence the execution presented in Figure 1 cannot occur.

4

propose1(v) propose2(v’)

ts := 1

ts := 2

T[1] := 1

T[2] := 2

val = ⊥? ✔

val = ⊥? ✔

V[1] := (v, 1)

ts = 2(maxts)? ✘

ts := 2

T[1] := 2

v(val) = ⊥? ✘

V[1] := (v, 2)

V[2] := (v’, 2)

ts = 2(maxts)? ✔

ts = 2(maxts)? ✔

return (v) return (v’)

Figure 1: Execution that violates agreement.

Problem 4 (6 points)

1. See slide 12 from the “The Power of Registers” lecture.

2. See slide 21 from the “The Power of Registers” lecture.

3. No, the algorithm does not correctly implement an atomic lock-free snapshot object if we replace
the base registers by regular ones. An execution where atomicity is violated when using regular
registers is presented in Figure 2. Note that in Figure 2 atomicity is violated since the first scan
returns (0, v) while the second one returns (0, v′) (new-old inversion). Such an execution can occur
when using regular registers since when the second scan reads register Reg[2] that is concurrently
being written, it could as well read the previous written value v.

5

https://lpdwww.epfl.ch/site/_media/education/ca19-countersnapshot.pdf
https://lpdwww.epfl.ch/site/_media/education/ca19-countersnapshot.pdf

p1

p2

scan() returns (0, v) scan() returns (0, v’)

update(2, v’) update(2, v)

Reg[2].write(v, 2)Reg[2].write(v’, 2)
duration of write to regular

register Reg[2]

temp1=(0, v) temp2=(0, v) temp1=(0, v’) temp2=(0, v’)

Figure 2: Execution that violates atomicity.

Problem 5 (2 points)

Yes, the implementation is correct.

Validity. All non-⊥ values in S1 are proposed values. Therefore, if a process p writes (true, v) or
(f alse, v) in S2, then v must have been proposed by some process q (possibly by p itself). Since the
output value of a process is taken either from S1 or from S2, validity is satisfied.

Lemma 1. If S2 contains two entries (true, v1) and (true, v2), then v1 = v2.

Proof. Assume not. Since every process writes in S1 and S2 at most once, it must be that some process
p1 wrote (true, v1) and some other process p2 wrote (true, v2). Thus, it must be that p1 wrote v1 in S1,
took a snapshot of S1 and only saw v1 in that snapshot. Similarly, it must be that p2 wrote v2 in S1, took
a snapshot of S1 and only saw v2 in that snapshot. This is impossible: since the snapshot object is atomic
and the processes update S1 before scanning, it must be that either p1 saw p2’s value, or vice-versa. We
have reached a contradiction.

Agreement. In order for a process p to commit v, p must write v to S1, scan S1 and see only entries
equal to v; p must then write (true, v) to S2, scan S2 and see only entries equal to (true, v) and finally
return (commit, v).

6

Assume by contradiction that process p commits v and some process q commits or adopts v′ 6= v.
q’s scan of S2 cannot include the (true, v) entry written by p, otherwise q would adopt v (remember
that by Lemma 1, q cannot see any entry (true, v′) with v′ 6= v in S2 if p has already written (true, v)
to S2). Therefore, q’s scan of S2 must happen before p’s write to S2. Furthermore, q’s scan of S2 must
include some entry e = (·, v′) with v′ 6= v (written either by q or some other process). But then p’s scan
of S2 (which is after p’s write to S2 and therefore after q’s scan of S2) will also include e, and thus p
cannot commit v. We have reached a contradiction.

Commitment. Assume all proposed values are equal. Then no process can write (f alse, ·) in S2;
S2 contains only entries of the form (true, ·). By Lemma 1, all such entries have equal values, so all
processes that return must commit.

Termination. The code does not contain any waiting, loops, or goto statements, and the snapshot
objects are wait-free, so every correct process will return in a finite number of steps.

7

Problem 6 (2 points)

Solution

We will prove the claim by mathematical induction on the number of processes n.
Base case: Let n = 1. When there is only one process it trivially decides its own value.
Inductive step: Assume there is an implementation Cn of consensus using 0-set-once objects and

registers in a system of n processes. We need to prove that there is an implementation Cn+1 of consensus
using 0-set-once objects and registers in a system of n + 1 processes. The implementation of Cn+1 uses
a 0-set-once object and a Cn consensus object for the first n processes and just a 0-set-once object for
process pn+1:

Operation propose(v) for processes p1, . . . , pn:
uses: Cn – shared consensus object for n processes.
uses: R[0], R[1] – shared registers
uses: S – shared 0-set-once object initialized to ⊥.

1 upon propose(v) do
2 val ← Cn.propose(v)
3 R[0]← val
4 t← S.set(0)
5 if t = 0 then
6 return R[0]

7 else
8 return R[1]

Operation propose(v) for process pn+1:
1 upon propose(v) do
2 R[1]← v
3 t← S.set(1)
4 if t = 1 then
5 return R[1]

6 else
7 return R[0]

8

