
Concurrent Computing

Rachid Guerraoui Petr Kuznetsov

September 13, 2017

Contents

1. Introduction 9

1.1. A broad picture: the concurrency revolution . 9

1.2. The topic: shared objects . 10

1.3. Linearizability . 11

1.4. Wait-freedom . 12

1.5. Combining linearizability and wait-freedom . 12

1.6. Object implementation . 13

1.7. Reducibility . 14

1.8. Organization . 14

1.9. Bibliographical notes . 15

I. Correctness 17

2. Linearizability 19

2.1. Introduction . 19

2.2. The Players . 20

2.2.1. Processes . 20

2.2.2. Objects . 21

2.2.3. Histories . 22

2.2.4. Sequential histories . 23

2.2.5. Legal histories . 23

2.3. Linearizability . 23

2.3.1. The case of complete histories . 24

2.3.2. The case of incomplete histories . 25

2.3.3. Completing a linearizable history . 26

2.4. Composition . 27

2.5. Safety . 29

2.6. Summary . 31

2.7. Bibliographic notes . 32

3. Progress 33

3.1. Introduction . 33

3.2. Implementation . 33

3.2.1. High-level and low-level objects . 33

3.2.2. Zooming into histories . 34

3.3. Progress properties . 35

3.3.1. Variations . 36

3.3.2. Bounded termination . 37

3.3.3. Liveness . 37

3.4. Linearizability and wait-freedom . 37

3.4.1. A simple example . 37

3

3.4.2. A more sophisticated example . 39

3.5. Summary . 40

3.6. Exercises . 41

II. Read-write objects 43

4. Simple register transformations 45

4.1. Definitions . 45

4.2. Proving register properties . 46

4.3. Register transformations . 48

4.4. Two simple bounded transformations . 49

4.4.1. Safe/regular registers: from single reader to multiple readers 49

4.4.2. Binary multi-reader registers: from safe to regular 50

4.5. From binary to b-valued registers . 51

4.5.1. From safe bits to safe b-valued registers . 51

4.5.2. From regular bits to regular b-valued registers 52

4.5.3. From atomic bits to atomic b-valued registers 54

4.6. Bibliographic notes . 56

4.7. Exercises . 56

5. Unbounded register transformations 57

5.1. 1W1R registers: From unbounded regular to atomic . 57

5.2. Atomic registers: from unbounded 1W1R to 1WMR 58

5.3. Atomic registers: from unbounded 1WMR to MWMR 60

5.4. Concluding remark . 61

5.5. Bibliographic notes . 61

5.6. Exercises . 61

6. Optimal atomic bit construction 63

6.1. Introduction . 63

6.2. Lower bound . 63

6.2.1. Digests and sequences of writes . 64

6.2.2. Impossibility result and lower bound . 65

6.3. From three safe bits to an atomic bit . 66

6.3.1. Base architecture of the construction . 67

6.3.2. Handshaking mechanism and the write operation 67

6.3.3. An incremental construction of the read operation 68

6.3.4. Proof of the construction . 71

6.3.5. Cost of the algorithms . 74

6.4. Bibliographic notes . 74

7. Atomic multivalued register construction 75

7.1. From single-reader regular to multi-reader atomic . 75

7.2. Using an atomic control bit . 75

7.3. The algorithm . 77

7.4. Bibliographic notes . 81

7.5. Exercises . 81

4

III. Snapshot objects 83

8. Collects and snapshots 85

8.1. Collect object . 85

8.1.1. Definition and implementation . 85

8.1.2. A collect object has no sequential specification 86

8.2. Snapshot object . 87

8.2.1. Definition . 87

8.2.2. The sequential specification of snapshot . 87

8.2.3. Non-blocking snapshot . 88

8.2.4. Wait-free snapshot . 91

8.2.5. The snapshot object construction is bounded wait-free 92

8.2.6. The snapshot object construction is atomic . 93

8.3. Bounded atomic snapshot . 94

8.3.1. Double collect and helping . 94

8.3.2. Binary handshaking . 95

8.3.3. Bounded snapshot using handshaking . 95

8.3.4. Correctness . 95

8.4. Bibliographic notes . 97

9. Immediate snapshot and iterated immediate snapshot 99

9.1. Immediate snapshots . 99

9.1.1. Definition . 99

9.1.2. Block runs . 100

9.1.3. A one-shot implementation . 100

9.2. Fast renaming . 102

9.2.1. Snapshot-based renaming . 103

9.2.2. IS-based renaming . 103

9.3. Long-lived immediate snapshot . 106

9.3.1. Overview of the algorithm . 106

9.3.2. Proof of correctness . 106

9.4. Iterated immediate snapshot . 106

9.4.1. An equivalence between IIS and read-write . 107

9.4.2. Geometric representation of IIS . 110

IV. Consensus objects 113

10.Consensus and universal construction 115

10.1. Consensus object: specification . 115

10.2. A wait-free universal construction . 116

10.2.1. Deterministic objects . 116

10.2.2. Bounded wait-free universal construction . 118

10.2.3. Non-deterministic objects . 119

10.3. Bibliographic notes . 119

11.Consensus number and the consensus hierarchy 121

11.1. Consensus number . 121

5

11.2. Preliminary definitions . 121

11.2.1. Schedule, configuration and valence . 121

11.2.2. Bivalent initial configuration . 122

11.2.3. Critical configurations . 123

11.3. Consensus number of atomic registers . 124

11.4. Objects with consensus numbers 2 . 125

11.4.1. Consensus from test&set objects . 125

11.4.2. Consensus from queue objects . 126

11.4.3. Consensus numbers of test&set and queue . 127

11.5. Objects of n-consensus type . 128

11.6. Objects whose consensus number is +∞ . 129

11.6.1. Consensus from compare&swap objects . 129

11.6.2. Consensus from augmented queue objects . 130

11.7. Consensus hierarchy . 130

V. Schedulers 133

12.Failure detectors 135

12.1. Solving problems with failure detectors . 135

12.1.1. Failure patterns and failure detectors . 135

12.1.2. Algorithms using failure detectors . 136

12.1.3. Runs . 137

12.1.4. Consensus . 137

12.1.5. Implementing and comparing failure detectors 137

12.1.6. Weakest failure detector . 138

12.2. Extracting Ω . 138

12.2.1. Overview of the Reduction Algorithm . 138

12.2.2. DAGs . 139

12.2.3. Asynchronous simulation . 139

12.2.4. BG-simulation . 141

12.2.5. Using consensus . 142

12.2.6. Extracting Ω . 142

12.3. Implementing Ω in an eventually synchronous shared memory system 145

12.3.1. Introduction . 145

12.3.2. An omega construction . 145

12.3.3. Proof of correctness . 147

12.3.4. Discussion . 148

12.4. Bibliographic Notes . 148

13.Resilience 151

13.1. Pre-agreement with Commit-Adopt . 151

13.1.1. Wait-free commit adopt implementation . 151

13.1.2. Using commit-adopt . 152

13.2. Safe Agreement and the power of simulation . 153

13.2.1. Solving safe agreement . 153

13.2.2. BG-simulation . 154

13.3. Bibliographic notes . 155

6

14.Adversaries 157

14.1. Non-uniform failure models . 157

14.2. Background . 159

14.2.1. Model . 159

14.2.2. Tasks . 160

14.2.3. The Commit-Adopt protocol . 160

14.2.4. The BG-simulation technique. 161

14.3. Non-uniform failures in shared-memory systems . 161

14.3.1. Survivor sets and cores . 161

14.3.2. Adversaries . 162

14.3.3. Failure patterns and environments . 162

14.3.4. Asymmetric progress conditions . 163

14.4. Characterizing superset-closed adversaries . 163

14.4.1. A topological approach . 163

14.4.2. A simulation-based approach . 165

14.5. Measuring the Power of Generic Adversaries . 166

14.5.1. Solving consensus with ABM . 166

14.5.2. Disagreement power of an adversary . 166

14.5.3. Defining setcon . 167

14.5.4. Calculating setcon(A): examples . 167

14.5.5. Solving consensus with setcon = 1 . 168

14.5.6. Adversarial partitions . 169

14.5.7. Characterizing colorless tasks . 169

14.6. Non-uniform adversaries and generic tasks . 170

14.7. Bibliographic notes . 171

7

1. Introduction

In 1926, Gilbert Keith Chesterton published a novel “The Return of Don Quixote” reflecting the advanc-

ing industrialization of the Western world, where mass production started replacing personally crafted

goods. One of the novel’s characters, soon to be converted in a modern version of Don Quixote, says:

”All your machinery has become so inhuman that it has become natural. In becoming a

second nature, it has become as remote and indifferent and cruel as nature. ... You have

made your dead system on so large a scale that you do not yourselves know how or where it

will hit. That’s the paradox! Things have grown incalculable by being calculated. You have

tied men to tools so gigantic that they do not know on whom the strokes descend.”

Since mid-1920s, we made a huge progress in ’dehumanizing’ machinery, and computing systems are

among the best examples. Indeed, modern large-scale distributed software systems are often claimed to

be the most complicated artifacts ever existed. This complexity triggers a perspective on them as natural

objects. This is, at the very least, worrying. Indeed, given that our daily life relies more and more upon

computing systems, we should be able to understand and control their behavior.

In 2003, almost 80 years after the Chesterton’s book was published, Leslie Lamport, in his invited

lecture “Future of Computing: Logic or Biology”, called for a reconsideration of the general perception

of computing:

”When people who can’t think logically design large systems, those systems become in-

comprehensible. And we start thinking of them as biological systems. And since biological

systems are too complex to understand, it seems perfectly natural that computer programs

should be too complex to understand.

We should not accept this. ”

In this book, we intend to support this point of view by presenting a consistent collection of basic

comprehensive results in concurrent computing. Concurrent systems are treated here as logical entities

with clears goals and strategies.

1.1. A broad picture: the concurrency revolution

The field of concurrent computing has gained a huge importance after major chip manufacturers have

switched their focus from increasing the speed of individual processors to increasing the number of

processors on a chip. The good old times where nothing needed to be done to boost the performance

of programs, besides changing the underlying processors, are over. To exploit multicore architectures,

programs have to be executed in a concurrent manner. In other words, the programmer has to design a

program with more and more threads and make sure that concurrent accesses to shared data do not create

inconsistencies. A single-threaded application can for instance exploit at most 1/100 of the potential

throughput of a 100-core chip.

The computer industry is thus calling for a software revolution: the concurrency revolution. This

might look surprising at first glance for the very idea of concurrency is almost as old as computer science.

In fact, the revolution is more than about concurrency alone: it is about concurrency for everyone.

9

Concurrency is going out of the small box of specialized programmers and is conquering the masses

now. Somehow, the very term ”concurrency” itself captures this democratization: we used to talk about

”parallelism”. Specific kinds of programs designed by specialized experts to clearly involve independent

tasks were deployed on parallel architectures. The term ”concurrency” better reflects a wider range of

programs where the very facts that the tasks executing in parallel compete for shared data is the norm

rather than the exception. But designing and implementing such programs in a correct and efficient

manner is not trivial.

A major challenge underlying the concurrency revolution is to come up with a library of abstractions

that programmers can use for general purpose concurrent programming. Ideally, such library should

both be usable by programmers with little expertise in concurrent programming as well as by advanced

programmers who master how to leverage multicore architectures. The ability of these abstractions to be

composed is of key importance, because an application could be the result of assembling independently

devised pieces of code.

The aim of this book is to study how to define and build such abstractions. We will focus on those that

are considered (a) the most difficult to get right and (b) having the highest impact on the overall perfor-

mance of a program: synchronization abstractions, also called shared objects or sometimes concurrent

data structures.

1.2. The topic: shared objects

In concurrent computing, a problem is solved through several processes that execute a set of tasks. In

general, and except in so called ”embarrassingly parallel” programs, i.e., programs that solve problems

that can easily and regularly be decomposed into independent parts, the tasks usually need to synchronize

their activities by accessing shared constructs, i.e., these tasks depend on each other. These typically

serialize the threads and reduce parallelism. According to Amdahl’s law [4], the cost of accessing

these constructs significantly impacts the overall performance of concurrent computations. Devising,

implementing and making good usage of such synchronization elements usually lead to intricate schemes

that are very fragile and sometimes error prone.

Every multicore architecture provides synchronization constructs in hardware. Usually, these con-

structs are “low-level” and making good usage of them is far from trivial. Also, the synchronization

constructs that are provided in hardware differ from architecture to architecture, making concurrent pro-

grams hard to port. Even if these constructs look the same, their exact semantics on different machines

may also be different, and some subtle details can have important consequences on the performance

or the correctness of the concurrent program. Clearly, coming up with a high-level library of synchro-

nization abstractions that could be used across multicore architectures is crucial to the success of the

multicore revolution. Such a library could only be implemented in software for it is simply not realistic

to require multicore manufacturers to agree on the same high-level library to offer to their programmers.

We assume a small set of low-level synchronization primitives provided in hardware, and we use these

to implement higher level synchronization abstractions. As pointed out, these abstractions are supposed

to be used by programmers of various skills to build application pieces that could themselves be used

within a higher-level application framework.

The quest for synchronization abstractions, i.e., the topic of this book, can be viewed as a continuation

of one of the most important quests in computing: programming abstractions. Indeed, the History of

computing is largely about devising abstractions that encapsulate the specifities of underlying hardware

and help programmers focus on higher level aspects of software applications. A file, a stack, a record,

a list, a queue and a set, are well-known examples of abstractions that have proved to be valuable in

traditional sequential and centralized computing. Their definitions and effective implementations have

10

enabled programming to become a high-level activity and made it possible to reason about algorithms

without specific mention of hardware primitives.

In modern computing, an abstraction is usually captured by an object representing a server program

that offers a set of operations to its users. These operations and their specification define the behavior of

the object, also called the type of the object.

The way an abstraction (object) is implemented is usually hidden to its users who can only rely on

its operations and their specification to design and produce upper layer software, i.e., software using

that object. The only visible part of an object is the set of values in can return when its operations are

invoked. Such a modular approach is key to implementing provably correct software that can be reused

by programmers in different applications.

The abstractions we study in this book are shared objects, i.e., objects that can be accessed by con-

current processes, typically running on independent processors. That is, the operations exported by

the shared object can be accessed by concurrent processes. Each individual process accesses however

the shared object in a sequential manner. Roughly speaking, sequentiality means here that, after it has

invoked an operation on an object, a process waits to receive a reply indicating that the operation has

terminated, and only then is allowed to invoke another operation on the same or a different object. The

fact that a process p is executing an operation on a shared object X does not however preclude other

processes q from invoking an operation on the same object X.

The objects considered have a precise sequential specification. called also its sequential type, which

specifies how the object behaves when accessed sequentially by the processes. That is, if executed in a

sequential context (without concurrency), their behavior is known. This behavior might be deterministic

in the sense that the final state and response is uniquely defined given every operation, input parameters

and initial state. But this behavior could also be non-deterministic, in the sense that given an initial state

of the object, and operation and an input parameter, there can be several possibilities for a new state and

response.

To summarize, this book studies how to implement, in the algorithmic sense, objects that are shared

by concurrent processes. Strictly speaking, the objective is to implement object types but when there

is no ambiguity, we simply say objects. In a sense, a process represents a sequential Turing machine,

and the system we consider represents a set of sequential Turing machines. These Turing machines

communicate and synchronize their activities through low-level shared objects. The activities they seek

to achieve consist themselves in implementing higher-level shared objects. Such implementations need

to be correct in the sense that they typically need to satisfy two properties: linearizability and wait-

freedom. We now overview these two properties before detailing them later.

1.3. Linearizability

This property says that, despite concurrency among operations of an object, these should appear as if

they were executed sequentially. Two concepts are important here. The first is the notion of appearance,

which, as we already pointed out, is related to the values returned by an operation: these values are

the only way through which the behavior of an object is visible to the users of that object, i.e., the

applications using that object. The second is the notion of sequentiality which we also discussed earlier.

Namely, The operations issued by the processes on the shared objects should appear, according to the

values they return, as if they were executing one after the other. Each operation invocation op on an

object X should appear to take effect at some indivisible instant, called the linearization point of that

invocation, between the invocation and the reply times of op.

In short, linearizabiliy delimits the scope of an object operation, namely what it could respond in

a concurrent context, given the sequential specification of that object. This property, also sometimes

11

called atomicity, transforms the difficult problem of reasoning about a concurrent system into the simpler

problem of reasoning about a sequential one where the processes access each object one after the other.

Linearizability constraints the implementation of the object but simplifies its usage on the other hand. To

program with linearizable objects, also called atomic objects, the developer simply needs the sequential

specification of each object, i.e., its sequential type.

Most interesting synchronization problems are best described as linearizable shared objects. Exam-

ples of popular synchronization problems are the reader-writer and the producer-consumer problems. In

the reader-writer problem, the processes need to read or write a shared data structure such that the value

read by a process at a given point in time t is the last value written before t. Solving this problem boils

down to implementing a linearizable object exporting read() and write() operations. Such an object type

is usually called a linearizable, an atomic read-write variable or a register. It abstracts the very notions

of shared file and disk storage.

In the producer-consumer problem, the processes are usually split into two camps: the producers

which create items and the consumers which use the items. It is typical to require that the first item

produced is the first to be consumed. Solving the producer-consumer problem boils down to imple-

menting a linearizable object type, called a FIFO queue (or simply a queue) that exports two operations:

enqueue() (invoked by a producer) and dequeue() (invoked by a consumer).

Other exemples include for instance counting, where the problem consists in implementing a shared

counter, called FAI Fetch− and− Increment. Processes invoque this object to increment the value of

the counter and get the current value.

1.4. Wait-freedom

This property basically says that processes should not prevent each other from obtaining values to

their operations. More specifically, no process p should ever prevent any other process q from mak-

ing progress, i.e., obtaining responses to q’s operations, provided q remains alive and kicking. A process

q should be able to terminate each of its operations on a shared object X despite speed variations or

the failure of any other process p. Process p could be very fast and might be permanently accessing

shared object X, or could have been swapped out by the operating system while accessing X. None of

these situations should prevent q from completing its operation. Wait-freedom conveys the robustness of

an implementation. It transforms the difficult problem of reasoning about a failure-prone system where

processes can be arbitrarily delayed or speeded up, into the simpler problem of reasoning about a system

where every process progresses at its own pace and runs to completion.

In other words, wait-freedom says that the process invoking the operation on the object should obtain

a response for the operation, in a finite number of its own steps, independently of concurrent steps from

other processes. The notion of step, as we will discuss later, means here a local instruction of the process,

say updating a local variable, or an operation invocation on a base object (low-level object) used in the

implementation.

1.5. Combining linearizability and wait-freedom

Ensuring linearizability alone or wait-freedom alone is simple. A trivial wait-free implementation could

return arbitrary responses to each operation, say some value corresponding to some initial state of the

object. This would satisfy wait-freedom as no process would prevent other processes from progressing.

However, the responses would no satisfy linearizability.

Also, one could ensure linearizability using a basic mutual exclusion mechanism so that every opera-

tion on the implemented object is performed in an indivisible critical section. Some traditional synchro-

12

nization schemes rely indeed on mutual exclusion (usually based on some locking primitives): critical

shared objects (or critical sections of code within shared objects) are accessed by processes one at a time.

No process can enter a critical section if some other process is in that critical section. We also say that a

process has acquired a lock on that object (resp., critical section). Linearizability is then automatically

ensured if all related variables are protected by the same critical section. This however significantly

limits the parallelism and thus the performance of the program, unless the program is devised with min-

imal interference among processes. Mutual exclusion hampers progress since a process delayed in a

critical section prevents all other processes from entering that critical section. In other words, it vio-

lates wait-freedom. Delays could be significant and especially when caused by crashes, preemptions

and memory paging. For instance, a process paged-out might be delayed for millions of instructions,

and this would mean delaying many other processes if these want to enter the critical section held by

the delayed process. With modern architectures, we might be talking about one process delaying hun-

dreds of processors, making them completely idle and useless. We will study other, weaker lock-free

implementations, which also provide an alternative to mutual exclusion-based implementations.

1.6. Object implementation

As explained, this book studies how to wait-free implement high-level atomic objects out of more prim-

itive base objects. The notions of high and primitive being of course relative as we will see. It is also

important to notice that the term implement is to be considered in an abstract manner; we will describe

the algorithms in pseudo-code. There will not be any C or Java code in this book. A concrete execution

of these algorithms would need to go through a translation into some programming language.

An object to be implemented is typically called high-level, in comparison with the objects used in the

implementation, considered at a lower-level. It is common to talk about emulations of the high-level

object using the low-level ones. Unless explicitly stated otherwise, we will by default mean wait-free

implementation when we write implementation, and atomic object when we write object.

It is often assumed that the underlying system model provides some form of registers as base objects.

These provide the abstraction of read-write storage elements. Message-passing systems can also, under

certain conditions, emulate such registers. Sometimes the base registers that are supported are atomic

but sometimes not. As we will see in this book, there are algorithms that implement atomic registers out

of non-atomic base registers that might be provided in hardware.

Some multiprocessor machines also provide objects that are more powerful than registers like test&set

objects or compare&swap objects. Intuitively, these are more powerful in the sense that the writer

process does not systematically overwrite the state of the object, but specifies the conditions under

which this can be done. Roughly speaking, this enables more powerful synchronization schemes than

with a simple register object. We will capture the notion of “more powerful” more precisely later in the

book.

Not surprisingly, a lot of work has been devoted over the last decades to figure out whether certain

objects can wait-free implement other objects. As we have seen, focusing on wait-free implementa-

tions clearly excludes mutual exclusion (locking) based approaches, with all its drawbacks. From the

application perspective, there is a clear gain because relying on wait-free implementations makes it less

vulnerable to failures and dead-locks. However, the desire for wait-freedom makes the design of atomic

object implementations subtle and difficult. This is particularly so when we assume that processes have

no a priori information about the interleaving of their steps: this is the model we will assume by default

in this book to seek general algorithms.

13

1.7. Reducibility

In its abstract form, the question we address in this book, namely of implementing high-level objects us-

ing lower level objects, can be stated as a general reducibility question. Given two object types X1 and

X2, can we implement X2 using any number of instances of X1 (we simply say “using X1”)? In other

words, is there an algorithm that implements X2 using X1? In the case of concurrent computing, “im-

plementing” typically assumes providing linearizability and wait-freedom. These notions encapsulate

the smooth handling of concurrency and failures.

When the answer to the reducibility question is negative, and it will be for some values of X1 and X2,

it is also interesting to ask what is needed (under some minimality metric) to add to the low-level objects

(X1) in order to implement the desired high-level object (X2). For instance, if the base objects provided

by a given multiprocessor machine are not enough to implement a particular object in software, knowing

that extending the base objects with another specific object (or many of such objects) is sufficient, might

give some useful information to the designers of the new version of the multiprocessor machine in

question. We will see examples of these situations.

1.8. Organization

The book is organized in an incremental way, starting from very basic objects, then going step by step to

implementing more and more sophisticated and powerful objects. After precisely defining the notions

of linearizability and wait-freedom, we proceed through the following steps.

1. We first study how to implement linearizable read-write registers out of non-linearizable base

registers, i.e., registers that provide weaker guarantees than linearizability. Furthermore, we show

how to implement registers that can contain values from an arbitrary large range, and be read

and written by any process in the system, starting from single-bit (containing only 0 or 1) base

registers, where each base register can be accessed by only one writer process and only one reader

process.

2. We then discuss how to use registers to implement seemingly more sophisticated objects than reg-

isters, like counters and snapshot objects. We contrast this with the inherent limitation of lineariz-

able registers in implementing more powerful objects like queues. This limitation is highlighted

through the seminal consensus impossibility result.

3. We then discuss the importance of consensus as an object type, by proving its universality. In

particular, we describe a simple algorithm that uses registers and consensus objects to implement

any other object. We then turn to the question on how to implement a consensus object from other

objects. We describe an algorithm to implement a consensus object in a system of two processes,

using registers and either a test&set or a queue objects, as well as an algorithm that implements a

consensus object using a compare&swap object in a system with an arbitrary number of processes.

The difference between these implementations is highlighted to introduce the notion of consensus

number.

4. We then study a complementary way of implementing consensus: using registers and specific

oracles that reveal certain information about the operational status of the processes. Such oracles

can be viewed as failure detectors providing information about which process are operational

and which processes are not. We discuss how even an oracle that is unreliable most of time

can help devise a consensus algorithm. We also discuss the implementation of such an oracle

assuming that the computing environment satisfies additional assumptions about the scheduling

14

of the processes. This may be viewed as a slight weakening of the wait-freedom requirement

which requires progress no matter how processes interleave their steps.

1.9. Bibliographical notes

The fundamental notion of abstract object type has been developed in various textbooks on the theory or

practice of programming. Early works on the genesis of abstract data types were described in [24, 74,

83, 82]. In the context of concurrent computing, one of the earliest work was reported in [18, 81]. More

information on the history concurrent programming can be found in [16].

The notion of register (as considered in this book) and its formalization are due to Lamport [70]. A

more hardware-oriented presentation was given in [80]. The notion of atomicity has been generalized

to any object type by Herlihy and Wing [56] under the name linearizability. The concept of snapshot

object has been introduced in [1]. A theory of wait-free atomic objects was developed in [61].

The classical (non-robust) way to ensure linearizability, namely through mutual exclusion, has been

introduced by Dijkstra [29]. The problem constituted a basic chapter in nearly all textbooks devoted to

operating systems. There was also an entire monograph solely devoted to the mutual exclusion problem

[86]. Various synchronization algorithms are also detailed in [90].

The notion of wait-free computation originated in the work of Lamport [66], and was then explored

further by Peterson [85]. It has then been generalized and formalized by Herlihy [47].

The consensus problem was introduced in [84]. Its impossibility in asynchronous message-passing

systems prone to process crash failures has been proved by Fischer, Lynch and Paterson in [34]. Its

impossibility in shared memory systems was proved in [77]. The universality of the consensus problem

and the notion of consensus number were investigated in [47].

The concept of failure detector oracle has been introduced by Chandra and Toueg [20]. An introduc-

tory survey to failure detectors can be found in [35].

15

Part I.

Correctness

17

2. Linearizability

2.1. Introduction

Linearizabiliy is a metric of the correctness of a shared object implementation. It addresses the question

of what values can be returned by an object that is shared by concurrent processes. If an object returns

a response, linearizability says whether this response is correct or not.

The notion of correctness, as captured by linearizability, is defined with respect to how the object is

expected to react when accessed sequentially: this is called the sequential specification of the object.

In this sense, the notion of correctness of an object, as captured by linearizability, is relative to how the

object is supposed to behave in a sequential world.

It is important to notice that linearizability does not say when an object is expected to return a re-

sponse. As we will see later, the complementary to linearizability is the wait-freedom property, another

correctness metric that captures the fact that an object operation should eventually return a response (if

certain conditions are met).

To illustrate the notion of linearizability, and the actual relation to a sequential specification, consider

a FIFO (first-in-first-out) queue. This is an object of the type queue that contains an ordered set of

elements and exhibits the following two operations to manipulate this set.

• Enq(a): Insert element a at the end of the queue;

• Deq(): Return the first element inserted in the queue that was not already removed; Then remove

this element from the queue; if the queue is empty, return the default element ⊥.

Enq(a) Enq(b) Deq() a Enq(c) Deq() b

Time

Figure 2.1.: Sequential execution of a queue

Figure 2.1 conveys a sequential execution of a system made up of a single process accessing the

queue (here the time line goes from left to right). There is only a single object and a single process so

we omit their identifiers here. The process first enqueues element a, then element b, and finally element

c. According to the expected semantics of a queue (first-in-first-out), and as depicted by the figure, the

first dequeue invocation returns element a whereas the second returns element b.
Figure 2.2 depicts a concurrent execution of a system made up of two processes sharing the same

queue: p1 and p2. Process p2, acting as a producer, enqueues elements a, b, c, d, and then e. On the other

hand, process p1, acting as a consumer, seeks to de dequeue two elements. On Figure 2.2, the execution

of Enq(a), Enq(b) and Enq(c) by p2 overlaps with the first Deq() of p1 whereas the execution of

Enq(c), Enq(d) and Enq(e) by p2 overlaps with the second Deq() of p1. The questions raised in the

figure are what elements can be dequeued by p1. The role of linearizability is precisely to address such

questions.

19

Enq(a) Enq(b)

Deq() ?

Time

p1

Enq(d)Enq(c)

Deq() ?

p2
Enq(e)

Figure 2.2.: Concurrent execution of a queue

Linearizability does so by relying on how the queue is supposed to behave if accessed sequentially.

In other words, what should happen in Figure 2.2 depends on what happens in Figure 2.1. Intuitively,

linearizability says that, when accessed concurrently, an object should return the same values that it

could have returned in some sequential execution. Before defining linearizability however, and the very

concept of ”value that could have been returned in some sequential execution”, we first define more

precisely some important underlying elements, namely processes and objects, and then the very notion

of a sequential specification.

2.2. The Players

2.2.1. Processes

We consider a system consisting of a finite set of n processes, denoted p1, . . . , pn. Besides accessing

local variables, processes may execute operations on shared objects (we will sometimes simply say

objects. Through these objects, the processes synchronize their computations. In the context of this

chapter, which aims at defining linearizability of the objects, we will omit the local variables accessed

by the processes.

An execution by a process of an operation on a object X is denoted X.op(arg)(res) where arg and

res denote, respectively, the input and output parameters of the invocation. The output corresponds to

the response to the invocation. It is common to write X.op when the input and output parameters are not

important.

The execution of an operation op() on an object X by a process pi is modeled by two events, namely,

the events denoted inv[X.op(arg) by pi] that occurs when pi invokes the operation (invocation event),

and the event denoted resp[X.op(res) by pi] that occurs when the operation terminates (response event).

We say that these events are generated by process pi and associated with object X. Given an operation

X.op(arg)(res), the event resp[X.op(res) by pi] is called the response event matching the invocation

event inv[X.op(arg by pi]. Sometimes, when there is no ambiguity, we talk about operations where we

should be talking about operation executions. We also say sometimes that the object returns a response

to the process. This is by language abuse because it is actually the process executing the operation on

the object that actually computes the response.

Every interaction between a process and an object corresponds to a computation step and is repre-

sented by an event: the visible part of a step, i.e., the invocation or the reply of an operation. A sequence

of such events is called a history and this is precisely how we model executions of processes on shared

objects. Basically, a history depicts the sequence of observable events of the execution of a concurrent

system. We will detail the very notion of history later in this chapter.

While we assume that the system of processes is concurrent, we assume that each process is indi-

vidually sequential: a process executes (at most) one operation on an object at a time. That is, the

algorithm of a sequential process stipulates that, after an operation is invoked on an object, and until a

matching response is returned, the process does not invoke any other operation. As pointed out, the fact

20

that processes are (individually) sequential does not preclude them from concurrently invoking opera-

tions on the same shared object. Sometimes however, we will focus on sequential executions (modeled

by sequential histories) which precisely preclude such concurrency; that is, only one process at a time

invokes an operation on an object.

2.2.2. Objects

An object has a unique identity and is of a unique type. Multiple objects can be of the same type

however: we talk about instances of the type. In our context, we consider a type as defined by (1)

the set of possible values for (the states of) objects of that type, including the initial state; (2) a finite

set of operations through which the (state of the) objects of that type can be manipulated; and (3) a

sequential specification describing, for each operation of the type, the effect this operation produces

when it executes alone on the object, i.e., in the absence of concurrency. The effect is measured in

terms of the response that the object returns and the new state that the object gets to after the operation

executes.

We assume here that every operation of an object type can be applied on each of its states. This

sometimes requires specific care when defining the objects. For instance, if a dequeue operation is

invoked on a queue which is in an empty state, a specific response nil is returned.

We say that an object operation is deterministic if, given any state of the object and input parameters,

the response and the resulting state of the object are uniquely defined. An object type is deterministic

if it has only deterministic operations. We assume here finite non-determinism, i.e., for each state and

operation, the set of possible outcomes (response and resulting state) is finite. Otherwise the object is

said to be non-deterministic: several outputs and resulting states are possible. The pair composed of (a)

the output returned and (b) the resulting state, is chosen randomly from the set of such possible pairs (or

from an infinite set).

A sequential specification is generally modeled as a set of sequences of invocations immediately

followed by matching responses that, starting from an initial state of an object, are allowed by the object

(type) when it is accessed sequentially. Indeed the resulting state obtained after each operation execution

is not directly conveyed, but it is indirectly reflected through the responses returned in the subsequence

operations of the sequence.

To illustrate the notion of a sequential specification, consider the following two object types:

Example 1: a FIFO queue The first example is the unbounded (FIFO) queue described earlier. The

producer enqueues items in a queue that the consumers dequeues. The type has the following sequential

specification: every dequeue returns the first element enqueued and not dequeued yet. If there is not

such element (i.e., the queue is empty), a specific default value nil is returned. As pointed out earlier

this specification never prevents an enqueue or a dequeue operation to be executed. One could consider

a variant of the specification where the dequeue could not be executed if the queue is empty - it would

have to wait for an enqueue - we preclude such specifications.

Designing algorithms that implement this object correctly in a concurrent context captures the classi-

cal producer/consumer synchronization problem.

Example 2: a read/write object (register) The second example (called register) is a simple

read/write abstraction that models objects such as a shared memory word, a shared file or a shared disk.

Designing algorithms that implement this object correctly in a concurrent context captures the classical

reader/writer synchronization problem.

The type exports two operations:

21

• The operation read() has no input parameter. It returns the value stored in the object.

• The operation write(v) has an input parameter, v, representing the new value of the object. This

operation returns value ok indicating to the calling process that the operation has terminated.

The sequential specification of the object is defined by all the sequences of read and write operations

in which each read operation returns the input parameter of the last preceding write operation (i.e., the

last value written). We will study implementations of this object in the next chapters.

2.2.3. Histories

Processes interact with shared objects via invocation and response events. Such events are totally or-

dered. (Simultaneous events are arbitrarly ordered).

The interaction between processes and objects is thus modeled as a totally ordered set of events H ,

called a history (sometimes also called a trace). The total order relation on H , denoted <H , abstracts

out the real-time order in which the events actually occur.

Recall that an event includes (a) the name of an object, (b) the name of a process, (c) the name of an

operation as well as the corresponding input or output parameters.

A local history of pi, denoted H|pi, is a projection of H on process pi: the subsequence H consisting

of the events generated by pi.

Two histories H and H ′ are said to be equivalent if they have the same local histories, i.e., for each

process pi, H|pi = H ′|pi.
As we consider sequential processes, we focus on histories H such that, for each process pi, H|pi (the

local history generated by pi) is sequential: the history starts with an invocation, followed by a response,

(the matching response associated with the same object) followed by another invocation, etc. We say in

this case that the global history H is well-formed.

An operation is said to be complete in a history if the history includes both the event corresponding to

the invocation of the operation and its response. If the history contains only the invocation, we say that

the operation is pending in that history. A history without pending operations is said to be complete. A

history with pending operations is said to be incomplete. Incomplete histories are important to study as

they typically model the situation where a process invokes an operation and stops, e.g., crashes, before

obtaining a response. Note that, being sequential, a process can have at most one pending operation in a

given history.

A history H induces an irreflexive partial order on its operations. Let op = X.op1() by pi and

op′ = Y.op2() by pj be two any operations. Informally, operation op precedes operation op′, if op
terminates before op′ starts, where “terminates” and “starts” refer to the time-line abstracted by the <H

total order relation. More precisely:

(

op→H op′
) def
=

(

resp[op] <H inv[op′]
)

.

Two operations op and op′ are said to overlap (we also say they are concurrent) in a history H if

neither resp[op] <H inv[op′], nor resp[op′] <H inv[op] (neither precedes the other one). Notice that

two overlapping operations are such that ¬(op →H op′) and ¬(op′ →H op). As sequential histories

have no overlapping operations,→H is a total order if H is a sequential history.

Figure 2.3 highlights the events involved in the history depicting the execution of Figure 2.2 above.

The history contains events e1 . . . e14. As all events in H involve the same object, the identity of this

object is omitted. The history has no pending operations, and is consequently complete.

If we restrict the history to the sequence of events e1 . . . e12, we will obtain an incomplete one: the

last dequeue operation of p1 as well as the last enqueue of p2 are now pending operations in the resulting

22

Enq(a) Enq(b)

Deq() ?
p1

Enq(d)Enq(c)

Deq() ?

p2
Enq(e)

e1

e2

e3 e4 e5

e7

e6

e8

e9 e10 e11 e12

e13

e14

Figure 2.3.: Example of a queue history

history.

2.2.4. Sequential histories

Definition 1 A history is sequential if its first event is an invocation, and then (1) each invocation event,

except possibly the last, is immediately followed by the matching response event, (2) each response

event, except possibly the last, is immediately followed by an invocation event.

The precision “except possibly the last” is due to the fact that a history can be incomplete as we

discussed earlier. A history that is not sequential is said to be concurrent.

Given that a sequential history S has no overlapping operations, the associated partial order →S

defined on its operations is actually a total order. Strictly speaking, the sequential specification of an

object is a set of sequential histories involving solely that object. Basically, the sequential specification

represents all possible sequential accesses to the object.

Enq(a)

Deq() a
p1

Enq(b)

Deq() b

p2
Enq(c)

e1 e2

e3

e5

e4

e6

e7

e9

e8

e10

Figure 2.4.: Example of a sequential history

Figure 2.4 depicts a complete sequential history. This history has no overlapping operations. The

operations are totally ordered.

2.2.5. Legal histories

As we pointed out, the definition of a linearizable history refers to the sequential specifications of the

objects involved in the history. The notion of a legal history captures this idea.

Given a sequential history H and an object X, let H|X denote the subsequence of H made up of all

the events involving only object X. We say that H is legal if, for each object X involved in H , H|X
belongs to the sequential specification of X. Figure 2.4 for instance depicts a legal history. It belongs to

the sequential specification of the queue. The first dequeue by p1 returns a a whereas the second returns

a b.

2.3. Linearizability

Intuitively, linearizability states that a history is correct if the response returned to its invocations could

have been obtained by a sequential execution, i.e., according to the sequential specifications of the

23

objects. More specifically, we say that a history is linearizable if each operation appears as if it has

been executed instantaneously at some indivisible point between its invocation event and its response

event. This point is called the linearization point of the operation. We define below more precisely

linearizability as well as some of its main characteristics.

2.3.1. The case of complete histories

For pedagogical reasons, it is easier to first define linearizability for complete histories H , i.e., histories

without pending operations, and then extend this definition to incomplete histories.

Definition 2 A complete history H is linearizable if there is a history L such that:

1. H and L are equivalent,

2. L is sequential,

3. L is legal, and

4. →H⊆→L.

The definition above says that a history H is linearizable if there exist a permutation of H , L, which

satisfies the following requirements. First, L has to be indistinguishable from H to any process: this

is the meaning of equivalence. Second, L should not have any overlapping operations: it has to be

sequential. Third, the restriction of L to every object involved in it should belong to the sequential

specification of that object: it has to be legal. Finally, L has to respect the real-time occurrence order of

the operations in H .

In short, L represents a history that could have been obtained by executing all the operations of H ,

one after the other, while respecting the occurrence order of non-overlapping operations in H . Such a

sequential history L is called a linearization of H or a sequential witness of H .

An algorithm implementing some shared object is said to be linearizable if all histories generated by

the processes accessing the object are linearizable. Proving linearizability boils down to exhibiting, for

every such history, a linearization of the history that respects the “real-time” occurrence order of the

operations in the history, and that belongs to the sequential specification of the object. This consists

in determining for every operation of the history, its linearization point in the corresponding sequential

witness history. To respect the real time occurrence order, the linearization point associated with an

operation has always to appear within the interval defined by the invocation event and the response

event associated with that operation. It is also important to notice that a history H , may have multiple

possible linearizations.

Example with a queue. Consider history H depicted on Figure 2.3. Whether H is linearizable or

not depends on the values returned by the dequeue invocations of p1, i.e., in events e7 and e13. For

example, assuming that the queue is initially empty, two possible values are possible for e7: a and nil.

1. In the first case, depicted on Figure 2.5, the linearization of the first dequeue of p1 would be before

the first enqueue of p2. We depict the linearization, and the corresponding linearization points on

Figure 2.6.

2. In the second case, depicted on Figure 2.7, the linearization of the first dequeue of p1 would

be after the first enqueue of p2. We depict the linearization, and the corresponding linearization

points on Figure 2.8.

24

Enq(a) Enq(b)

Deq() nil
p1

Enq(d)Enq(c)

Deq() a

p2
Enq(e)

e1

e2

e3 e4 e5

e7

e6

e8

e9 e10 e11 e12

e13

e14

Figure 2.5.: The first example of a linearizable history with a queue

Enq(a) Enq(b)

Deq() nil
p1

Enq(d)Enq(c)

Deq() a

p2
Enq(e)

e1

e2

e3 e4 e5

e7

e6

e8

e9 e10 e11 e12

e13

e14

b

b b b

b

b b

Figure 2.6.: The first example of a linearization

It is important to notice that, in order to ensure linearizability, the only possible values for e7 are a
and nil. If any other value was returned, the history of Figure 2.7. would not have been linearizable.

For instance, if the value was b, i.e., if the first dequeue of p1 returned b, then we could not have found

any possible linearization of the history. Indeed, the dequeue should be linearizable after the enqueue of

b, which is after the enqueue of a. To be legal, the linearization should have a dequeue of a before the

dequeue of b—a contradiction.

Example with a register. Figure 2.9 highlights a history of two processes accessing a shared reg-

ister. The history contains events e1 . . . e12. The history has no pending operations, and is consequently

complete.

Assuming that the register initially stores value 0, two possible returned values are possible for e5 in

order for the history to be linearizable: 0 and 1. In the first case, the linearization of the first read of p1
would be right after the first write of p2. In the second case, the linearization of the first read of p1 would

be right after the second write of p2.

For the second read of p1, the history is linearizable, regardless of whether the second read of p1
returns values 1, 2 or 3 in event e7. If this second read had returned a 0, the history would not be

linearizable.

2.3.2. The case of incomplete histories

So far we considered only complete histories. These are histories with at least one process whose last

operation is pending: the invocation event of this operation appears in the history while the correspond-

ing response event does not. Extending linearizability to incomplete histories is important as it allows

to state what responses are correct when processes crash. We cannot decide when processes crash and

then cannot expect from a process to first terminate a pending operation before crashing.

Definition 3 A history H (whether it is complete or not) is linearizable if H can be completed in such a

way that every invocation of a pending operation is either removed or completed with a response event,

so that the resulting (complete) history H ′ is linearizable.

Basically, this definition transforms the problem of determining whether an incomplete history H is

linearizable to the problem of determining whether a complete history H ′, obtained by completing H ,

is linearizable. H ′ is obtained by adding response events to certain pending operations of H , as if these

operations have indeed been completed, or by removing invocation events from some of the pending

25

Enq(a) Enq(b)

Deq() a
p1

Enq(d)Enq(c)

Deq() b

p2
Enq(e)

e1

e2

e3 e4 e5

e7

e6

e8

e9 e10 e11 e12

e13

e14

Figure 2.7.: The second example of a linearizable history with a queue

Enq(a) Enq(b) Deq() a Enq(c) Deq() b

Time

Figure 2.8.: The second example of linearization

operations of H . (All complete operations of H are preserved in H ′.) It is important to notice that the

term ”complete” is here a language abuse as we might ”complete” a history by removing some of its

pending invocations. It is also important to notice that, given an incomplete history H , we can complete

it in several ways and derive several histories H ′ that satisfy the required conditions.

Example with a queue. Figure 2.10 depicts an incomplete history H . We can complete H by

adding to it the response b to the second dequeue of p1 and a response to the last enqueue of p2: we

would obtain history H ′ of Figure 2.5 which is linearizable. We could also have ”completed” H by

removing any of the pending operations, or both of them. In all cases, we would have obtained a

complete history that is linearizable.

Figure 2.11 also depicts an incomplete history. However, no matter how we try to complete it, ei-

ther by adding responses or removing invocations, there is no way to determine a linearization of the

completed history.

Example with a register. Figure 2.12 depicts an incomplete history of a register. The only way to

complete the history in order to make it linearizable is to complete the second write of p2. This would

enable the read of p1 to be linearized right after it.

2.3.3. Completing a linearizable history

An interesting characteristic of linearizability is its nonblocking flavour: every pending operation in a

history H can be completed without having to wait for any other operation to complete nor sacrificing

the linearizability of the resulting history. The following theorem captures this characteristic.

Theorem 1 Let H be any finite linearizable history and inv[op] any pending operation invocation in H .

There is a response r = resp[op] such that H · r is linearizable.

Proof As H is incomplete and linearizable, there is a completion of H , H ′ that is linearizable, i.e., that

has a linearization L. of H . If L contains inv[op] and its matching response r, then L is also linearization

of H · r. If L contains neither inv[op] not r (i.e., H ′ does not contain inv[op]), then L′ = L · inv[op] · r
is a linearization of H ′ · inv[op] · r, which means that H · r is linearizable. ✷Theorem 2

26

Write(0) Write(1)

Read() ?
p1

Write(2)

Read() ?

p2
Write(3)

e1

e2

e3 e4

e5 e7

e6 e8 e9 e10

e11

e12

Figure 2.9.: Example of a register history

Enq(a) Enq(b)

Deq() a
p1

Enq(d)Enq(c)

Deq()

p2
Enq(e)

e1

e2

e3 e4 e5

e7

e6

e8

e9 e10 e11 e12

Figure 2.10.: A linearizable incomplete history

2.4. Composition

A property is a set of histories. A property P is said to be compositional if it is enough to prove that

it holds for each of the objects of a set in order to prove that it holds for the entire set: for each history

H , we have ∀X H|X ∈ P if and only if H ∈ P . Intuitively, compositionality enables to derive the

correctness of a composed system from the correctness of the components. This property is crucial

for modularity of programming: a correct (linearizable) compositions can be obtained from correct

(linearizable) components.

Theorem 2 A history H is linearizable if and only if, for each object X involved in H , H|X is lineariz-

able.

Proof The “only if” direction is an immediate consequence of the definition of linearizability: if H is

linearizable then, for each object X involved in H , H|X is linearizable. Indeed, for every linearization

S of H , S|X is a linearization of H|X.

To prove the other direction, consider a history H , where for each object X, H|X has a linearization,

denoted SX , let→X denote the total order in SX of the operation on X in H . We show below that the

relation →=
⋃

X{→X} ∪ {→H} does not induce any cycle. This means that its transitive closure is a

partial order, and its linear extension S is a linearization of H .

Assume by contradiction that → contains a cycle. Recall that →X and →H are transitive. We can

thus replace any fragment of the form op1 →X op2 →X op3 (respectively, op1 →H op2 →H op3) with

op1 →X op3 (respectively, op1 →H op3). Moreover, since every operation concerns exactly one object,

the cycle cannot contain fragments of the form op1 →X op2 →Y op3 for X 6= Y . Hence, the cycle

alternate edges of the form→X with edges→H .

Now consider the fragment op1 →H op2 →X op3 →H op4. Recall that→X is the order of operations

in SX , a linearization of H|X. Since SX respect real time, we have op3 9X op2, i.e., the invocation

of op2 precedes the response of op3 in H|X (and, thus, in H). Since op1 →H op2, the response of

op1 precedes the invocation of op2 and, thus, the response of op3. Since op3 →H op4, the response of

op3 and, thus, the response of op1 precedes the invocation of op4 in H . Hence, op1 →H op4, i.e., we

can shorten the fragment to one edge→H . By eliminating all edges of the form→X we obtain a cycle

of edges →H—a contradiction with the definition of →H based on the real-time precedence between

operations in H that cannot induce cycles.

Hence the transitive closure of→ is irreflexive and anti-symmetric and, thus, has a linear extension:

a total order on operations in H that respects →H and→X , for all X. Consider the sequential history

27

Enq(a) Enq(b)

Deq() b
p1

Enq(d)Enq(c)

Deq()

p2
Enq(e)

e1

e2

e3 e4 e5

e7

e6

e8

e9 e10 e11 e12

Figure 2.11.: A non-linearizable incomplete history

Write(0) Write(1)

Read() 1
p1

p2

e1

e2

e3 e4

e5

Figure 2.12.: A linearizable incomplete history

S induced by any such total order. Since, for all X, S|X = SX and SX is legal, S is legal. Since

→H⊆→S , S respects the real-time order of H . Finally, since each SX is equivalent to a completion

of H|X, S is equivalent to a completion of H , where each incomplete operation on an object X is

completed in the way it is completed in SX . Hence, S is a linearization of H . ✷Theorem 2

The importance of real time

Linearizability stipulates correctness with respect to a sequential execution: an operation needs to appear

to take effect instantaneously, respecting the sequential specification of the object. In this respect, lin-

earizability is similar to sequential consistency, a classical correctness criteria for shared objects. There

is however a fundamental difference between linearizability and sequential consistency, and this differ-

ence is crucial to making linearizability compositional, which is not the case for sequential consistenty,

as we explain below.

Sequential consistency is a relaxation of linearizability. It only requires that the real-time order is

preserved if the operations are invoked by the same process, i.e., S is only supposed to respect the

process-order relation.

More specifically, a history H is sequentially consistent if there is a “witness” history S such that:

1. H and S are equivalent,

2. S is sequential and legal.

Both linearizability and sequential consistency require a witness sequential history. However, and

as we pointed out, sequential consistency has no further requirement related to the occurrence order of

operations issued by different processes (and captured by the real-time order). It is based only on a

logical time (the one defined by the witness history). In some sense, with linearizablity, after p1 has

finished its operation en enqueued element a, p1 could ”call” p2 and inform it about the availability of

”a”: p2 will then be sure to find a. Everything happens as if indeed the enqueue of a was executed at a

single point in time.

Clearly, any linearizable history is also sequentially consistent. The contrary is not true. A major

drawback of sequential consistency is that it is not compositional. To illustrate this, consider the counter-

example described in Figure 2.13. The history H depicted in the picture involves two processes p1 and p2
accessing two shared registers R1 and R2. It is easy to see that the restriction H to each of the registers

is sequentially consistent. Indeed, concerning register R1, we can re-order the read of p1 before the

write of p2 to obtain a sequential history that respects the semantics of a register (initialized to 0). This

28

is possible because the resuting sequential history does not need to respect the real-time ordering of the

operations in the original history. Note that the history restricted to R1 is not linearizable. As for register

R2, we simply need to order the read of p1 after the write of p2.

Nevertheless, the system composed of the two registers R1 and R2 is not sequentially consistent. In

every legal equivalent to H , the write on R2 performed by p2 should precede the read of R2 performed

by p1: p1 reads the value written by p2. If we also want to respect the process-order relation of H on

p1 and p2, we obtain the following sequential history: p2.WriteR1
(1); p2.WriteR2

(1); p1.ReadR2
() 1;

p1.ReadR1
() 0. But the history is not legal: the value read by p1 in R1 is not the last written value.

sequential history respecting the process-order relation of H must have

Write(1)

Read() 1p1

p2

e1 e2

e3

e4

e5

R1

R2

Write(1)

e7R2

Read() 0

e6 e8R1

Figure 2.13.: Sequential consistency is not compositional

2.5. Safety

It is convenient to reason about the correctness of a shared object implementation by splitting its prop-

erties into safety and liveness. Intuitively, safety properties ensure that nothing “bad” is ever going to

happen whilst liveness properties guarantee that something “good” eventually happens.

More specifically, a property is a set of (finite or infinite) histories. Now a property P is a safety

property if:

• P is prefix-closed: if H ∈ P , then for every prefix H ′ of H , H ′ ∈ P .

• P is limit-closed: for every infinite sequence H0,H1, . . . of histories, where each Hi is a prefix of

Hi+1 and each Hi ∈ P , the limit history H = limi→∞Hi is in P .

Knowing that a property is a safety one helps prove it in the following sense. To ensure that a safety

property P holds for a given implementation, it is enough to show that every finite history is in P : a

history is in P if and only if each of its finite prefixes is in P . Indeed, every infinite history of an

implementation is the limit of some sequence of ever-extending finite histories and thus should also be

in P .

Theorem 3 Linearizability is a safety property.

The proof of Theorem 3 uses a slight generalization of König’s infinity lemma formulated as follows:

Lemma 1 (König’s Lemma) Let G be an infinite directed graph such that (1) each node of G has finite

outdegree, (2) each vertex of G is reachable from some root vertex of G (a vertex with zero indegree),

and (3) G has only finitely many roots. Then G has an infinite path with no repeated nodes starting from

some root.

Now we prove Theorem 3, i.e., we show that the set of linearizable histories is prefix- and limit-closed.

Recall that we only consider objects with finite non-determinism: an operation applied to a given object

state may return only finitely many responses and cause only a finite number of state transitions.

29

Proof Consider a linearizable history H . Since linearizability is compositional, we can simply assume

that H is a history of operations on a single (composed) object X. We show first that any H ′, a prefix

of H , is also linearizable (with respect to X).

Let S be any linearization of H , i.e., a sequential legal history that is equivalent to (a completion of

H) and respects the real-time order of H . Now we construct a sequential history S′ as follows: we

take the shortest prefix of S that contains all complete operations of H ′. Since S contains all compete

operations of H ′, such a prefix of S exists.

We claim that S′ is a linearization of H ′. Indeed, let us complete H ′ by removing operations that do

not appear in S′ and adding responses to incomplete operations in H ′ that are present in S′. This way

only incomplete operations are removed from H ′ since, by construction, all operations that are complete

in H ′ appear in S′. Let H̄ ′ denote the resulting complete history.

First we observe that complete histories S′ and H̄ ′ consist the same set of operations. By construction,

every operation in H̄ ′ appears in S′. Now suppose, by contradiction, that S′ contains an operation op
that does not appear in H̄ ′. Since only operations that do not appear in S′ were removed from H ′ to

obtain H̄ ′, op does not appear in H ′ either. Since S′ is the shortest prefix of S that contains all complete

operations of H , op cannot be the last operation appearing in S′. Moreover, for the same reason, the last

operation in S′ must be complete in H ′, let us denote this operation by op′. Since op does not appear

in H ′ and op′ is complete in H ′, we have op′ <H op. But op precedes op′ in S′ (and, thus, in S), i.e.,

op <S op′. Hence, S violates the real-time order of H—a contradiction.

Since S′ is a prefix of a legal history it is also legal. Moreover, S′ and H̄ ′ contain the same set

of operations and S′ respects the real-time order in H̄ ′: if <H̄′⊆<S′ (otherwise, S would violate the

real-time order in H).

Consider any local history H̄ ′|pi. Recall that we only assume well-formed histories and, thus, H̄ ′|pi
is sequential. Since S′ and H̄ ′ contain the same set of operations and S′ respects the real-time order of

H̄ ′, we have S′|pi = H̄ ′|pi. Hence, S′ and H̄ ′ are equivalent.

Thus, S′ is indeed a linearization of H ′ and, thus, linearizability is prefix-closed.

To show that linearizability is limit-closed, we consider an infinite sequence of ever-extending lin-

earizable histories H0,H1,H2, Our goal is to show that H = limi→∞Hi is linearizable. We

assume that H0 is the empty history and each Hi+1 is a one-event extension of Hi (by prefix-closedness,

prefix of every Hi is linearizable, so we do not lose generality this way).

Now we construct a directed graph G = (V,E) as follows. Vertices of G are all tuples (Hi, S,Q),
where i = 0, 1, . . . , |H|, S is any linearization of Hi that ends with a complete operation present in Hi,

and Q is any sequence of object states that witnesses the legality of H . Now there is an directed edge

((Hi, S,Q), (Hj , S
′, Q′) in G if and only if j = i+ 1, S is a prefix of S′ and Q is a prefix of Q′.

Note that each Hi has at least one vertex (Hi, S,Q). Indeed, by taking any linearization of Hi and

removing operations at the end of it that are incomplete in Hi, we obtain a linearization of a completion

of Hi in which these operations are removed. Thus, there exists a linearization S of Hi that ends with a

complete operation in Hi. Since S is legal, it must have a witness sequence of states Q.

We use König’s lemma to show that the resulting graph G contains an infinite path (H0, S0), (H1, S1), . . .
and the limit limi→∞ Si is a linearization of the infinite limit history H .

First we observe that each non-empty vertex (Hi+1, S
′, Q′) is connected to some (Hi, S,Q). There

are two cases to consider:

• The last operation op of S′ is a complete operation in Hi. In this case, S′ is also a linearization of

Hi. Indeed, even if the last event of Hi+1 is the invocation of a new operation op′, this operation

cannot appear in S′: it can only appear before op in S′ violating the real-time order in Hi+1. Thus,

(Hi, S
′, Q′) is a vertex in G.

• The last operation op of S′ is not a complete operation in Hi. Recall that S′ ends with an operation

30

op that is complete in Hi+1 and Hi+1 extends Hi with one event only. Thus, the last event of

Hi+1 is the response of op. Thus, Hi and Hi+1 contain the same set of operations, except that

op is incomplete in Hi. Let S be the longest prefix of S′ that ends with a complete operation in

Hi. Since S′ is legal, S is also legal. By construction, every complete operation in Hi appears in

S and no operation appears in S if it does not appear in Hi. Thus, S is a linearization of Hi and

(Hi, S,Q), where Q is the prefix of Q′ that witnesses the legality of S, is a vertex in G.

Inductively, we derive that each vertex (Hi, S,Q) is reachable from vertex (H0, S0, Q0), where H0,

S0 and W0 are empty sequences. The only root vertex of G (a vertex that has no incoming edges) is thus

(H0, S0,W0).

Now we show that the outdegree of every vertex of G is finite. There are only finitely many op-

erations in Hi+1 and each linearization of Hi+1 is a permutation of these operations. Thus, since we

only consider objects with finite non-determinism, there can only be finitely many vertices of the form

(Hi+1, S
′, Q′). Since all outgoing edges of any vertex (Hi, S,Q) are directed to vertices of the form

(Hi+1, S
′, Q′), the outdegree of every such vertex is also finite.

By König’s lemma, G contains an infinite path starting from the root vertex: (H0, S0, Q0), (H1, S1, Q1),
We argue now that the limit S = limi→∞ Si is a linearization of the infinite limit history H . By con-

struction, S respects the real-time order of H , otherwise there would be a vertex (Hi, Si, Qi) such that

Si is not equivalent to Hi or violates the real-time order of Hi. Also, S contains all complete operations

of H and, thus, S is equivalent to a completion of H . S is also legal since each of its prefixes is legal.

Thus, S is indeed a linearization of H , which concludes the proof that linearizability is a safety property.

✷Theorem 3

Thus, the set of linearizable histories is indeed prefix-closed and limit-closed, so in the rest of this

book, we only consider finite histories in the proofs of linearizability.

2.6. Summary

This chapter studies the meaning of the notion of a correct object implementation. Namely, to be correct,

all histories generated by the object implementation need to be linearizable. The responses returned by

the object in a concurrent history are those that could have been returned by the object if accessed

sequentially. Proving this typically boils down to determining a linearization point for each operation in

the given history.

Linearizability has some important characteristics. First, it reduces the difficult problem of reasoning

about a concurrent system into the problem of reasoning about a sequential one. We simpy need a

sequential specification of an object to reason about the correctness of a system made of processes

concurrently accessing that object. Linearizabiliy is also compositional. It is enough to prove that each

object in a set (of objects) is linearizable to conclude that the system composed of the set is linearizable.

Linearizability is also non-blocking, which basically means that ensuring it never forces processes to

wait for each other.

As pointed out however, linearizability is only a partial answer to the question of correctness. It does

say what response should be forbidden to be returned by an object but does not say when the object

should actually return some response. In fact, and as we will see in the next chapter, to be considered

correct, the object implementation should not only be linearizable but should also be wait-free. Whilst

linearizability covers safety, wait-freedom covers liveness.

31

2.7. Bibliographic notes

The notion of sequential consistency has been introduced by Lamport [68]. Linearizability was initially

studied, under the name atomicity, in the context of atomic read/write objects (registers) by Lamport [70]

and Misra [80]. The notion of sequential specification of a type was introduced by Weihl in [100]. The

generalization of linearizability to any object type has been developed by Herlihy and Wing [56].

The concepts of safety and liveness were introduced by Lamport [67] and refined by Alpern and

Schneider [3], originally defined for infinite histories only. Lynch reformulated the notions for finite

histories and proved that linearizability, when applied to deterministic objects is a safety property [78].

Guerraoui and Ruppert [44] showed that linearizability is not limit-closed if objects can expose infinite

non-determinism. In other words, linearizability is not a safety property for objects with unbounded

non-determinism.

32

3. Progress

3.1. Introduction

The previous chapter focused on the property of linearizability, which basically precludes concurrent

operations that do not appear as if executed sequentially. Linearizability (when applied to objects with

finite non-determinism) is a safety property: it states what should not happen in an execution.

Such a property is in fact easy to satisfy. Think of an implementation (of some shared object) that

simply never returns any response. Since no operation would ever complete, the history would basically

be empty and would be trivial to linearize: no response, no need for a linearization point. But this

implementation would be useless. In fact, to prevent such implementations, we need some progress

property stipulating that certain responses should appear in a history, at least eventually and under certain

conditions. Ideally, we would like every invoked operation to eventually return a matching response. But

this is impossible to guarantee if the process invoking the operation crashes, e.g., the process is paged

out by the operating system which could decide not to schedule that process anymore.

Nevertheless, one might require that a response is returned to a process that is scheduled by the oper-

ating system to execute enough steps of the algorithm implementing that operation (i.e., implementing

the object exporting the operation). As we will see below, a step here is the access to a low-level object

(used in the implementation) during the operation’s execution.

To express such requirement more precisely, we need to carefully define the notion of object imple-

mentation and zoom into the way processes execute the algorithm implementing the object, in particular

how their steps are scheduled by the operating system.

In the following, we introduce the notion of implementation history: this is a lower level notion than

the history notion presented in the previous chapter and which describes the interaction between the

processes and the object being implemented (high-level history) The concept of low-level history will

be used to introduce progress properties of shared object implementations.

3.2. Implementation

In order to reason about the very notion of implementation, we need to distinguish the very notions of

high-level and low-level objects.

3.2.1. High-level and low-level objects

To distinguish the shared object to be implemented from the underlying objects used in the implemen-

tation, we typically talk about a high-level object and underlying low-level objects. (The latter are

sometimes also called base objects and the operations they export are called primitives). That is, a

process invokes operations on a high-level object and the implementation of these operations requires

the process to invoke primitives of the underlying low-level (base) objects. When a process invokes such

a primitive, we say that the process performs a step.

The very notions of “high-level” and “low-level” are relative and depend on the actual implemen-

tation. An object might be considered high-level in a given implementation and low-level in another

one. The object to be implemented is the high-level one and the objects used in the implementation

33

are the low-level ones. The low-level objects might capture basic synchronization constructs provided

in hardware and in this case the high-level ones are those we want to emulate in software (the notion

of emulation is what we call implement). Such emulations are motivated by the desire to facilitate the

programming of concurrent applications, i.e. to provide the programmer with powerful synchronization

abstractions encapsulated by high-level objects. Another motivation is to reuse programs initially de-

vised with the high-level object in mind in a system that does not provide such an object in hardware.

Indeed, multiprocessor machines do not all provide the same basic synchronization abstractions.

Of course, an object O that is low-level in a given implementation A does not necessarily correspond

to a hardware synchronization construct. Sometimes, this object O has itself been obtained from a

software implementation B from some other lower objects. So O is indeed low-level in A and high-

level in B. Also, sometimes the low-level objects are assumed to be linearizable, and sometimes not. In

fact, we will even study implementations of objects that are not linearizable, as an intermediate way to

build linearizable ones.

3.2.2. Zooming into histories

So far, we represent computations using histories, as sequences of events, each representing an invoca-

tion or a response on the object to be implemented, i.e, the high-level object.

Implementation history. In contrast, reasoning about progress properties requires to zoom into the

invocations and responses of the lower level objects of the implementations, on top of which the high-

level object is built. Without such zooming we may not be able to distinguish a process that crashes right

after invoking a high-level object operation and stops invoking low-level objects, from one that keeps

executing the algorithm implementing that operation and invoking primitives on low-level objects. As

we pointed out, we might want to require that the latter completes the operation by obtaining a matching

response, but we cannot expect any such thing for the former. In this chapter, we will consider as a

implementation history, the low-level history involving invocations and responses of low-level objects.

This is a refinement of the higher level history involving only the invocations and responses of the

high-level object to be implemented.

Enq(a) Enq(b)

Deq() ?

Time

p1

Enq(d)Enq(c)

Deq() ?

p2

Enq(e)

Figure 3.1.: High-level and low-level operations

Consider the example of a fetch-and-increment (counter) high-level-object implementation, as we

describe it below in Section 3.4.1. As low-level objects, the implementation uses an infinite array

T [, . . . ,∞] of TAS (test-and-set) objects and a snapshot-memory object my-inc. The high-level history

here is a sequence of invocation and response events of fetch-and-increment operations, while the low-

level history (or implementation history) is a sequence of primitive events read(), update(), snapshot()
and test-and-set() (Figure 3.1).

The two faces of a process. To better understand the very notion of a low-level history, it is

important to distinguish the two roles of a process. On the one hand, a process has the role of a client

34

that sequentially invokes operations on the high-level object and receives responses. On the other hand,

the process also acts as a server implementing the operations. While doing so, the process invokes

primitives on lower level objects in order to obtain a response to the high-level invocation.

It might be convenient to think of the two roles of a process as executed by different entities and

written by two different programmers. As a client, a process invokes object operations but does not

control the way the low-level primitives implementing these operations are executed. The programmer

writing this part does typically not know how an object operation is implemented. As a server, a process

executes the implementation algorithm made up of invocations of low-level object primitives. This algo-

rithm is typically written by a different programmer who does not need to know what client applications

will be using this object. Similarly, the client application does not need to know how the objects used

are implemented, except that they ensure linearizability and some progress property as discuss below.

Scheduling and asynchrony. The execution of a low-level object operation is called a step. The

interleaving of steps in an implementation is specified by a scheduler (itself part of an operating system).

This is outside of the control of processes and, in our context, it is convenient to think of a scheduler as

an adversary. This is because, when devising an algorithm to implement some high-level object, one

has to cope with worst-case strategies the scheduler may choose to defeat the algorithm. This is then

viewed as an adversarial behavior.

A process is said to be correct in a low-level history if it executes an infinite number of steps, i.e.,

when the scheduler allocates infinitely many steps of that process. This “infinity” notion models the

fact that the process executes as many steps as needed by the implementation until all responses are

returned. Otherwise, if the process only takes finitely many steps, it is said to be faulty. In this book, we

only assume that faulty processes crash, i.e., permanently stop performing steps, otherwise they never

deviate from the algorithm assigned to them. In other words, they are not malicious (we also say they

are not Byzantine).

Unless explicitly stated otherwise, the system is assumed to be asynchronous , i.e., the relative speeds

of the processes are unbounded: for all Φ ∈ N and processes p and q, there is an execution in which

p takes Φ steps while process q takes only one step. Basically, an asynchronous system is controlled

by a very weak scheduler, i.e., a scheduler that may prevent a correct process from taking steps for an

arbitrary (but finite) periods of time.

3.3. Progress properties

As pointed out above, a trivial way to ensure linearizability would be to do nothing, i.e., return no

response to any operation invocation. This would preclude any history that violates linearizability by

simply precluding any history with a response.

Besides this (clearly, meaningless) approach, a popular way to ensure linearizability is to use critical

sections (say using locks), preventing concurrent accesses to the same high-level shared object. In the

simplest case, every operation on a shared object is executed as a critical section. When a process

invokes an operation on an object, it first requests the corresponding lock, and the algorithm of the

operation is executed by the process only when the lock is acquired. If the lock is not available, the

process waits until the lock is released. After a process obtains the response to an operation, it releases

the corresponding lock. This approach also trivially ensures linearizability because the linearization

points of the operations of a history correspond to the moment at which the lock is acquired for the

operation.

As we discussed in Chapter 1, such an implementation of a shared object has an inherent drawback:

the crash of a process holding the lock on an object prevents any other process from completing its

35

operation. In practice, the process holding the lock might be preempted for a long period of time, while

all processes contending on the same object remain blocked. When processes are asynchronous (i.e.,

the scheduler can arbitrarily preempt processes) which is the default assumption we consider, there is

no way for a process to know whether another process has crashed (or was preempted for a long while)

or is only very slow. In a system with a couple of processors, this might not be considered a big deal.

But in a modern architecture with a very large number of processors, having a single point of blocking

might be considered unacceptable.

This book focuses on robust shared object implementations with progress properties precluding sit-

uations where the crash of some strict subset of processes prevents every other process from making

progress. This models the requirement that processes that are delayed by the operating system should

not block all other processes from progressing. Hence, we preclude the use of critical sections or locks.

• Informally, we say that an implementation is lock-based if it allows for a situation in which some

process running in isolation after some finite execution is never able to complete its operation.

• Taking a negation of this property, we state that an implementation does-not-employ-locks if start-

ing after any finite execution, every process can complete its operation in a finite number of its

own steps.

Intuitively, this property, called obstruction-freedom (or solo termination), must be satisfied by any

implementation where the crash of any process does not prevent other processes from making progress.

Below we discuss this property in more details together with some of its variants.

3.3.1. Variations

Several progress properties preclude the usage of locks:

• Obstruction-freedom (also called solo termination). An implementation (of a shared object) is

obstruction-free, if any of its operations returns a response if it is eventually executed without

concurrency by a correct process.

The operation is said to be eventually executed without concurrency if there is a time after which

the only process to take step involving the object is the process that invoked that operation.1

• Non-blockingness (partial termination). This property, strictly stronger than obstruction-freedom,

states that at least one of several correct processes executing operations on the same object, termi-

nates its operation. Intuitively, non-blockingness can be interpreted as deadlock-freedom (despite

asynchrony and crashes).

• Wait-freedom (also called global termination). This property is even stronger. It states that any

correct process that executes an operation eventually returns a response. Wait-freedom can be

viewed as starvation-freedom (despite asynchrony and crashes).

1There is an alternative, weaker notion of contention, called interval contention. An operation encounters interval contention

if it overlaps with another operation (this does not need to take steps). Step contention implies interval contention, but

not vice versa. However, an alternative definition of obstruction-freedom requiring that an operation returns if it runs in

the absence of interval contention does not preclude the usage of locks. An operation grabs the lock on the shared object,

executes the operation on the object, and releases the lock before returning the response.

36

3.3.2. Bounded termination

Wait-freedom, the strongest of the properties above, does not stipulate any bound on the number of steps

that a process needs to execute before obtaining a matching response for the high-level object operation

it invoked. Typically, this number of steps can depend on the behavior of the other processes. It could

be small if no other process performs any step, and gets bigger when all processes perform steps (or the

opposite), while remaining always finite, regardless of the number and timing of crashes.

• An implementation is bounded wait-free if there exists a bound B ∈ N such that every process

p that invokes an operation receives a matching response within B of its own (not necessarily

consecutive in the execution) steps.

In other words, there is no prefix of a low-level history in which a process invokes an operation

and executes B steps without obtaining a matching response.

Showing that an implementation is bounded wait-free consists in exhibiting an upper bound on the

number of steps needed to return from any operation. That upper bound is usually defined by a func-

tion of the number n of processes (e.g., O(n2)). One can similarly define notions like bounded solo

termination or bounded partial termination.

3.3.3. Liveness

Recall that safety properties (Section 2.5) are used to declare what it means for an implementation to

reach an undesired state. To show that an implementation satisfies a safety property P , it is sufficient to

check if each of its finite executions satisfies P .

In contrast, a liveness property ensures that the implementation eventually reaches some desired state.

More specifically, we say that P is a liveness property if any finite execution has an extension in P .

Hence, no matter what state our implementation is in, there is always a chance to reach a desired state

in some extension of the current execution. To show that an implementation satisfies a liveness property

P , we should thus show that all its infinite executions are in P .

Interestingly, every property can be represented as an intersection of a safety property and a liveness

property [78]. Linearizability is a safety property (Section 2.5). Wait-freedom, as we can easily see,

is a liveness property. Indeed, we can only violate wait-freedom in an infinite execution: every finite

execution in which an operation invoked by a given process has an extension in which the operation

returns. Similarly, non-blockingness and obstruction-freedom are also liveness properties. For example,

the only way to violate obstruction-freedom is to exhibit an execution in which a process takes infinitely

many steps without completing an invoked operation.

It is interesting to notice that bounded wait-freedom is, in fact, a safety property. Indeed, B-bounded

wait-freedom is violated in a finite execution where an operation does not return after B steps of the

process that invoked it. It is not difficult to see that B-bounded wait-freedom is prefix-closed and limit-

closed. Therefore, to prove that an implementation is, e.g., linearizable and B-bounded wait-free, it is

enough to consider its finite executions.

3.4. Linearizability and wait-freedom

3.4.1. A simple example

The algorithm described in Figure 3.2 is a simple wait-free linearizable implementation of a fetch-and-

increment (FAI object using an infinite array of test-and-set TAS objects T [1, . . . ,∞] and a snapshot

memory object My inc.

37

• The high-level object is the FAI. This object stores an integer value and exports one operation

fetch-and-increment(). The sequential specification of this operation basically increments the

value of the integer value and returns the previous value.

• The low-level objects used in the implementation include TAS objects. Each of these exports one

(primitive) operation test-and-set() that returns 0 or 1. The sequential specification of this opera-

tion guarantees that the first invocation of test-and-set() on the object returns 1 and all subsequent

invocations return 0. Intuitively, a TAS object allows a single process to distinguish itself from the

rest of the processes. Such objects are typically provided by many multi-core machines.

• The snapshot memory is also a low-level object used in the implementation. It can be seen as an

array of n registers, one for each process, such that each process pi can atomically write a value v
to its dedicated register with an operation update(i, v) and atomically read the content of the array

using an operation snapshot(). 2

Shared

T [1, . . . ,∞]: n-process TAS objects

My inc[1, . . . ,∞]: snapshot memory, initialized to 0

Local

entry, c (initially 0), S

operation fetch-and-increment():
c← c+ 1;

My inc.update(i, c);
S ← My inc.snapshot();
entry← sum(S);
while T [entry].test-and-set() 6= 0 do

entry← entry− 1;

return(entry− 1)

Figure 3.2.: Fetch-and-increment implementation: code for process pi

The algorithm in Figure 3.2 depicts the code executed by every process pi of the system. It works as

follows. To increment the value of the FAI object (i.e., to execute a fetch-and-increment() operation),

pi first increments its dedicated register in the snapshot memory My inc. Then pi takes a snapshot of

the memory and evaluates entry as the sum of all its elements. Then, starting from the T [entry] down

to 1, pi invokes operations test-and-set() until some TAS object returns 1. The index of this TAS object

minus 1 is then returned by fetch-and-increment() operation.

Intuitively, when pi evaluates its local variable entry to ℓ, at most ℓ processes have previously incre-

mented their positions and, thus, at least one TAS object in the array T [1, . . . , ℓ] is “reserved” for pi
(pi is one of these ℓ processes). Every process that increments its position in My inc later will obtain a

strictly higher value of entry. Thus, eventually, every operation obtains 1 from one of the TAS objects

and returns. Moreover, since a TAS object returns 1 to exactly one process, every returned value is

unique.

Notice that the number of steps performed by a fetch-and-increment() operation is finite but in general

unbounded (the implementation is not bounded wait-free). This is because an unbounded number of

increments can be performed by other processes in the time lag between a process pi increments it

2In Chapter 8, we show how snapshot memory can be implemented in a wait-free and linearizable manner using only read-

write registers.

38

position in My inc and the moment pi takes a snapshot of My inc. It is however not difficult to modify

the algorithm so that every operation performs O(n2) steps.

3.4.2. A more sophisticated example

Proving that a given implementation satisfies linearizability and wait-freedom can be extremely tricky

sometimes. To illustrate this, consider now the algorithm of Figure 3.3 that intends to implement an

unbounded FIFO queue. The sequential specification of this object has been given in Section 2.1 of

Chapter 2.

The algorithm is quite simple. The system we consider here is made up of producers (clients) and

consumers (servers) that cooperate through an unbounded FIFO queue. A producer process repeats

forever the following two statements:

1. Prepare a new item v;

2. Invoke the operation Enq(v) to deposits v in the queue.

Similarly, a consumer process repeats forever the following two statements:

1. Withdraw an item from the queue by invoking the operation Deq()

2. Consume that item.

If the queue is empty, then the default value nil is returned to the invoking process. (This default

value that cannot be deposited by a producer process.) We assume that no processing by the consumer

is associated with the nil value.

The algorithm depicted in Figure 3.3 relies on an unbounded array Q[0, . . . ,∞], where entry of the

array is initialized to nil and is used to store the items of the queue. Also, the implementation uses a

shared variable NEXT (initialized to 1) as a pointer to the next available slot of the array Q for a new

value to be deposited.

To enqueue an item to the queue, the producer first locates the index of the next empty slot in the array

Q, reserves it, and then stores the item in that slot. To dequeue a value, the consumer first determines the

last entry of the array Q that has been reserved by a producer. Then, it reads the elements of the array Q
in ascending order until it finds an item different from the default value nil. If it finds one, it returns it.

Otherwise, the default value is returned.

The variable NEXT is provided with two primitives denoted read() and fetch&add(). The invocation

NEXT.fetch&add(x) returns the value of NEXT before the invocation and adds x to NEXT. Similarly,

each entry Q[i] of the the array is provided with two primitives denoted write() and swap(). The invo-

cation Q[i].swap(v) writes v in Q[i] and returns the value of Q[i] before the invocation.

The execution of the read(), write(), fetch&add() and swap() primitives on the shared base objects

(NEXT and each variable Q[i]) are assumed to be linearizable. The primitives read() and write() are

implicit in the code of Figure 3.3 (they are in the assignment statements denoted “←”).

The algorithm does not use locks: no process can block other processes forever. Furthermore, each

value deposited in the array by a producer will be withdrawn by a swap() operation issued by a consumer

(assuming that at least one consumer is correct).

It is easy to see that the implementation is wait-free: every process completes each of its operations in

a finite number of its own steps: the number of steps performed by Enq() is two, and the number of steps

performed by Deq() is proportional to the queue size as evaluated in the first line of its pseudocode.

39

operation Enq(v):
in← NEXT.fetch&add (1);

Q[in]← v;

return ()

operation Deq():
last← NEXT− 1;

for i from 0 until last do

aux← Q[i].swap (nil);

if (aux 6= ⊥) then return (aux)

return (nil)

Figure 3.3.: Enqueue and dequeue implementations

But is the implementation linearizable? Superficially, yes: if no dequeue operation returns nil, we can

order operations based on the times when the corresponding updates of Q[] (a write performed by Enq()
or a successful swap performed by Deq()) takes place.

However, if a dequeue operation returns nil it is not always possible to find the right place for it in a

legal linearization. Consider for instance the following scenario:

1. Process p1 performs Enq(x). As a result, the value of NEXT is 1, and Q[0] stores x.

2. Process p2 starts executing Deq() and reads 1 in NEXT.

3. Process p1 performs Enq(y). The value of NEXT is now 2, Q[0] stores x, and Q[1] stores y.

4. Process p3 performs Deq(), reads 2 in NEXT, finds x in Q[0] and returns x. The value of Q[0] is

nil now.

5. Finally, p2 reads ⊥ in Q[0] and completes Deq() by returning nil.

In this execution: we have the following partial order on operations: p1.Enq(x) → p1.Enq(y) →
p3.Deq(x), and p1.Enq(x)→ p2.Deq(nil). Thus, there are only three possible ways to linearize p2.Deq(nil)(:
right after p1.Enq(x), right after p1.Enq(y) or right after p3.Deq(). In all three possible linearizations,

the queue is not empty when p2 invokes Deq(), and thus nil cannot be returned.

How to fix this problem? One solution is to sacrifice linearizability and not consider operations

returning nil in a linearization.

Another solution is to sacrifice wait-freedom and instead of returning nil in the last line of the Deq(),
repeat the same procedure (evaluating NEXT and going through the first NEXT elements in Q[]) over and

over until a non-⊥ value is found in Q[]. As long as a producer keeps adding items to the queue, every

Deq() operation is guaranteed to eventually return.

3.5. Summary

To reason about correctness of an object implementation, it is common to consider linearizability, as

well as some companion progress property. In this chapter, we studied three progress properties: solo-

termination (obstruction-freedom), partial-termination (non-blockingness) and global termination (wait-

freedom). All of these are liveness properties, precluding the usage of locks. The first of these properties

says that a process that eventually accesses an object alone (with no contention) will get responses

when invoking the object’s operation. The second property requires a response to be returned to at

least one of the correct processes even if there is contention. The last property, wait-freedom, is the

40

strongest. Responses should be returned to every correct process that invokes an operation, i.e., that

keeps executing low-level steps. In Chapter 14, we express other conditions on the executions in which

progress must be ensured in the form of generic adversaries.

Bibliographic notes

The notion of wait-freedom originated in the work of Lamport [66]. An associated theory was developed

by Herlihy [47].

The notion of solo-termination was presented implicitly in [32]. It has been introduced as a progress

property in [50] under the name obstruction-free synchronization, and then formalized in [8]. More

developments on obstruction-freedom can be found in [33]. The minimal knowledge on process failures

needed to transform any solo-terminating implementation into a wait-free one was investigated in [42].

Other progress conditions, including those that can be implemented with locks, are discussed in [54]. A

systematic perspective on progress conditions is presented in [55].

The algorithms in Figure 3.2 and Figure 3.3 were proposed by Afek et al. [2]. A blocking variant of

the algorithm of Figure 3.3 in which nil is never returned was given and proved correct by Herlihy and

Wing [56].

3.6. Exercises

1. Prove that bounded wait-freedom is a safety property.

2. Show that the algorithm sketched in the last paragraph of Section 3.4.2 indeed violates wait-

freedom.

41

Part II.

Read-write objects

43

4. Simple register transformations

The simplest objects that are usually considered in concurrent computing are registers, namely shared

storage objects that provide their users with two basic operations: read and write. For presentation

simplicity, and without loss of generality, we focus only consider registers that contain integers.

In the following, we shall describe how to wait-free implement registers ensuring some semantics

using registers ensuring weaker semantics. The picture to have in mind here is that where the weak

registers are provided in hardware and the stronger ones, implemented on top of the weaker ones, are

emulated in software.

4.1. Definitions

Different kinds of registers are usually considered, depending on:

(a) Their value range: the range of values the register can store. We typically consider, on the one

hand, registers that can contain binary values, i.e., only holding 0 or 1, also called binary registers,

or shared bits, and, on the other hand, registers that contain any value from an an infinite set, also

called multi-valued registers. A multi-valued register can be bounded or unbounded. A bounded

register is one whose value range contains exactly b distinct values, e.g., the values from 0 until

b− 1 where b is typically a constant integer by the processes. Otherwise the register is said to be

unbounded. A register that can contains b distinct values is said to be b-valued.

(b) Their access pattern, i.e., the number of processes that can read (resp., write in) the register, which

can vary from 1-writer 1-reader to multi-writer multi-reader. It is important to notice here that we

do not consider access patterns that change over time. A register is called single-writer, denoted

1W, (resp., single-reader, denoted 1R) if only one specific process, known in advance, and called

the writer (resp., the reader) can invoke a write (resp., read) operation on the register. A register

that can be written (resp., read) by multiple processes is called a multi-writer (resp., multi-reader)

register. Such a register is denoted MW (resp., MR). For instance, a binary 1WMR register is a

register that (a) can contain only 0 or 1, (b) can be read by all the processes but (c) written by a

single process.

(c) Their concurrency behavior, i.e., the correctness guarantees ensured when the register is accessed

concurrently. Registers that ensure linearizability are sometimes called atomic or linearizable

registers. But as we will discuss below, there are interesting forms of registers that provide weaker

correctness guarantees. We will consider two such forms, called safe and regular registers.

The concurrent behavior of a register. When accessed sequentially, the behavior of a register

is simple to define: a read invocation returns the last value written. When accessed concurrently, three

main variants have been considered. We overview them below.

Safety A read that is not concurrent with a write returns the last written value. This is the only property

ensured by a safe register. Such a register supports only a single writer. If this writer is concurrent

with a read, this read can return any value in the range domain of the register, including a value

45

that has never been written. A binary safe register can thus be seen as a bit flickering under

concurrency.

Regularity A read that is concurrent with a write returns the value written by that write or the value written by

the last preceding write. A regular register ensures this property, in addition to the safety property

above. A regular register also only supports a single writer.

It is important to notice that such a register can, if two consecutive (non-overlapping) reads are

concurrent with a write, returns the value being written (the new value) and then returns later the

previous value written (the old value). This situation is called the new/old inversion. It could

occur even if the two reads are issued by the same process, as depicted on Figure 4.1. A read that

overlaps several write operations can return the value written by any of these writes as well as the

value of the register before these writes.

Atomicity An atomic (linearizable) register is one that ensures linearizability. Such a register ensures the

safety and regularity properties above, but in addition, prevents the situation of read-write inver-

sion. The second read must succeed the first one in any linearization, and thus must return the

same or a “newer” value. Basically, considering Figure 4.1, if the first read of p1 returns 1, then

the second read of p1 has to return 1.

The weakest kind of shared register is one that can only store one bit of information, can be read by

a single process p and written by a single process q, while not ensuring any guarantee on the value read

by p when p and q access the register concurrently. On the other hand, the strongest kind of register is

the MWMW multi-valued atomic register.

An algorithm that implements a register of a given kind from a register of a weaker kind is sometimes

called register transformation or reduction, the former (high-level) register being “reduced” to the latter

one, used as a base object in the implementation. We also say that the high-level register is emulated by,

or constructed from, the lower-level one.

Before presenting register transformations, we will highlight first some fundamental techniques that

enable to argue about the correctness of a given transformation.

Write(1)

Read() 1p1

p2

Read() 0Read() 1Read() 1

Write(0)

Figure 4.1.: New/old inversion

4.2. Proving register properties

To prove that a register is safe, it is enough to consider the sequential case and ensure that a read returns

the last value written. Proving that a register is regular or atomic is more challenging. The very notion

of a reading function is in this context convenient.

Basically, a reading function is associated with a given history and maps every returned read operation

r(x) to some w(x) in that history. Without loss of generality, we assume that every history starts with a

sequential operation w(x0) that writes the initial value x0.

We say that a reading function π associated with a history H is regular if (here r and w with indices

denote read and write operations in H):

A0 : ∀ r: ¬(r →H π(r)). (No read returns a value not yet written.)

46

A1 : ∀ r, w in H: (w →H r)⇒
(

π(r) = w ∨ w →H π(r)
)

. (No read returns an overwritten value.)

We say that a reading function is atomic if it is regular and satisfies the following additional property:

A2 : ∀ r1, r2: (r1→H r2)⇒
(

π(r1) = π(r2) ∨ π(r1)→H π(r2)
)

. (No new/old inversion.)

It turns out that determining a regular reading function is exactly what we need to show that a history

can be produced by a regular register.

Theorem 4 H is a history of a 1WMR regular register if and only if it has a regular reading function π.

Proof Suppose that H is a history of a regular register. We define π as follows. For any r, a read

operation in H that returns x, we define π(r) as the last write operation w(x) in H such that ¬(r →H

w(x). Since by the definition of a regular register, x is the argument of the latest preceding write or a

concurrent write, it is easy to see that π satisfies properties A0 and A1 above.

Now suppose that H allows for a regular reading function. Let r be a complete read operation in H
that returns x. Then there exists a write w(x) in H that either precedes or is concurrent with r in H (A0)

and is not succeeded by a write that precedes r in H (A1). Thus, r returns either the last written or a

concurrently written value. ✷Theorem 4

Now we show that a history can be produced by an atomic register if and only it can be associated

with an atomic reading function.

Theorem 5 H is a history of an atomic 1WMR register if and only if it allows for an atomic reading

function π.

Proof Given a linearizable history H , we construct an atomic reading function as follows. Take any S,

a linearization of H and define π(r) as the last write that precedes r in S. By construction, π(r) satisfies

properties A0, A1 and A2.

Now suppose that H allows for an atomic reading function π. We use π to construct S, a linearization

of H , as follows.

We first construct S as the sequence of all writes that took place in H in the order of appearance.

Since we have only one writer, the writes are totally ordered. (In case the last write is incomplete, we

add to S its complete version.) Then we put every complete operation r immediately after π(r), making

sure that:

if π(r1) = π(r2) and r1→H r2, then r1→S r2.

Clearly, S is legal: the reading function guarantees that π(r) writes the value read by r, and thus every

read in S returns the last written value.

To show that→H⊆→S , we consider the following four possible cases. Here w1 and w2 denote write

operations, while r1 and r2 denote read operations.

• w1 →H w2. Since S preserves the real-time occurrence order of writes in H , we have w1 →S

w2.

• r1→H r2. By A2, we have π(r1) = π(r2) or π(r1)→H π(r2).

If π(r1) = π(r2), as r1 precedes r2 in H , the way S is constructed implies that r1 is ordered

before r2 in S and, thus, r1→S r2.

If π(r1)→H π(r2), then, since S preserves the real-time occurrence order of writes in H and r1
and r2 are placed just after π(r1) and π(r2), respectively, in S, we have r1→S r2.

47

• r1 →H w2. By A0, either π(r1) is concurrent with r1 or π(r1) →H r1. Since r1 →H w2 and

all writes are totally ordered, we have π(r1) →H w2. By construction of S, since π(r1) is the

last write preceding r1 in S, r1→S w2.

• w1→H r2. By A1 we have π(r2) = w1 or w1→H π(r2).

Suppose that π(r2) = w1. As r2 is placed just after π(r2) in S, we have π(r2) = w1→S r2.

Suppose that w1 →H π(r2). Again, by the way S is constructed, we have w1 →H π(r2) ⇒
w1 →S π(r2). Further, π(r2) →S r2 (r2 is ordered just after π(r2) in S), we obtain (by

transitivity of→S) w1→S r2.

Finally, since S contains all complete operations of H and preserves→H , H is indistinguishable from

S for every process, modulo the last incomplete read operation (if any).

Thus, S is a legal sequential history that is equivalent to a completion of H and preserves →H .

✷Theorem 5

We say that a history of a regular register commits a new/old inversion if it allows for a non atomic

reading function. Notice that a history may allow for multiple reading functions, some of them atomic

and some of them only regular. Theorems 4 and 5 imply that an atomic register can be seen as a regular

register that never suffers from new/old inversion.

Since linearizability is a local property, a set of 1WMR regular registers behave atomically if each

of them independently from the others is written by a single process and never exhibits no new/old

inversion.

4.3. Register transformations

In the following, we will present several register transformations, namely algorithms that, each, builds

a register R with certain properties, called a high-level register, from other registers, called low-level or

base registers, providing weaker properties. For example, we will show how to obtain a regular register

from safe base registers, 1WMR register from 1W1R registers, or multi-valued register from binary

registers.

The transformations we will present vary in their complexity, i.e., the number and size of the un-

derlying base registers. For example, the number of base registers used by a transformation may be

proportional to the number of readers and writers. Also, a transformation may assume base registers

of bounded capacity or unbounded base registers. Naturally, assuming only bounded registers is more

realistic.

In this and the subsequent chapters, we proceed as follows.

1. We first present two simple (bounded) algorithms. The first builds a 1WMR safe register out

of a number of 1W1R safe registers. The second builds a binary 1WMR regular register out of

a binary 1WMR safe register. Combining the two, we can implement a binary 1WMR regular

register using a number of binary 1W1R safe registers.

2. We then show how to transform a binary 1WMR register that provides certain semantics (safe,

regular or atomic) into a multi-valued 1WMR register that preserves the same semantics. The

three transformations we present here are all bounded. By combining the algorithms obtained so

far, we can implement a multi-valued 1WMR regular register using a number of binary 1W1R

safe registers.

48

3. Finally, in Chapter 5, we show how to transform a 1W1R regular register into a MWMR atomic

register. We go through three intermediate (unbounded) transformations here: from a 1W1R

regular register into a 1W1R atomic register, then to a 1WMR atomic register, and finally to a

MWMR register.

4.4. Two simple bounded transformations

We first focus on safe and regular registers. Recall that these kinds of registers assume a single writer

for each register. First we present an algorithm that uses single-reader registers, being safe or regular,

to emulate a multi-reader register. Second we show how a safe multiple-reader bit can be turned into a

regular one.

4.4.1. Safe/regular registers: from single reader to multiple readers

The idea here is to emulate the multi-reader register using several single-reader registers. We consider

a system of n processes and all are potential readers. In the transformation, described in Figure 4.2, the

constructed register R is built from n 1W1R base registers, denoted REG[1 : n], one per reader process.

A reader pi reads the base register REG[i] it is associated with, while the single writer writes to every

base register, one by one (in any order).

It is important to see that this transformation is bounded: it uses no additional control information

beyond the actual value stored, and each base register can be of the same capacity as the multiple-reader

register we want to build.

An interesting feature of this algorithm is that replacing the base safe 1W1R registers with regular

ones, we obtain an emulation of a regular 1WMR register.

operation R.write(v):
for all j in {1, . . . , n} do REG[j]← v;

return ()

operation R.read() issued by pi :

return (REG[i])

Figure 4.2.: From 1W1R safe/regular to 1WMR safe/regular (bounded transformation)

We show now that the algorithm is correct:

Theorem 6 Given one safe (resp., regular) 1W1R base register per reader, the algorithm described in

Figure 4.2 implements a 1WMR safe (resp., regular) register.

Proof Assume first that base 1W1R registers are safe. It follows directly from the algorithm that a read

of R (i.e., R.read()) that is not concurrent with a R.write() operation returns the last value deposited in

the register R. The obtained register R is consequently safe while being 1WMR.

Let us now suppose that the base registers are regular. We will argue that the high-level register R
constructed by the algorithm is a 1WMR regular one. Since a regular register is safe, the argument above

implies that R is safe. Hence, we only need to show that a read operation R.read() that is concurrent

with one or more write operations returns a concurrently written value or the last written value.

Let pi be any process that reads some value from R. When pi reads the base regular register REG[i]
pi returns (a) the value of a concurrent write on REG[i] (if any) or (b) the last value written to REG[i]
before such concurrent write operations. In case (a), the value v obtained is from a R.write(v) that is

49

concurrent with the R.read() of pi. In case (b), the value v obtained can either be (b.1) from a R.write(v)
that is concurrent with the R.read() of pi , or (b.2) from the last value written by a R.write() before the

R.read() of pi. Thus, the constructed register R is regular. ✷Theorem 6

p1

p2

pw

REG[2]← 2

return(REG[1])

REG[1]← 2

inv[R.write(2)] resp[R.write(2)]

return(REG[2])

Figure 4.3.: A counter-example

It is important to see that the algorithm of Figure 4.2 does not implement a 1WMR atomic register

even when every base register REG[i] is a 1W1R atomic register. This is because the transformation

may exhibit new/old inversion, even if the base registers preclude it. To show this, let us consider the

history described in Figure 4.3. The example involves one writer pw and two readers p1 and p2. Assume

the register R implemented by the algorithm contains initially value 1 (which means that we initially

have REG[1] = REG[2] = 1). To write value 2 in R, the writer first executes REG[1] ← 2 and then

REG[2] ← 2. Concurrently, p1 reads REG[1] and returns 2, and then p2 reads REG[2] and returns 1.

Clearly, there is new/old inversion here: the read by p1 returns the new value, and the subsequent read

by p2 returns the old value.

4.4.2. Binary multi-reader registers: from safe to regular

Now we emulate a regular binary register using a single safe binary register, i.e., construct a regular

bit out of a safe one. The algorithm is very simple, precisely because we want to implement a register

storing only one out of two values (0 or 1).

The difference between a safe and a regular register is only visible in the face of concurrency. That

is, the value to be returned in the regular case has to be a value concurrently written or the last value

written, while a safe register is allowed to return any value in the range (0 or 1 in our case). To illustrate

the issue, assume that the regular register is directly implemented using a safe base register: every read

(resp. write) on the high-level register is directly translated into a read (resp. write) on the base (safe)

register. Assume this register has value 0 and there is a write operation that writes the very same value

0. As the base register is only safe, it is possible that a concurrent read operation returns value 1, which

might have never been written.

The way to fix this problem is to allow the writer to actually write to the base register only if the writer

intends to change the value of the high-level register. This way a concurrent read can obtain any value in

{0, 1} (remember that only two values are possible), i.e., either the previously written or a concurrently

written value, which complies with the regularity semantics.

The transformation algorithm is presented in Figure 4.4. Besides a safe register REG shared between

the reader and the writer, the algorithm requires that the writer maintains a local variable prev val that

50

contains the most recent value that has been written in the base safe register REG. Before writing a value

v in the high-level regular register, the writer checks if this value v is different from the value in prev val

and, only in that case, v is written in REG.

operation R.write(v):
if (prev val 6= v) then REG← v;

prev val← v;

return ()

operation R.read() issued by pi :

return (REG)

Figure 4.4.: From a binary safe to a binary regular register (bounded transformation)

Theorem 7 Given a 1WMR binary safe register, the algorithm described in Figure 4.4 implements a

1WMR binary regular register.

Proof As the underlying base register is safe, a read that is not concurrent with a write returns the

last written value. As the underlying base register REG always alternates between 0 and 1, a read

concurrent with one or more write operations returns the value of the base register before these write

operations or one of the values written by such a write operation. Thus, the implemented register is

regular. ✷Theorem 7

Notice that the transformation does not work for registers that store 3 or more values. The transfor-

mation does not implement an atomic register either as it does not prevent a new/old inversion. Notice

also that If the safe base binary register is 1W1R, then the algorithm implements a 1W1R regular binary

register.

4.5. From binary to b-valued registers

This section presents three transformations from binary registers to multi-valued registers. A register is

b-valued if in the range of values it can store has cardinality b; we assume here that b > 2.

Our transformations preserve the semantics of the base registers in the following sense: if the base bits

have semantics X (safe, regular or atomic), then the resulting high-level (b-valued) registers also have

semantics X. Also, the transformations are bounded. There is a bound on the number of base registers

used, as well as on the amount of memory needed within each register.

4.5.1. From safe bits to safe b-valued registers

Overview. The first algorithm we present here uses a number of safe bits in order to implement

a multi-valued register R. We assume that the capacity of R is an integer power of 2, i.e., 2B for

some integer B. It follows that (with a possible pre-encoding if the b = 2B distinct values are not the

consecutive values from 0 until b − 1) the binary representation of a value stored in R requires exactly

B bits. Any combination of B bits thus identifies a value in the range of R (notice that this would not

be true if b was not an integer power of 2).

The algorithm uses an array REG[1 : B] of 1WMR safe bit registers to store the current value of R.

Given µi = REG[i], the binary representation of the current value of R is µ1 . . . µB . The corresponding

transformation algorithm is given in Figure 4.5.

51

operation R.write(v):
let µ1 . . . µB be the binary representation of v;

for all j in {1, . . . , B} do REG[j]← µj ;

return ()

operation R.read() issued by pi:
for all j in {1, . . . , B} do µj ← REG[j];
let v be the value whose binary representation is µ1 . . . µB ;

return (v)

Figure 4.5.: Safe register: from bits to b-valued register

Space complexity. As B = log2(b), the memory cost of the algorithm is logarithmic with respect

to the size of the value range of the constructed register R. This follows from the binary encoding of the

values of the high level register R.

Theorem 8 Given B 1WMR safe bits, the algorithm described in Figure 4.5 implements a 1WMR 2B-

valued safe register.

Proof A read of R that does not overlap a write of R returns the binary representation of the last value

that has been written into R and is consequently safe to return. A read of R that overlaps a write of R can

obtain any of b possible values whose binary encoding uses B bits. As every possible combination of

the B base bit registers represents one of the the b values that R can potentially contain (this is because

b = 2B), it follows that a read concurrent with a write operation returns a value that belongs to the range

of R. Consequently, R is a b-valued safe register, for b = 2B . ✷Theorem 8

It is interesting to notice that this algorithm does not implement a regular register R even when

the base bits are regular. For instance, a read changing the value of R from 0 . . . 0 to 1 . . . 1 (in binary

representation) can return any value, i.e., even one that was never written, if it overlaps a write operation.

The reader (the human, not the process) can check that imposing a specific order according to which the

array REG[1 : B] is accessed does not overcome this issue.

4.5.2. From regular bits to regular b-valued registers

Overview. We build a 1WMR regular b-valued register R (storing values 1, . . . , b) from regular bits

using “unary encoding”. Considering an array REG[1 : b] of 1WMR regular bits, the value v ∈ [1..b] is

represented by 0s in bits 1 to v − 1 and 1 in bit v.

The algorithm is described in Figure 4.6. The key idea is to write into the array REG[1 : b] in one

direction, and to read it in the opposite direction. To write v, the writer first sets REG[v] to 1, and then

“cleans” the array REG, which consists in setting the bits REG[v − 1] to REG[1] to 0. To read, a reader

traverses the array REG[1 : b] starting from its first entry (REG[1]) and stops as soon as it discovers an

index j such that REG[j] = 1. The reader then returns j as the result of the read operation. Notice that

a read proceeds through the “cleaned” part of the array in the ascending order, while a write updates the

array in the opposite direction, from v − 1 until 1.

It is also important to notice that, even when no write operation is in progress, it may happen that

several entries of the array are set to 1. Intuitively, only the smallest entry of REG set to 1 encodes the

most recently written value. The other entries can be seen as a partial evidence on past values.

The algorithm assumes that the register R has an initial value v0: initially, REG[j] = 0 for 1 ≤ j < v0,

REG[v0] = 1, and REG[j] = 0 or 1 for v0 < j ≤ b.
Two observations are in order:

52

operation R.write(v):
REG[v]← 1;

for j = v − 1 down to 1 do REG[j]← 0;

return ()

operation R.read() issued by pi:
j ← 1;

while (REG[j] = 0) do j ← j + 1;

return (j)

Figure 4.6.: Regular register: from bits to b-valued register

1. The “last” base register REG[b], once set to 1 will never change. Therefore, a reader once it

witnessed 0 in all entries of REG up to b− 1, might by default consider REG[b] to be 1.

2. The reader’s algorithm does not write to base registers. As a result, the algorithm may handle

an arbitrary number of readers, assuming that the base registers can maintain sufficiently many

readers.

Space complexity. The memory cost of the transformation algorithm is b base bits, i.e., it is linear

with respect to the size of the value range of the constructed register R. This is a consequence of the

unary encoding of these values.

Lemma 2 The algorithm of Figure 4.6 is wait-free. The value v returned by a read belongs to the set

{1, . . . , b}.

Proof A R.write(v) operation trivially terminates in a finite number of its own steps: the for loop only

goes through v iteration.

To see that a R.read() operation terminates in at most v iterations of the while loop, observe that

whenever the writer changes sets REG[x] from 1 to 0, it has previously set to 1 another entry REG[y]
such hat x < y ≤ b. Therefore, if a reader reads REG[x] and returns the new value 0, then a higher entry

of the array is set to 1.

As the running index of the while loop starts at 1 and is incremented each time the loop body is

executed, it follows that the loop always terminates, and the value j it returns is such that 1 ≤ j ≤ b.
✷Lemma 2

The previous lemma relies heavily on the fact that the high-level register R can contain up to b dis-

tinct values. If the range of R is unbounded, a R.read() operation might never terminate if the writer

continuously updates R with ever-increasing values. More precisely, suppose that the range of R is

unbounded and consider the following scenario. Let R.write(x) be the last write operation terminated

before a R.read() starts. Let the read operation proceed until it is about to read REG[x] and then sched-

ule a concurrent R.write(y), y > x) to set REG[x] from 1 to 0. Then we schedule the read of REG[x] by

the reader. As the register is unbounded, this scenario can repeat indefinitely, forcing the reader to take

infinitely many reads of REG.

Theorem 9 Given b 1WMR regular bits, the algorithm described in Figure 4.6 implements a 1WMR

b-valued regular register.

Proof Consider first a read operation that is not concurrent with any write, and let v be the last written

value. By the write algorithm, when the corresponding R.write(v) terminates, the first entry of the array

53

R.write(v0) R.write(v1) R.write(v2) R.write(vm)

R.read()

Figure 4.7.: A read with concurrent writes

that equals 1 is REG[v] (i.e., REG[x] = 0 for 1 ≤ x ≤ v− 1). Because a read traverses the array starting

from REG[1], then REG[2], etc., it necessarily reads until REG[v] and returns the value v.

Let us now consider a read operation R.read() that is concurrent with one or more write operations

R.write(v1), . . ., R.write(vm) (as depicted in Figure 4.7). Let v0 be the value written by the last write

operation that terminated before the operation R.read() starts. For simplicity we assume that each

execution begins with a write operation that sets the value of R to an initial value. As a read operation

always terminates (Lemma 2), the number of writes concurrent with the R.read() operation is finite.

By the algorithm, the read operation finds 0 in REG[1] up to REG[v−1], 1 in REG[v], and then returns

v. We are going to show by induction that each of these base-object reads returns a value previously or

concurrently written by a write operation in R.write(v0), R.write(v1), . . ., R.write(vm).

Since R.write(v0) sets REG[v0] to 1 and REG[v0 − 1] down to REG[1] to 0, the first base-object read

performed by the R.read() operation returns the value written by R.write(v0) or a concurrent write.

Now suppose that the read on REG[j], for some j = 1, . . . , v − 1, returned 0 written by the latest

preceding or a concurrent write operation R.write(vk) (k = 1, . . . ,m). Notice that vk > j: otherwise,

R.write(vk) would not touch REG[j]. By the algorithm, R.write(vk) has previously set REG[vk] to 1
and REG[vk−1] down to REG[j+1] to 0. Thus, since the base registers are regular, the subsequent read

of REG[j+1] performed within the R.read() operation can only return the value written by R.write(vk)
or a subsequent write operation that is concurrent with R.read().

By induction, we derive that the read of REG[v] performed within R.read() returns a value written by

the latest preceding or a concurrent write. ✷Theorem 9

4.5.3. From atomic bits to atomic b-valued registers

In Chapter 6, we give a direct construction of an atomic bit from three regular ones. However, if we use

this construction to replace regular bits with atomic ones in the algorithm in Figure 4.6 we do not get an

atomic b-valued register. Interestingly, a relatively simple modification of its read algorithm makes that

possible by preventing the new/old inversion phenomenon.

The idea is to equip the R.read() algorithm in Figure 4.6 with a “counter-inversion” mechanism.

Instead of returning position j where the first 1 was located in REG, the read operation traverses the

array again in the opposite direction (from j to 1) and returns the smallest entry containing value 1. The

resulting algorithm is presented in Figure 4.8.

Theorem 10 The algorithm in Figure 4.8 implements a 1WMR atomic b-valued register using b 1WMR

atomic bits.

Proof For every history of the algorithm, we define the reading function π as follows. Let r be a read

operation that returned v. Then π(r) is the latest write operation that updated REG[v] before the last

read of REG[v] performed by r, or the initializing write operation w0 if no such operation exists. Since

54

operation R.write(v):
REG[v]← 1;

for j from v − 1 step −1 until 1 do REG[j]← 0 ;

return ()

operation R.read() issued by pi:
j up← 1;

(1) while (REG[j up] = 0) do j up← j up + 1;

(2) j ← j up;

(3) for j down from j up− 1 step −1 until 1 do

(4) if (REG[j down] = 1) then j ← j down

return (j)

Figure 4.8.: Atomic register: from bits to b-valued register

r returns the index of REG containing 1, π(r) writes 1 to REG[v]. Note that π is well-defined, as it can

be derived from the atomic reading function of the elements of REG.

We now show that π is indeed an atomic reading function, i.e., it satisfies properties A0, A1 and A2
in Section 4.2. By the definition, π(r) is a preceding or concurrent write operation, therefore A0 is

satisfied.

To see that A1 is also satisfied, suppose, by contradiction, that π(r) → w(v′) → r(v) for some

write w(v′). By the algorithm, w(v′) sets REG[v] to 1 and then writes 0 to all REG[v − 1] down to

REG[1]. Thus, v′ < v, otherwise w(v′) would also write to REG[v] and π(r) would not be the latest

write updating REG[v] before r reads REG[v]. Since r reached REG[v], there exists a write w(v′′) that

set REG[v′] to 0 after w(v′) set it to 1 but before r read it. By the algorithm, before setting REG[v′] to 0
this write has set a REG[v′′] to 1 and, by the assumption, v′′ < v. Assuming that w(v′′) is the latest such

write, before reacing REG[v], r must have found REG[v′′] = 1—a contradiction.

To show that π satisfies A2, let us consider two read operations r1 and r2, r1→ r2, and suppose, by

contradiction, that π(r2)→ π(r1).

Let r1 return v and r2 return v′. Since π(r1) 6= π(r1), the definition of π implies that v 6= v′. Thus,

we should only consider the following cases:

(1) v′ > v.

In this case, r2 must have found 0 in REG[v] before finding 1 in REG[v′] and returning v′ > v.

Thus, a write w(v′′) such that v < v′′ < v′ and π(r2) → w(v′′) → (r1), has set REG[v] to 0
after π(v) set REG[v] to 1 but before r2 read it. Assume, without loss of generality, that v′′ is the

smallest such value. Since w(v′′) has set REG[v′′] to 1 before writing 0 to REG[v], r2 must have

returned v′′ < v′—a contradiction.

(2) v′ < v.

In this case, r1 reads 1 in REG[v], v > v′, and then reads 0 in all REG[v − 1] down to REG[1],
including REG[v′]. Since π(r2) has previously set REG[v′] to 1, another write operation must have

set REG[v′] to 0 after π(r2) set it to 1 but before r1 read it. Thus, when r2 subsequently reads 1
in REG[v′], π(r2) is not the last preceding write operation to write to REG[v′]—a contradiction

with the definition of π.

Hence, π is an atomic reading function and, by Theorem 5, the algorithm indeed implements a 1WMR

atomic register. ✷Theorem 10

55

4.6. Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [70].

Theorem 5, and the algorithms described in Figure 4.2, Figure 4.4, Figure 4.5 and Figure 4.6 are due

to Lamport [70]. The algorithm described in Figure 4.8 is due to Vidyasankar [94].

The wait-free construction of stronger registers from weaker registers has always been an active re-

search area. The interested reader can consult the following (non-exhaustive!) list where numerous

algorithms are presented and analyzed [12, 17, 22, 23, 46, 60, 72, 89, 95, 96, 97].

4.7. Exercises

1. Multi-valued regular registers.

Consider the implementation of an M -valued one-writer N -reader (1WNR) regular register (Fig-

ure 4.6).

a) In the code of write(v), is it possible to change the order of operations: first write 0 to

REG[v − 1], . . . ,REG[1] and then write 1 to REG[v]?

b) What if the writer writes 0 to REG[1], . . . ,REG[v − 1] in the ascending order? Justify your

answers (e.g., by presenting an execution that violates the properties of a regular register).

2. Multi-valued atomic registers.

a) In the algorithm in Figure 4.6, if we replace the regular binary registers with atomic ones,

would we get an implementation of an atomic multi-valued register?

b) If we replace the regular binary registers with atomic ones, would we get an implementation

of an atomic multi-valued register?

56

5. Unbounded register transformations

In this chapter we consider a simplistic case when unbounded base objects, i.e., registers of unbounded

capacity, can be used. This assumption allows us to use the sequence numbers: each written value is

associated with a sequence number that intuitively captures the number of write operations performed

up to now. A typical base register consists therefore of two fields: a data field that stores the value of the

register and a control field that stores the sequence number associated with it.

Of course, assuming base objects of unbounded capacity is not very realistic. In the coming Chapters 6

and 7 we discuss algorithms that implement bounded (i.e., storing values from a bounded range) atomic

registers using bounded safe registers.

5.1. 1W1R registers: From unbounded regular to atomic

We show in the following how to implement an 1W1R atomic register using a 1W1R regular register.

The use of sequence numbers make such a construction easy and helps in particular prevent the new/old

inversion phenomenon. Preventing this, while preserving regularity, means, by Theorem 5, that the

constructed register is atomic.

The algorithm is described in Figure 5.1. Exactly one base regular register REG is used in the im-

plementation of the high-level register R. The local variable sn at the writer is used to hold sequence

numbers. It is incremented for every new write in R. The scope of the local variable aux used by the

reader spans a read operation; it is made up of two fields: a sequence number (aux.sn) and a value

(aux.val).
Each time it writes a value v in the high-level register, R, the writer writes the pair [sn, v] in the base

regular register REG. The reader manages two local variables: last sn stores the greatest sequence

number it has even read in REG, and last val stores the corresponding value. When it wants to read

R, the reader first reads REG, and then compares last sn with the sequence number it has just read in

REG. The value with the highest sequence number is the one returned by the reader and this prevents

new/old inversions.

operation R.write(v):
sn← sn+ 1;

REG← [sn, v];
return ()

operation R.read():
aux← REG;

if (aux.sn > last sn) then last sn← aux.sn;

last val← aux.val;
return (last val)

Figure 5.1.: From regular to atomic: unbounded construction

Theorem 11 Given an unbounded 1W1R regular register, the algorithm described in Figure 5.1 con-

structs a 1W1R atomic register.

57

Proof The proof is similar to the proof of Theorem 5. We associate with each read operation r of the

high-level register R, the sequence number (denoted sn(r)) of the value returned by r: this is possible

as the base register is regular and consequently a read always returns a value that has been written with

its sequence number, that value being the last written value or a value concurrently written (if any).

Considering an arbitrary history H of register R, we show that H is atomic by building an equivalent

sequential history S that is legal and respects the partial order on the operations defined by→H .

S is built from the sequence numbers associated with the operations. First, we order all the write

operations according to their sequence numbers. Then, we order each read operation just after the write

operation that has the same sequence number. If two reads operations have the same sequence number,

we order first the one whose invocation event is first. (Remember that we consider a 1W1R register.)

The history S is trivially sequential as all the operations are placed one after the other. Moreover, S
is equivalent to H as it is made up of the same operations. S is trivially legal as each read follows the

corresponding write operation. We now show that S respects→H .

• For any two write operations w1 and w2 we have either w1 →H w2 or w2 →H w1. This is

because there is a single writer and it is sequential: as the variable sn is increased by 1 between

two consecutive write operations, no two write operations have the same sequence number, and

these numbers agree on the occurrence order of the write operations. As the total order on the

write operations in S is determined by their sequence numbers, it consequently follows their total

order in H .

• Let op1 be a write or a read operation, and op2 be a read operation such that op1 →H op2. It

follows from the algorithm that sn(op1) ≤ sn(op2) (where sn(op) is the sequence number of the

operation op). The ordering rule guarantees that op1 is ordered before op2 in S.

• Let op1 be a read operation, and op2 a write operation. Similarly to the previous item, we then

have sn(op1) < sn(op2), and consequently op1 is ordered before op2 in S (which concludes the

proof).

✷Theorem 11

One might think of a naı̈ve extension of the previous algorithm to construct a 1WMR atomic register

from base 1W1R regular registers. Indeed, we could, at first glance, consider an algorithm associating

one 1W1R regular register per reader, and have the writer writes in all of them, each reader reading its

dedicated register. Unfortunately, a fast reader might see a new concurrently written value, whereas a

reader that comes later sees the old value. This is because the second reader does not know about the

sequence number and the value returned by the first reader. The latter stores them locally. In fact, this

can happen even if the base 1W1R registers are atomic. The construction of a 1WMR atomic register

from base 1W1R atomic registers is addressed in the next section.

5.2. Atomic registers: from unbounded 1W1R to 1WMR

In Section 4.4.1, we presented an algorithm that builds a 1WMR safe/regular register from similar 1W1R

base registers. We also pointed out that the corresponding construction does not build a 1WMR atomic

register even when the base registers are 1W1R atomic (see the counter-example presented in Figure 4.3).

This section describes such an algorithm: assuming 1W1R atomic registers, it shows how to go from

single reader registers to a multi-reader register. This algorithm uses sequence numbers, and requires

unbounded base registers.

58

Overview. As there are now several possible readers, actually n, we make use of several (n) base

1W1R atomic registers: one per reader. The writer writes in all of them. It writes the value as well as a

sequence number. The algorithm is depicted in Figure 5.2.

We prevent new/old inversions (Figure 4.3) by having the readers “help” each other. The helping is

achieved using an array HELP[1 : n, 1 : n] of 1W1R atomic registers. Each register contains a pair

(sequence number, value) created and written by the writer in the base registers. More specifically,

HELP[i, j] is a 1W1R atomic register written only by pi and read only by pj . It is used as follows to

ensure the atomicity of the high-level 1WMR register R that is constructed by the algorithm.

• Help the others. Just before returning the value v it has determined (we discuss how this is

achieved in the second bullet below), reader pi helps every other process (reader) pj by indicating

to pj the last value pi has read (namely v) and its sequence number sn. This is achieved by having

pi update HELP[i, j] with the pair [sn, v]. This, in turn, prevents pj from returning in the future a

value older than v, i.e., a value whose sequence number would be smaller than sn.

• Helped by the others. To determine the value returned by a read operation, a reader pi first com-

putes the greatest sequence number that it has ever seen in a base register. This computation

involves all 1W1R atomic registers that pi can read, i.e., REG[i] and HELP[j, i] for any j. pi.
Reader pi then returns the value that has the greatest sequence number pi has computed.

The corresponding algorithm is described in Figure 5.2. Variable aux is a local array used by a reader;

its jth entry is used to contain the (sequence number, value) pair that pj has written in HELP[j, i] in order

to help pi; aux[j].sn and aux[j].val denote the corresponding sequence number and the associated

value, respectively. Similarly, reg is a local variable used by a reader pi to contain the last (sequence

number, value) pair that pi has read from REG[i] (reg.sn and reg.val denote the corresponding fields).

Register HELP[i, i] is used only by pi, which can consequently keep its value in a local variable.

This means that the 1W1R atomic register HELP[i, i] can be used to contain the 1W1R atomic register

REG[i]. It follows that the protocol requires exactly n2 base 1W1R atomic registers.

operation R.write(v):
sn← sn+ 1;

for all j in {1, . . . , n} do REG[i]← [sn, v];
return ()

operation R.read() issued by pi:
reg← REG[i];
for all j in {1, . . . , n} do aux[j]← HELP[j, i];
let sn max be max(reg.sn, aux[1].sn, . . . , aux[n].sn);
let val be reg.val or aux[k].val such that the associated seq number is sn max;

for all j in {1, . . . , n} do HELP[i, j]← [sn max, val];
return (val)

Figure 5.2.: Atomic register: from one reader to multiple readers (unbounded construction)

Theorem 12 Given n2 unbounded 1W1R atomic registers, the algorithm described in Figure 5.2 imple-

ments a 1WMR atomic register, where n is the number of readers.

Proof As for Theorem 5, the proof consists in showing that the sequence numbers determine a lineariza-

tion of any history H .

Considering an history H of the constructed register R, we first build an equivalent sequential history

S by ordering all the write operations according to their sequence numbers, and then inserting the read

59

operations as in the proof of Theorem 5. This history is trivially legal as each read operation is ordered

just after the write operation that wrote the value that is read. A reasoning similar to the one used in

Theorem 5, but based on the sequence numbers provided by the arrays REG[1 : n] and HELP[1 : n, 1 :
n], shows that S respects→H . ✷Theorem 17

5.3. Atomic registers: from unbounded 1WMR to MWMR

In this section, we show how to use sequence numbers to build a MWMR atomic register from n 1WMR

atomic registers (where n is the number of writers). The algorithm is simpler than the previous one. An

array REG[1 : n] of n 1WMR atomic registers is used in such a way that pi is the only process that can

write in REG[i], while any process can read it. Each register REG[i] stores a (sequence number, value)

pair. Variables X.sn and X.val are again used to denote the sequence number field and the value field

of the register X, respectively. Each REG[i] is initialized to the same pair, namely, [0, v0] where v0 is

the initial value of R.

The problem we solve here consists in allowing the writers to totally order their write operations. To

that end, a write operation first computes the highest sequence number that has been used, and defines

the next value as the sequence number of its write. Unfortunately, this does not prevent two distinct

concurrent write operations from associating the same sequence number with their respective values.

A simple way to cope with this problem consists in associating a timestamp with each value, where a

timestamp is a pair of a sequence number and the identity of the process that issues the corresponding

write operation.

The timestamping mechanism can be used to define a total order on all the timestamps as follows. Let

ts1 = [sn1, i] and ts2 = [sn2, j] be any two timestamps. We have:

ts1 < ts2
def
=

(

(sn1 < sn2) ∨ (sn1 = sn2 ∧ i < j)
)

.

The corresponding construction is described in Figure 5.3. The meaning of the additional local variables

that are used is, we believe, clear from the context.

operation R.write(v) issued by pi:
for all j in {1, . . . , n} do reg[j]← REG[j];
let sn max be max(reg[1].sn, . . . , reg[n].sn) + 1;

REG[i]← [sn max, v];
return ()

operation R.read() issued by pi:
for all j in {1, . . . , n} do reg[j]← REG[j];
let k be the process identity such that [sn, k] is the greatest timestamp

among the n timestamps [reg[1].sn, 1], . . . and [reg[n].sn, n];
return (reg[k].val)

Figure 5.3.: Atomic register: from one writer to multiple writers (unbounded construction)

Theorem 13 Given n unbounded 1WMR atomic registers, the algorithm described in Figure 5.3 imple-

ments a MWMR atomic register.

Proof Again, we show that the timestamps define a linearization of any history H .

Considering an history H of the constructed register R, we first build an equivalent sequential history

S by ordering all the write operations according to their timestamps, then inserting the read operations

60

as in Theorem 5. This history is trivially legal as each read operation is ordered just after the write

operation that wrote the read value. Finally, a reasoning similar to the one used in Theorem 5 but based

on timestamps shows that S respects→H . ✷Theorem 13

5.4. Concluding remark

The algorithms presented in this chapter assume that the sequence numbers may grow without bound,

hence the assumption of unbounded base registers. This appears like wasting resources in the case when

the values written to the implemented register are taken from a bounded range.

On approach to bound the capacity of base registers is based on timestamp systems. These techniques,

originally proposed by Dolev and Shavit [30] and Dwork and Waarts [31], emulate shared sequence

numbers taken from a fixes range, bounded by a function of the number of processes. A prominent

atomic register construction based on bounded timestamps was proposed by Li, Tromp, and Vitanyi [72].

In Chapters 6 and 7, we discuss an alternative, less generic but simpler, solution based on elementary

binary signalling between the writer and the reader in the one-reader case 6), and, additionally, between

the readers in the multiple-readers case (Chapter 7). Also, in Chapter 8, we discuss how to implement

the bounded atomic snapshot abstraction directly, using registers of bounded capacity.

5.5. Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [70].

Theorem 5, and the algorithms described in Figure 4.2, Figure 4.4, Figure 4.5 and Figure 4.6 are due

to Lamport [70]. The algorithm described in Figure 4.8 is due to Vidyasankar [94]. The algorithms

described in Figure 5.2 and 5.3 are due to Vityani and Awerbuch [98].

The wait-free construction of stronger registers from weaker registers has always been an active re-

search area. The interested reader can consult the following (non-exhaustive!) list where numerous

algorithms are presented and analyzed [12, 17, 22, 23, 46, 60, 72, 89, 95, 96, 97].

5.6. Exercises

1. Give an example of a history of a read-write atomic register that allows for a regular but not atomic

reading function.

2. Prove that the implementation of a one-writer one-reader (1W1R) atomic register is correct

(Transformation IV in the slides).

Hint: argue that to prove that the implementation is indeed linearizable, it is enough to show that

if read1 precedes read2, then read2 cannot return the value written before the value returned by

read1. Check the claim and the rest is trivial.

3. Consider the implementation of a one-writer N -reader (1WNR) atomic register (Transformation

V in the slides).

The code of read() involves writing the value just read back to RR[][]. Is it possible to devise an

implementation in which the reader does not write?

4. Give a multi-writer multi-reader (NWNR) atomic register implementation from 1W1R atomic

registers and sketch a proof of its correctness.

61

6. Optimal atomic bit construction

6.1. Introduction

In the previous chapter, we introduced the notions of safe, regular and atomic (linearizable) read/write

objects (also called registers). In the case of 1W1R (one writer one reader) register, assuming that there

is no concurrency between the reader and the writer, the notions of safety, regularity and atomicity

are equivalent. This is no longer true in the presence of concurrency. Several bounded constructions

have been described for concurrent executions. Each construction implements a stronger register from a

collection of weaker base registers. We have seen the following constructions:

• From a safe bit to a regular bit. This construction improves on the quality of the base object with

respect to concurrency. Contrarily to the base safe bit, a read operation on the constructed regular

bit never returns an arbitrary value in presence of concurrent write operations.

• From a bounded number of safe (resp., regular or atomic) bits to a safe (resp., regular or atomic)

b-valued register. These constructions improve on the quality of each base object as measured

by the number of values it can store. They show that “small” base objects can be composed to

provide ”bigger” objects that have the same behavior in the presence of concurrency.

To get a global picture, we miss one bounded construction that improves on the quality in the pres-

ence of concurrency, namely, a construction of an atomic bit from regular bits. This construction is

fundamental, as an atomic bit is the simplest nontrivial object that can be defined in terms of sequen-

tial executions. Even if an execution on an atomic bit contains concurrent accesses, the execution still

appears as its sequential linearization.

In this chapter, we first show that to construct a 1W1R atomic bit, we need at least three safe bits, two

written by the writer and one written by the reader. Then we present an optimal three-bit construction

of an atomic bit.

6.2. Lower bound

In Section 5.1, we presented the construction of a 1W1R atomic register from an unbounded regular

register. The base regular register had to be unbounded because the construction was using sequence

numbers, and the value of the base register was a pair made up of the data value of the register and the

corresponding sequence number. The use of sequence numbers makes sure that new-old inversions of

read operations never happen.

A fundamental question is the following: Can we build a 1W1R atomic register from a finite number

of regular registers that can store only finitely many values, and can be written only by the writer (of the

atomic register)?

This section first shows that such a construction is impossible, i.e., the reader must also be able to

write. In other words, such a construction must involve two-way communication between the reader and

the writer. Moreover, even if we only want to implement one atomic bit, the writer must be able to write

in two regular base bits.

63

6.2.1. Digests and sequences of writes

Let A be any finite sequence of values in a given set. A digest of A is a shorter sequence B that

“mimics” A: A and B have the same first and last elements; an element appears at most once in B; and

two consecutive elements of B are also consecutive in A. B is called a digest of A.

As an example let A = v1, v2, v1, v3, v4, v2, v4, v5. The sequence B = v1, v3, v4, v5 is a digest of A.

(there can be multiple digests of a sequence).

Every finite sequence has a digest:

Lemma 3 Let A = a1, a2, . . . , an be a finite sequence of values. For any such sequence there exists a

sequence B = b1, . . . , bm of values such that:

• b1 = a1 ∧ bm = an,

• (bi = bj)⇒ (i = j),

• ∀j : 1 ≤ j < m : ∃i : 1 ≤ i < n : bj = ai ∧ bj+1 = ai+1.

Proof The proof is a trivial induction on n. If n = 1, we have B = a1. If n > 1, let B = b1, . . . , bm be

a digest of A = a1, a2, . . . , an. A digest of a1, a2, . . . , an, an+1 can be constructed as follows:

- If ∀j ∈ {1, . . . ,m} : bj 6= an+1, then B = b1, . . . , bm, an+1 is a digest of a1, a2, . . . , an.

- If ∃j ∈ {1, . . . ,m} : bj = an+1, there is a single j such that bj = an+1 (this is because any

value appears at most once in B = b1, . . . , bm). It is easy to check that B = b1, . . . , bj is a digest of

a1, . . . , an, an+1. ✷Lemma 3

Consider now an implementation of a bounded atomic 1W1R register R from a collection of base

bounded 1W1R regular registers. Clearly, any execution of a write operation w that changes the value

of the implemented register must consist of a sequence of writes on base registers. Such a sequence of

writes triggers a sequence of state changes of the base registers, from the state before w to the state after

w.

Assuming that R is initialized to 0, let us consider an execution E where the writer indefinitely

alternates R.write(1) and R.write(0). Let wi, i ≥ 1, denotes the i-th R.write(v) operation. This means

that v = 1 when i is odd and v = 0 when i is even. Each prefix of E, denoted by E′, unambiguously

determines the resulting state of each base object X, i.e., the value that the reader would obtain if it read

X right after E′, assuming no concurrent writes. Indeed, since the resulting execution is sequential,

there exists exactly one reading function and we can reason about the state of each object at any point in

the execution.

Each write operation w2i+1 = R.write(1), i = 0, 1, . . ., contains a sequence of writes on the base

registers. Let ω1, . . . , ωx be the sequence of base writes generated by w2i+1. Let Ai be the corresponding

sequence of base-registers states defined as follows: its first element a0 is the state of the base registers

before ω1, its second element a2 is the state of the base registers just after ω1 and before ω2, etc.; its last

element ax is the state of the base registers after ωx.

Let Bi be a digest derived from Ai (by Lemma 3 such a digest sequence exists).

Lemma 4 There exists a digest B = b0, . . . , by (y ≥ 1) that appears infinitely often in B1, B2,

Proof First we observe that every digest Bi (i = 1, 2, . . .) must consists of at least two elements. Indeed

if Bi is a singleton b0, then the read operation on R applied just before wi and the read operation on

R applied just after wi observe the same state of base registers b0. Therefore, the reader cannot decide

when exactly the read operation was applied and must return the same value—a contradiction with the

assumption that wi changes the value of R.

64

Since the base registers are bounded, there are finitely many different states of the base registers that

can be written by the writer. Since a digest is a sequence of states of the registers written by the writer in

which every state appears at most once, we conclude that there can only be finitely many digests. Thus,

in the infinite sequence of digests, B1, B2, . . ., some digest B (of two or more elements) must appear

infinitely often. ✷Lemma 4

Note that there is no constraint on the number of internal states of the writer. Since there may be no

bound on the number of steps taken within a write operation, all the sequences Ai can be different, and

the writer may never perform the same sequence of base-register operations twice. But the evolution of

the base-register states in the course of Ai can be reduced to its digest Bi.

6.2.2. Impossibility result and lower bound

Theorem 14 It is not possible to build a 1W1R atomic bit from a finite number of regular registers that

can take a finite number of values and are written only by the writer.

Proof By contradiction, assume that it is possible to build a 1W1R atomic bit R from a finite set S of

regular registers, each with a finite value domain, in which the reader does not update base registers.

An operation r = R.read() performed by the reader is implemented as a sequence of read operations

on base registers. Without loss of generality, assume that r reads all base registers. Consider again

the execution E in which the writer performs write operations w1, w2, . . ., alternating R.write(1) and

R.write(0).

Since the reader does not update base registers, we can insert the complete execution of r between

every two steps in E without affecting the steps of the writer. Since the base registers are regular, the

value read in a base register X by the reader performing r after a prefix of E is unambiguously defined

by the latest value written to X before the beginning of r. Let λ(r) denote the state of all base registers

observed by r.

By Lemma 4, there exists a digest B = b0, . . . , by (y ≥ 1) that appears infinitely often in B1, B2, . . .,
where Bi is a digest of w2i+1. Since each state in {b0, . . . , by} appears in E infinitely often, we can

construct an execution E′ by inserting in E a sequence of read operations r0, . . . , ry such that for each

j = 0, . . . , y, λ(rj) = by−j . In other words, in E′, the reader observes the states of base registers

evolving downwards from by to b0.

By induction, we show that in E′, each rj (j = 0, . . . , y) must return 1. Initially, since λ(r0) = by and

by is the state of the base registers right after some R.write(1) is complete, r0 must return 1. Inductively,

suppose that rj (for some j, 0 ≤ j ≤ y − 1) returns 1 in E′.

R.write(1) operation

λ(rj) = by−j λ(rj+1) = by−j−1

from by−j−1 to by−j

rj rj+1

Figure 6.1.: Two read operations rj and rj + 1 concurrent with R.write(1)

Consider read operations rj and rj+1 (j = 0, . . . , y − 1). Recall that λ(rj) = by−j and λ(rj+1) =
by−j−1. Since digest B appears in B1, B2, . . . infinitely often, E′ contains infinitely many base-register

65

writes by which the writer changes the state of base registers from by−j−1 to by−j . Let X be the base

register changed by these writes.

Since X is regular, we can construct an execution E′′ which is indistinguishable to the reader from

E′, where rj are concurrent with a base-register write performed within R.write(1) in which the writer

changes the state of the base registers from by−j−1 to by − j (Figure 6.1).

By the induction hypothesis, rj returns 1 in E′ and, thus, in E′′. Since the implemented register R
is atomic and rj returns the concurrently written value 1 in E′′, rj+1 must also return 1 in E′′. But the

reader cannot distinguish E′ and E′′ and, thus, rj+1 returns 1 also in E′.

Inductively, ry must return 1 in E′. But λ(ry) = b0, where b0 is the state of base registers right after

some R.write(0) is complete. Thus, ry must return 0—a contradiction. ✷Theorem 14

Therefore, to implement a 1W1R atomic register from bounded regular registers, we must establish

two-way communication between the writer and the reader. Intuitively, the reader must inform the writer

that it is aware of the latest written value, which requires at least one base bit that can be written by the

reader and read by the writer. But the writer must be able to react to the information read from this bit.

In other words:

Theorem 15 In any implementation a 1W1R atomic bit from regular bits, the writer must be able to

write to at least 2 regular bits.

Proof Suppose, by contradiction, that there exists an implementation of a 1W1R atomic bit R in which

the writer can write to exactly one base bit X.

Note that every write operation on R that changes the value of X and does not overlap with any read

operation must change the state of X. Without loss of generality assume that the first write operation

w1 = R.write(1) performed by the writer in the absence of the reader changes the value of X from 0 to

1 (the corresponding digest is 0, 1).

Consider an extension of this execution in which the reader performs r1 = R.read() right after the

end of w1. Clearly, r1 must return 1. Now add w2 = R.write(0) right after the end of r1. Since the state

of X at the beginning of w2 is 1, the only digest generated by w2 is 1, 0.

Now add r2 = R.read() right after the end of w2, and let E be the resulting execution. Now r2 must

return 0 in E. But since X is regular, E is indistinguishable to the reader from an execution in which r1
and r2 take place within the interval of w1 and thus both must return 1—a contradiction. ✷Theorem 15

As we have seen in the previous chapter, there is a trivial bounded algorithm that constructs a regular bit

from a safe bit. This algorithm only requires one additional local variable at the writer. The combination

of this algorithm with Theorem 15 implies:

Corollary 1 The construction of a 1W1R atomic bit from safe bits requires at least 3 1W1R safe bits,

two written by the writer and one written by the reader.

As the construction presented in the next section uses exactly 3 1W1R regular bits to build an atomic

bit, it is optimal in the number of base safe bits.

6.3. From three safe bits to an atomic bit

Now we present an optimal construction of a high level 1W1R atomic bit R from three base 1W1R safe

bits. The high level bit R is assumed to be initialized to 0. It is also assumed that each R.write(v)
operation invoked by the writer changes the value of R. This is done without loss of generality, as the

writer of R can locally keep a copy v′ of the last written value, and apply the next R.write(v) operation

only when it modifies the current value of R.

The construction of R is presented in an incremental way.

66

6.3.1. Base architecture of the construction

The three base registers are initialized to 0. Then, as we will see, the read and write algorithms defining

the construction, are such that, any write applied to a base register X changes its value. So, its successive

values are 0, then 1, then 0, etc. Consequently, to simplify the presentation, a write operation on a base

register X, is denoted “change X”. As any two consecutive write operations on a base bit X write

different values, it follows that X behaves as regular register.

The 3 base safe bits used in the construction of the high level atomic register R are the following:

• REG: the safe bit that, intuitively, contains the value of the atomic bit that is constructed. It is

written by the writer and read by the reader.

• WR: the safe bit written by the writer to pass control information to the reader.

• RR: the safe bit written by the reader to pass control information to the writer.

6.3.2. Handshaking mechanism and the write operation

As we saw in the previous section, the reader should inform the writer when it read a new value v in the

implemented register. Otherwise, the uninformed writer may subsequently repeat the same digest of state

transitions executing R.write(v) so that the reader would be subject to new-old inversion. Therefore,

whenever the writer is informed that a previously written value is read by the reader, it should change

the execution so that critical digests are not repeated.

The basic idea of the construction is to use the control bits WR and RR to implement the handshaking

mechanism. Intuitively, the writer informs the reader about a new value by changing the value of WR so

that WR 6= RR. Respectively, the reader informs the writer that the new value is read by changing the

value of RR so that WR = RR. With these conventions, we obtain the following handshaking protocol

between the writer and the reader:

• After the writer has changed the value of the base register REG, if it observes WR = RR, it

changes the value of WR.

As we can see, setting the predicate WR = RR equal to false is the way used by the writer to

signal that a new value has been written in REG. The resulting is described in Figure 6.2.

operation R.write(v): %Change the value of R %

i change REG;

ii if WR = RR then change WR; % Strive to establish WR 6= RR %

return ()

Figure 6.2.: The R.write(v) operation

• Before reading REG , the reader changes the value of RR, if it observes that WR 6= RR. This

signaling is used by the writer to update WR when it discovers that the previous value has been

read.

As we are going to see in the rest of this chapter, the exchange of signals through WR and RR is also

used by the reader to check if the value it has found in REG can be returned.

67

6.3.3. An incremental construction of the read operation

The reader’s algorithm is much more involved than the writer’s algorithm. To make it easier to un-

derstand, this section presents the reader’s code in an incremental way, from simpler versions to more

involved ones. In each stage of the construction, we exhibit scenarios in which a simpler version fails,

which motivates a change of the protocol.

The construction: step 1 We start with the simplest construction in which the reader establishes

RR = WR and returns the value found in REG . (The line numbers are chosen to anticipate future

modifications of the algorithm.)

3 if WR 6= RR then change RR; % Strive to establish WR = RR %

4 val ← REG;

5 return (val)

We can immediately see that this version does not really use the control information: the value re-

turned by the read operation does not depend on the states of RR and WR. Consequently, this version

is subject to new-old inversions: suppose that while the writer changes the value of REG from 0 to 1
(line ii in Figure 6.2), the reader performs two read operations. The first read returns 1 (the “new” value

of R) and the second read returns 0 (the “old” value), i.e., we obtain a new-old inversion.

The construction: step 2 An obvious way to prevent the new-old inversion described in the previ-

ous step is to allow the reader to return the current value of REG only if it observes that the writer has

updated WR to make WR 6= RR since the previous read operation.

1 if WR = RR then return (val);
3′ change RR; % Strive to establish WR = RR %

4 val ← REG;

5 return (val)

Here we assume that the local variable val initially contains the initial value of R (e.g., 0). Checking

whether WR 6= RR before changing RR in line 3′ looks unnecessary, since the reader does not touch

the shared memory between reading WR in line 1 and in line 3, so we dropped it for the moment.

Unfortunately, we still have a problem with this construction. When a read is executed concurrently

with a write, it may happen that the read returns a concurrently written value but a subsequent read finds

RR 6= WR and returns an old value found in REG .

Indeed, consider the following scenario (Figure 6.3):

1. w1 = R.write(1) changes REG and starts changing WR.

2. r1 reads WR, finds WR 6= RR and changes RR, reads REG and returns 1.

3. r2 reads WR and still finds WR 6= RR (new-old inversion on WR).

4. w1 completes changing WR and returns.

5. w2 = R.write(0) starts changing REG .

6. r2 changes RR (establishing that RR 6= WR now), reads REG and returns 0.

68

7. r3 reads WR, finds WR 6= RR, reads REG and returns 1 (new-old inversion on REG).

8. w2 completes changing REG and returns.

In other words, we obtain a new-old inversion for read operations r2 and r3.

return 0

w1=write(1)

RR 6=WR

change WR

change RR

read 1

RR=WR

change REG

RR 6=WR

w2=write(0)

RR 6=WR

Writer

Reader

r1

change REG

return 1 r2

change RR

read 0 read 1

r3 return 1

Figure 6.3.: Counter example to step 2 of the construction: new-old inversion for r1 and r2

The construction: step 3 The problem with the scenario above is that read operation r2 changes

RR while it is not necessary: it previously evaluated WR 6= RR due to a new-old inversion on WR.

Thus, when r2 changes RR, it sets WR 6= RR again. Thus, the subsequent read r3 finds WR 6= RR

will be forced to return a value read in REG , and the value can be “old” due to the ongoing change in

REG .

A naı̈ve solution to this could be for the reader to check again if WR 6= RR still holds before

changing RR. By itself, this additional check will not change anything, since we could schedule this

check performed by r2 immediately after the first one and concurrently with w1’s change of WR. Thus,

additionally, the reader may first read REG and only then check if the condition WR 6= RR still holds

and change RR if it does.

1 if WR = RR then return (val);
2′ val ← REG;

3 if WR = RR then change RR;

5 return (val)

This way we fix the problem described in Figure 6.3 but face a new one. The value read in REG

may get overly conservative in some cases. Consider, for example, the scenario in Figure 6.4. Here read

operation r2 evaluates WR = RR and returns the old value 1, even though the most recently written

value is actually 0. This is because, the preceding read operation r1 changed RR to be equal to WR

without noticing that REG was meanwhile changed

The construction: step 4 One solution to the problem exemplified in Figure 6.4 is, as put in the

pseudocode below, to evaluate REG after changing RR and then check RR again. If the predicate

RR = WR does not hold after RR was changed and REG was read again, the reader returns the old

(read in line 2) value of REG . Otherwise, the new (read in line 4) value is returned.

1 if WR = RR then return (val);
2 aux← REG; % Conservative value %

3 if WR = RR then change RR;

69

return 1

w1=write(1)

Writer

Reader

change RR

w2=write(0)

RR 6=WR

read 1

RR 6=WR

r1 return 1 r2

Figure 6.4.: Counter example to step 3 of the construction: r2 returns an outdated value

4 val ← REG;

5 if WR = RR then return (val);
7 return (aux)

Unfortunately, there is still a problem here. The variable val evaluated in line 4 may be too conserva-

tive to be returned by a subsequent read operation that finds RR = WR in line 1.

Again, suppose that w1 = R.write(1) is followed a concurrent execution of r1 = R.read() and

w2 = R.write(0) as follows (Figure 6.5):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changing REG from 1 to 0.

3. r1 finds WR 6= RR, reads 0 from REG and stores it in aux (line 2), changes RR, reads 1 from

REG and stores it in val (the write operation on REG performed by w2 is still going on).

4. w2 completes its write on REG , finds RR = WR and starts changing WR.

5. r1 finds WR 6= RR (line 5), concludes that there is a concurrent write operation and returns the

“conservative” value 0 (read in line 2).

6. r2 = R.read() begins, finds RR = WR (the write operation on WR performed by w2 is still

going on), and returns 1 previously evaluated in line 4 of r1.

That is, r1 returned the new (concurrently written) value 0 while r2 returned the old value 1.

RR 6=WR RR=WR

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

change RR

read 1
to val

read 0
to aux

RR 6=WR

RR=WR change WR

r2 return 1return 0

Figure 6.5.: Counter example to step 4 of the construction: new-old inversion for r1 and r2

70

The construction: last step The complete read algorithm is presented in Figure 6.6. As we

saw in this chapter, safe base registers allow for a multitude of possible execution scenarios, so an

intuitively correct implementation could be flawed because of an overlooked case. To be convinced that

our construction is indeed correct, we provide a rigorous proof below.

operation R.read():
1 if WR = RR then return (val);
2 aux← REG;

3 if WR 6= RR then change RR;

4 val← REG;

5 if WR = RR then return (val);
6 val← REG;

7 return (aux)

Figure 6.6.: The R.read() operation

6.3.4. Proof of the construction

Theorem 16 Let H be an execution history of the 1W1R register R constructed by the algorithm in

Figures 6.2 and 6.6. Then H is linearizable.

Proof Let H be an execution history. By Theorem 5, to show that H is linearizable (atomic), it is

sufficient to show that there exists a reading function π satisfying the assertions A0, A1 and A2.

In order to distinguish the operations R.read() and R.write(v), denoted by r and w, from the read

and write operations on the base registers (e.g., “change RR”, “aux ← REG”, etc.), the latter ones

are called actions. The corresponding execution containing, additionally, the invocation and response

events on base registers is denoted L. Let→L denote the corresponding partial relation on the actions.

Moreover, r being a read operation and loc the local variable (aux or val) whose value is returned by

r (in line 1, 5 or 7), ρr denotes the last read action “loc← REG” executed before r returns:

• If r returns in line 7, ρr is the read action “aux← REG” executed in line 2 of r,

• If r returns in line 5, ρr is is the read action “val ← REG” executed in line 4 of r, and finally

• If r returns in line 1, ρr is is the read action “val ← REG” executed in line 4 or 6 of some

previous read operation.

Let φ be any regular reading function on REG . Thus, for each read action ρr we can define the

corresponding write action φ(ρr) that writes the value returned by r. The write operation that contains

φ(ρr) determines π(r). If there is no such write operation, i.e., ρr returns the initial value of REG , we

assume that π(r) is the (imaginary) initial write operation that writes the initial value and precedes all

actions in H .

Proof of A0. Let r be a complete read operation in H . By the definition of π, the invocation of the

write action φ(ρr) occurs before the response of ρr and, thus, the response of r in L, i.e., inv[π(ρr)] <L

resp[r]. Thus, inv[π(r)] <L inv[π(ρr)] <L resp[r] and ¬(resp[r] <L inv[π(r)]).

By contradiction, suppose that A0 is violated, i.e., r →H π(r). Thus, resp[r] <L inv[π(ρr)])—a

contradiction.

71

Proof of A1. Since there is only one writer, all writes are totally ordered and w→H π(r) is equivalent

to ¬(π(r)→H w).
By contradiction, suppose that there is a write operation w such that π(r) →H w →H r. If there are

several such write operations, let w be the last one before r, i.e., ∄ w′: w →H w′ →H r.

We first claim that, in such a context, ρr cannot be a read action of the read operation r (i.e., ρr /∈ r).

Proof of the claim. Recall that φ(ρr) ∈ π(r) (by definition). Let ω be the “change REG” action of

the operation w (ω ∈ w). By the case assumption, we obtain φ(ρr) →L ω. By the definition of φ(ρr),
we have ¬(ρr →L φ(ρr)) and, thus, ¬(ω →L ρr). Therefore, inv[ρr] <L resp[ω]. As ω ∈ w and

w →H r, we have inv[ρr] <L resp[w] <L inv[r]. As ρr started before r, and both are executed by the

same process, we have ρr /∈ r. End of the proof of the claim.

Since ρr /∈ r, by the algorithm in Figure 6.6, the read operation r returns a value in line 1, which

means that it has previously seen WR = RR. On the other hand, after the writer has executed ω within

π(r), it read RR in order to set WR different from RR if they were seen equal. As w →H r and ∄ w′:

w →H w′ →H r (assumption), it follows that RR has been modified by a read operation in line 3 before

the read operation r starts but after or concurrently with the read action on RR performed by w. Let r′

be that read operation; as there is a single process executing R.read(), we have r′ →H r.

Now we claim that ρr /∈ r′.
Proof of the claim: Let r′′ be the read operation that contains ρr. We show that r′′ 6= r′. We observe that

(Figure 6.7):

- If r′′ updates RR, it does it in line 3, i.e., before executing ρr (in line 4 or 6),

- inv[ρr] <L resp[ω] (since φ is a regular reading function and φ(ρr) precedes ω); the relation

between φ(ρr) precedes ω is indicated by a dotted arrow in Figure 6.7),

- w reads RR after having executed ω (code of the write operation).

It follows from these observations that if r′′ writes into RR, then it completes the write before w starts

reading RR. But r′ writes to RR either after or concurrently with the read of RR performed within w.

Therefore, r′′ 6= r′ and, thus, ρr /∈ r′. End of the proof of the claim.

But since the reader modifies RR within r′, it also executes line 4 of r′ (val ← REG) before execut-

ing r (this follows from the code of the read operation). But, as ρr /∈ r′, this read of REG action within

r′ contradicts the definition of ρr (according to which ρr is the last action “val ← REG” executed

before r starts), which completes the proof of the assertion A1.

ω

π(r)

write RR

r′

read RR

w

ρr

r
r′′

Figure 6.7.: ρr belongs neither to r nor to r′

Proof of A2. By contradiction, suppose that there exist r1 and r2, two complete read operations

in H , such that r1 →H r2 and π(r2) →H π(r1). Without loss of generality, we assume that if r1
returns at line 1, then ρr1 is the read action in line 6 in the immediately preceding read operation. Since

π(r2) 6= π(r1), we have ρr1 6= ρr2. Thus, either ρr1 →L ρr2 or ρr2 →L ρr1.

72

• ρr2 →L ρr1.

As ρr1 precedes or belongs to r1, and r1→H r2, we have resp[ρr1] <L inv[r2]. Combined with

the case assumption, the assertion implies ρr2 →L ρr1 →L r2, which contradicts the fact that ρr2
is the last “loc← REG” action executed before r2 started, where loc is val or aux. So, the case

ρr2 →L ρr1 is not possible.

• ρr1 →L ρr2.

By definition φ(ρr1) ∈ π(r1) and φ(ρr2) ∈ π(r2). As π(r2) →H π(r1), we have φ(ρr2) →L

φ(ρr1).

φ(ρr2) φ(ρr1)

ρr2ρr1

resp[ρr1] inv[ρr2] resp[φ(ρr1)]

WR is not modified

inv[φ(ρr1)]

Figure 6.8.: A new-old inversion on the regular register REG

Thus, we have φ(ρr2)→L φ(ρr1) and ρr1 →L ρr2 (Figure 6.8) which implies a new-old inversion

on the base regular register REG . But since φ is a regular reading function on REG , we have

¬(ρr1 →L φ(rhor1) and ¬(φ(ρr1) →L ρr2). Thus, both ρr1 and ρr2 have to overlap π(ρr1)
(Figure 6.8): inv[φ(ρr1)] <L resp[ρ1] and inv[ρ2] <L resp[φ(ρr1)]. As φ(ρr1) is a base action

that updates REG , and as REG and WR are both updated by the writer, the “value” of the base

register WR does not change while the writer is updating REG or, more formally:

Property P: all read actions on WR performed between resp[ρr1] and inv[ρr2] return the same

value.

We consider three cases according to the line at which r1 returns.

– r1 returns in line 7.

Then ρr1 is “aux← REG” in line 2 of r1. We have the following:

- Since ρr1 →L ρr2 and r1 returns in line 7, ρr2 can only be the read in line 6 of r1 or a later

read action.

- After having performed ρr1, r1 reads WR and if WR 6= RR, it sets RR = WR in line 3.

But r1 returns in line 7, after having seen RR different from WR in line 5 (otherwise, it

would have returned in line 5). Thus, r1 reads different values of WR after ρr1 (line 2 of

r1) and before ρr2 (line 6 of r1 or later). This contradicts property P above.

– r1 returns in line 5.

Then, ρr1 is “val ← REG” in line 4 of r1, and r1 sees RR = WR in line 5. Since ρr1 →L

ρr2, r2 does not return in line 1. Indeed, if r2 returns in line 1, the property P implies that

the last read on REG preceding line 1 of r2 is line 4 of r1, i.e., ρr1 = ρr2. Thus, r2 sees

RR 6= WR in line 1, before performing ρr2 is in line 2 or line 4 of r2. But r1 has seen

WR = RR in line 5, after having performed ρr1 in line 4—a contradiction with property P .

73

– r1 returns in line 1.

In that case, ρr1 is line 4 or line 6 of the read operation that precedes r1. Again, since

ρr1 →L ρr2, r2 does not return in line 1, from which we conclude that, before performing

ρr2, r2 sees RR 6= WR in line 1. On the other hand, r1 sees RR = WR in line 1 after

having performed ρr1 which contradicts property P and concludes the proof.

Thus, π is an atomic reading function. ✷Theorem 16

6.3.5. Cost of the algorithms

The cost of the R.read() and R.write(v) operations is measured by the the maximal and minimal

numbers of accesses to the base registers. Let us remind that the writer (resp., reader) does not read WR

(resp., RR) as it keeps a local copy of that register.

• R.write(v): maximal cost: 3; minimal cost: 2.

• R.read(): maximal cost: 7; minimal cost: 1.

The minimal cost is realized when the same type of operation (i.e., read or write) is repeatedly executed

while the operation of the other type is not invoked.

Notice we have assumed that if R.write(v) and R.write(v′) are two consecutive write operations,

we have v 6= v′. If the user issues two consecutive write operations with the same argument, the cost of

the second one is 0, as it is skipped and consequently there is no accesses to base registers.

6.4. Bibliographic notes

Lamport stated the problem of implementing atomic abstractions from weaker ones [70]. One of the

algorithms can be used to implement an unbounded atomic registers using unbounded regular ones. The

direct bounded construction of a binary atomic shared register discussed in this chapter was proposed

by Tromp [92, 93].

74

7. Atomic multivalued register construction

In Chapter 5, we described an implementation of an atomic 1WNR register from regular ones that uses

sequence numbers growing without bound and, thus, must assume base registers of unbounded capacity.

In this chapter, we propose a bounded solution. But let us first recall a few related constructions we

discussed earlier.

7.1. From single-reader regular to multi-reader atomic

In Chapter 6, we discussed how to construct an atomic bit from only three safe bits. One of the bits is

used for storing the value itself, and the other two are used for exchanging control signals between the

writer and the reader. In the one-reader case, we can turn a series of atomic 1W1R bits into an atomic

bounded multi-valued register using the simple transformation algorithm in Section 4.5.3. But how do

we construct a multi-reader multi-valued atomic register?

It is straightforward to get a regular bounded multi-valued multi-reader register from single-reader

ones (recall the algorithms in Section 4.4.1). This chapter describes how to construct an atomic one.

We begin with describing a simpler algorithm that, in addition to regular registers used to store the

written value itself, employs an atomic bit used for transmitting control signals from the writer to the

readers.

7.2. Using an atomic control bit

The construction of a multi-reader register using two regular registers REG1 and REG2 and an atomic

bit WFLAG is given in Figure 7.1.

operation R.write(v):
(1) WFLAG ← true ;

(2) REG1 ← v;

(3) WFLAG ← false;

(4) REG2 ← v;

operation R.read():
(5) val ← REG1;

(6) if ¬WFLAG then return(val);

(7) val ← REG2;

(8) return (val)

Figure 7.1.: From regular registers and an atomic control bit to an atomic register.

In the algorithm, the value is written twice: first in REG1 and then in REG2. Before writing to

REG1, the writer sets WFLAG to true to signal to the readers the beginning of a new write operation.

After writing to REG1, the writer sets WFLAG back to false .

A read operation reads REG1 and then checks WFLAG . If WFLAG contained false , then the

process returns the value previously read in REG1. If WFLAG contained true , then the process reads

and returns the value in REG2.

75

Intuitively, WFLAG = true means that there is a possibility that the value found earlier in REG1 is

written by a concurrent write operation and, therefore, a subsequent read operation might find the older

value in REG1, due to new-old inversion on REG1. To prevent, new-old inversion on the implemented

register, it is therefore necessary to return a more conservative value read in REG2.

Theorem 17 The algorithm in Figure 7.1 implements a 1WMR atomic register using one 1WMR atomic

bit and two 1WMR regular registers.

Proof Let H be a history of the algorithm in Figure 7.1, and let L be the corresponding execution.

Let π be any regular reading function defined on read operations on REG1 or REG2. We extend π
to the high-level read operations on the implemented register R as follows. For each high-level read r
returning the value found by a read operation ρ in REG1 or REG2 (in lines 5 or 7), let π(r) be the

high-level write operation w that contains π(ρ).

It is immediate from the construction that the resulting extension of π on high-level read operations is

regular. Indeed, the interval of every such π(ρ) belongs to the interval of w. Thus, ρ 6→L π(ρ) implies

r 6→H π(r), i.e., A0 is satisfied. Additionally, since every complete write operation contains writes on

both REG1 and REG2, A1 satisfied by π defined over reads of REG1 and REG2 implies that for any

w and r, we cannot have π(r)→H w →H r, i.e., A1 is satisfied.

Now we are going to prove A2. By contradiction, suppose that for two high-level operations r1 and

r2, we have r1 →H r2 and π(r2) →H π(r1). For i = 1, 2, let ρi be the read operation on REG1 or

REG2 that was used by ri to evaluate the returned value. Clearly, ρ1 →L ρ2.

The following cases are possible:

(1) Both ρ1 and ρ2 read REG1.

By property A1 of regular functions, π(ρ1) 6→L ρ2: otherwise we would have π(ρ2) →L

π(ρ1) →L ρ2, i.e., ρ2 would return an “overwritten” value. By property A0, ρ1 6→L π(ρ1).
Thus, given that ρ1 →L ρ2, π(ρ1) is concurrent with both ρ1 and ρ2.

By the algorithm, just before writing to REG1 in π(ρ1), operation π(r1) has set WFLAG to true .

Since π(ρ1) is concurrent with both ρ1 and ρ2, no write on WFLAG took place in the interval

between the response of ρ1 and the invocation of ρ2. Notice that r1 checks WFLAG during this

interval and, thus, true was the last written value on WFLAG when it is read within r1. Thus,

after having read REG1, r1 must have found true in WFLAG and returned the value read in

REG2—a contradiction with the assumption that the value read in REG1 is returned by r1.

(2) Both ρ1 and ρ2 read REG2.

Similarly, using A0 and A1, we derive that π(ρ1), updating REG2, is concurrent with both ρ1 and

ρ2. By the algorithm, just before writing to REG2, π(r1) has set WFLAG to false . Thus, before

reading REG2, r2 must have read false in WFLAG and returned the value read in REG1—a

contradiction with the assumption that the value read in REG2 is returned by r2.

(3) ρ1 reads REG2 and ρ2 reads REG1.

In π(r1), π(ρ1) is preceded by a write wr 1 on REG1: wr1 →L π(ρ1). By A0, ρ1 6→L π(ρ1).
Now relations wr 1 →L π(ρ1), ρ1 6→L π(ρ1), and ρ1 →L ρ2 imply wr 1 →L ρ2.

But, by our assumption, π(r2) →H π(r1) and, thus, π(ρ2) →L wr1, which, together with

wr 1 →L ρ2, implies π(ρ2)→L wr1 →L ρ2, violating A1—a contradiction.

(4) ρ1 reads REG1 and ρ2 reads REG2.

76

By the algorithm, after ρ1 has returned, r1 found false in WFLAG . After that r2 read REG1,

found true in WFLAG , and then read and returned the value in REG2. Let rf 1 and rf 2 be the

read operations of WFLAG performed within r1 and r2, respectively. Thus, ρ1 →L rf 1 →L

rf 2 →L ρ2.

Since WFLAG is atomic, there must be a write operation wf on WFLAG changing its value from

false to true (line 1) that is linearized between linearizations of rf 1 and rf 2 and, thus, wf 6→L rf 1
and rf 2 6→L wf . Let wr 1 and wr2 be the write operations on, respectively, REG1 and REG2 that

immediately precede wf . (Recall that wr1 and wr2 can belong to the initializing write operation

on R.)

Now we derive that π(ρ1) must be wr 1 or an earlier write on REG1. Otherwise, we would get

wf →L π(ρ1) which, combined with ρ1 →L rf 1 and wf 6→L rf 1, implies that ρ1 →L π(ρ1)—a

violation of A0.

On the other hand, by A1, there does not exist wr , a write operation on REG2, such that π(ρ2)→L

wr →L ρ2.

Similarly, π(ρ2) must be wr2 or a later write on REG2. Otherwise, we would get π(ρ2)→L wr2.

But wr2 →L wf , rf 2 6→L wf and rf 2 →L ρ2 imply wr2 →L ρ2. Thus, π(ρ2)→L wr2 →L ρ2—

a violation of A1.

Therefore, π(ρ1)→L π(ρ2) and, thus, π(r1) = π(r2) or π(r1)→H π(r2)—a contradiction.

Hence, π satisfied A2 and the algorithm indeed implements an atomic register. ✷Theorem 17

Notice that we only used the fact that WFLAG is atomic in case (4). By replacing WFLAG with

a regular register, or a set of registers providing the functionality of one regular register, we would

maintain atomicity in cases (1)-(3). However, as we will see in the next section, taking care of case (4)

incurs nontrivial changes in processing the remaining cases.

7.3. The algorithm

The bounded algorithm transforming regular multi-valued multi-reader registers into an atomic one is

presented in Figure 7.2. Notice that we replaced the atomic control bit WFLAG in the algorithm in

Figure 7.1 with several regular registers of bounded capacity:

• LEVEL = 0, 1, 2: a ternary regular register used by the writer to signal to the readers at which

“stage of writing” it currently is.

• FC [1, . . . , n]: an array of regular binary registers, each FC [i] is written by reader pi and by read

by the other readers.

• RC [1, . . . , n]: an array of regular binary registers, each RC [i] is written by reader pi and read by

the writer and other readers.

• WC [1, . . . , n]: an array of regular binary registers, written by the writer and read by the readers.

Intuitively, LEVEL = 1 corresponds to WFLAG = true , and LEVEL = 2 and LEVEL = 0
correspond to WFLAG = false in the algorithm in Figure 7.1. But LEVEL is a regular register now.

Hence, to handle the possible new-old inversion on LEVEL, the readers exchange information with each

other using the array FC [1, . . . , n] and with the writer using the arrays RC [1, . . . , n] and WC [1, . . . , n].

77

operation R.write(v):
(1) LEVEL← 1;

(2) REG1 ← v;

(3) LEVEL← 2;

(4) LEVEL← 0;

(5) REG2 ← v;

(6) for j = 1, . . . , n do

(7) lr ← RC [j];
(8) WC [j]← ¬lr ;

operation R.read() (code for reader pi):
(9) val ← REG1;

(10) lw←WC [i];
(11) if lw 6= RC [i] then

(12) FC [i]← false;

(13) RC [i]← lw;

(14) case LEVEL do

(15) 0: return(val);

(16) 2: FC [i]← true ; return(val);

(17) 1: for j = 1, . . . , n do

(18) lr ← RC [j];
(19) lf ← FC [j];
(20) lw ←WC [j];
(21) if (lr = lw) ∧ lf then

(22) FC [i]← true ;

(23) return (val);

(24) val ← REG2;

(25) return(val);

Figure 7.2.: From bounded regular registers to a bounded atomic register.

Theorem 18 The algorithm in Figure 7.2 implements a 1WMR atomic register using 1WMR regular

registers.

Proof Consider a history H and the corresponding execution L of the algorithm in Figure 7.2. As in

the proof of Theorem 17, we take any reading function π acting over read operations on base regular

registers, and then extend it to high-level read operations on the implemented register R as follows. For

each complete high-level operation r returning the value read by an operation ρ in REG1 (line 9) or

REG2 (line 24), let π(r) be the high-level write operation w that contains π(ρ). It is immediate that π,

as a function on high-level reads, is regular.

Now assume, by contradiction, that π is not atomic, i.e., there exist two high-level operations r1 and

r2, such that r1 →H r2 and π(r2) →H π(r1). For i = 1, 2, let ρi be the read operation on REG1 or

REG2 that was used by ri to evaluate the returned value.

For brevity, we introduce the following notation:

• w1 = π(ρ1) and w2 = π(ρ2);

• wr i,j denotes the write to REGj performed within wi (i = 1, 2, j = 1, 2), if any;

• rr i,j denotes the read of REGj performed within ri (i = 1, 2, j = 1, 2);

• wl i,j denotes j-th write to LEVEL performed within wi (i = 1, 2, j = 1, 2, 3), if any; note that

wl i,j writes the value j mod 3;

• rl i denotes the read operations on LEVEL, performed within ri (i = 1, 2).

78

Since every complete high-level write operation contains writes on both REG1 and REG2, it follows

that w2 immediately precedes w1. Otherwise, regardless of which register REG i (i = 1, 2) is read by

ρ2, we would have a write wr on REG i such that π(ρ2) →L wr →L π(ρ1) which, combined with

ρ1 6→L π(ρ1) and ρ1 →L ρ2 (our initial assumption), would imply π(ρ2) →L wr →L ρ2—a violation

of A1 for ρ2.

As in the proof of Theorem 17, we now should consider the four following cases:

(1) ρ1 reads REG2 and ρ2 reads REG1.

Since w2 →H w1, we have π(ρ2) →L wr1,1 →L π(ρ1). Now, by A0, ρ1 6→L π(ρ1), which,

together with ρ1 →L ρ2, implies π(ρ2)→L wr 1,1 →L ρ2—a violation of A1 for ρ2.

(2) Both ρ1 and ρ2 read REG2.

Properties A0 and A1 imply that π(ρ1) 6→L ρ2 and ρ1 6→L π(ρ1), i.e., π(ρ1) is concurrent

with both ρ1 and ρ2. Thus, no write on LEVEL takes place between the response of ρ1 and

the invocation ρ2. By the algorithm, immediately before updating REG2, w1 writes 0 to LEVEL.

Thus, before reading REG2, r2 must have read 0 in LEVEL and return the value read in REG1—

a contradiction.

(3) ρ1 reads REG1 and ρ2 reads REG2.

Just before updating REG1 in π(ρ1), w1 writes 1 to LEVEL in operation wl1,1, thus, wl1,1 →L

π(ρ1), ρ1 →L rl1, and ρ1 6→L π(ρ1) (property A0) imply wl1,1 →L rl1 →L rl2.

By the algorithm, r2 must have read 1 in LEVEL. Suppose that wl1,1 6= π(rl2), i.e., rl2 reads 1
written to LEVEL by another write operation wl . Since wl1,1 →L rl2, property A1 for rl2 implies

wl1,1 →L wl. By the algorithm, since wl writes 1, we have wl1,2 →L wl . But π(ρ2) →L wr1,2
(since w2 →H w1), rl2 6→L wl (A0 for rl2), and rl2 →L ρ2 (by the algorithm). Therefore,

π(ρ2)→L wr 1,2 →L ρ2—a violation of A1 for ρ2. Thus, π(rl2) = wl1,1.

Since rl1 →L rl2 (by the assumption), wl1,2 6→L rl2 (A1 for rl2), and wl1,2 →L wl1,3 (by the

algorithm), we have rl1 →L wl1,3. Also, since wl1,1 →L wr 1,1, ρ1 →L rl1 (by the algorithm),

and ρ1 6→L wr1,1 (A0 for ρ1), we have wl1,1 →L rl1. Furthermore, rl1 →L wl1,3: otherwise,

wl1,2 →L wl1,3 and rl1 →L rl2 would imply wl1,1 →L wl1,2 →L rl2—a violation of A1 for rl2.

Thus, by the algorithm, rl1 reads either 1 written by wl1,1 or 2 written by wl1,2. In both cases, r1
(executed, e.g., by reader pi) sets FC [i] to true before returning the value read by ρ1 (in lines 16

or 22).

Since ρ2 reads REG2, we have wr 1,2 6→L ρ2, otherwise we would violate A1 by having π(ρ2)→L

wr 1,2 →L ρ2. Thus, ρ1 6→L π(ρ1) and wr 1,2 6→L ρ2 imply that the writer performs no updates on

registers WC [i] in the interval between the response of ρ1 and before r2 finishes reading WC [i].
Note that, within this interval, r1 makes sure that RC [i] = WC [i] and then sets FC [i] to true .

Any subsequent operation rw performed by pi writing false in FC [i] or modifying RC [i] can

only take place if pi previously finds out that RC [i] 6= WC [i] (line 11), which cannot take place

before a write on WC [i] performed by the writer which, by the algorithm, must succeed wr1,2:

indeed, after r1 ensures RC [i] = WC [i] and sets FC [i] to true and before it sets FC [i] to false

and modifies RC [i] (lines 12 and 13), the writer must modify WC [i] which can only happen after

wr 1,2.

Thus, reads of RC [i] and FC [i] performed by r2 precede rw , and the values read by r2 satisfy

RC [i] = WC [i] and FC [i] = true (Figure 7.3). By the algorithm, r2 must then return the value

of REG1—a contradiction.

79

w2

Writer

w1

pi

pj

wl1,1 π(ρ1) wl1,2

r1

rl1

π(ρ2)

rl2

r2

ρ1

set

wr1,2

RC[i] = WC[i]
find FC[i] = true and

ρ2

set

FC[i] = trueRC[i] = WC[i]

Figure 7.3.: An execution in case (3): r2 finds out that RC [i] = WC [i], so it cannot return the value

read in REG2.

(4) Both ρ1 and ρ2 read REG1.

By A0, ρ1 6→L π(ρ1) and by A1, π(ρ1) 6→L ρ2, i.e., π(ρ1) is concurrent with both ρ1 and ρ2.

Hence, π(rl 1) = wl1,1, i.e., r1 reads 1 in LEVEL, and then returns the value of REG1 in line 23

before the response of π(ρ1).

We say that a read operation rk finishes its check-forwarding when it executes the last read oper-

ation on some WC [j] in line 20 before exiting the for loop starting in line 17. For any operation

op, we write cf k →L op if rk finishes its check-forwarding before the invocation of op.

Consider now any (high-level) read operation rk returning in lines 23 or 25 such that:

(1) rlk 6→L wl1,1, and

(2) cf k →L wl1,2.

Note that r1 satisfies these conditions. We establish a contradiction by showing that no such rk
can return in line 23.

For read operations rℓ and rm, we say that rℓ finishes check-forwarding before rm, and we write

cf ℓ →L cf m, if the last read operation of the check-forwarding phase of rℓ precedes the last read

operation of the check-forwarding phase of rm.

By contradiction, assume that there is a non-empty set R of read operations satisfying condi-

tions (1) and (2) above that return in line 23. Without loss of generality, let rk be any operation in

R, such that no other operation in R finishes its check-forwarding before rk.

By the algorithm, before returning in line 23, rk finds out that, for some reader pℓ, FC [ℓ] = true

and WC [ℓ] = RC [ℓ]. Let rt be the read operation performed by pℓ that, according to the reading

function π, wrote this value in FC [ℓ]. Let rf denote the read operation on FC [ℓ] performed within

rk (line 19), and let wf denote the write operation on FC [ℓ] performed within rt (lines 16 or 22),

i.e., π(rf) = wf . By the algorithm, before executing wf , rt read 1 or 2 in LEVEL.

First we are going to show that rt reads the value written in LEVEL by a write operation that

precedes w1. Since rf →L wl1,2 (rk ∈ R and the check-forwarding phases of reads in R satisfy

condition (2) above), rl t →L wf (by the algorithm), and rf 6→L wf (A0 for rf), we have rl t →L

wl1,2 that is rl t returns the value written by wl1,1 or an earlier write.

Suppose, by contradiction, that π(rl t) = wl1,1, i.e., rl t returns 1 written by wl1,1. By A0, we have

rl t 6→L wl1,1. Note that the fact that the last read operation of cf k succeeds rf , cf t →L wf (by

80

the algorithm), and rf 6→L wf (A0 for rf) imply cf t →L cf k. But cf t →L wf and rf →L wl1,2
imply cf t →L wl1,2, i.e., rt satisfies conditions (1) and (2), while cf t →L cf k—a contradiction

with the definition of rk.

Hence, rl t returns a value written by a write operation on LEVEL preceding w1. Since rt modified

FC [ℓ], rl t must have returned 1 or 2, and wl2,3 6→L rl t (otherwise, the only value that rl t can

return is 0). Note that, by the algorithm, any subsequent read operation by pℓ must set FC [ℓ] to

false (line 12) before modifying RC [ℓ] (line 13). Since rk first reads RC [ℓ] and then reads true in

FC [ℓ] written by wf , the value of RC [ℓ] read by rk must then be the value that rt has “ensured”,

i.e., written or read in its last operation on RC [ℓ]. Also, w2 reads RC [ℓ] after the invocation of rl t
and before rk read RC [ℓ], therefore it must read the same value of RC [ℓ].

Recall that after executing wl2,3, w2 ensures that WC [ℓ] 6= RC [ℓ]. Since, no succeeding update

on WC [ℓ] takes place before rk finishes its check-forwarding, the value of WC [ℓ] read by rk must

be the value that w2 has previously ensured (Figure 7.4).

w2

Writer

pk

pℓ

rt

w1

wl1,2

find WC[ℓ] 6= RC[ℓ]

rk

rlk

cftrlt

read 1 or 2 fromensure
a write preceding wl2,3WC[ℓ] = RC[ℓ]

ensure
WC[ℓ] 6= RC[ℓ]

wl2,3 wl1,1 π(ρ1)

cfk

Figure 7.4.: An execution in case (4): rk finds out that RC [ℓ] 6= WC [ℓ], so it cannot return the value

read in REG1.

Thus, rk will find WC [ℓ] 6= RC [ℓ]—a contradiction with the assumption that rk returns line 23

after finding out that FC [ℓ] = true and WC [ℓ] = RC [ℓ].

Thus, the algorithm in Figure 7.2 ensures A0, A1 and A2, and the algorithm indeed implements an

atomic register. ✷Theorem 18

7.4. Bibliographic notes

The construction of a multi-reader atomic register is due to Haldar and Vidyasankar [46].

7.5. Exercises

1. Show that the algorithm in Figure 7.1 does not implement an atomic register if we replace the

atomic bit WFLAG with a regular one.

81

Part III.

Snapshot objects

83

8. Collects and snapshots

Until now we discussed read-write abstractions in which a read operation returns the last value written

to a single specified register. It would also be convenient to have an abstraction that allows the reader to

get, in a single operation, the vector of the last values written by all the processes. As usual, we expect

the operation to be wait-free, and we explore several definitions of the “last written value”. We start

with from the weaker collect object, and then proceed to the stronger snapshot and immediate snapshot

objects.

8.1. Collect object

A collect object exports the operation store() that is used to post values and the operation collect()
that returns a view, a collection of “most recent” values posted so far. More precisely, a view V is an

n-vector, with one value per process. Intuitively, store(v) is invoked by process pi to replace the value

in position i of the view with v. If no value has been posted by pi so far, the view returned by a collect()
operation contains ⊥ at position i.

8.1.1. Definition and implementation

A collect object can be seen as an array of n elements. Each element i can be updated by process i
using the store() operation. An evaluation of the content of the array can be obtained using the collect()
operation: each position i of the returned n-vector, called a view, contains the argument of a concurrent

store operation or the argument of the latest store operation of pi.
For simplicity, we assume that every value written by a given process pi, including the initial value

in position i, is unique. This way the value at position i in a view V returned by a collect operation is

associated with a unique store operation si by pi that has written that value, and we simply write si ∈ V
(the initial value ⊥ the view is associated with an artificial “initializing” store operation performed by

pi in the beginning). We also say that view V is contained in a view V ′, and we write V ≤ V ′, if for all

j, V [j] is written before V ′[j]. We write V < V ′ if V ≤ V ′ and V 6= V ′.

To define what does it mean for a collect object to behave correctly, consider a history H of events

inv [store()], resp[store()], inv [collect()] resp[collect()] issued by the processes. Recall that <H de-

notes the total order on the events in H and→H denoted the real-time order on the operations in H . As

usual, we assume that H is well-formed: no process invokes a new operation on the collect object be-

fore its previous operation returns. Thus, any two operations invoked by a given process in H are related

by →H . Every history H of invocations and responses on a collect object must satisfy the following

properties (here C denotes a collect operation and si denotes a store operation of process pi):

B0 : For each collect operation C that returns V , and each si ∈ V : C¬ →H si. (No collect returns a

value not yet written.)

B1 : For each collect operation C that returns V , store operations s and s′ by process pi, such that

s′ ∈ V : (s→H C)⇒ (s = s′ ∨ s′ →H s′). (No collect returns an overwritten value.)

B2 : ∀ V, V ′ returned by C,C ′: (C →H C ′) ⇒ (V ≤ V ′). (Every collect contains all preceding

ones.)

85

A straightforward implementation of a collect object maintains n atomic registers, REG [1], . . . ,REG [n],
one per process. To store a value, pi simply writes it to REG [i]. To collect the content, pi reads

REG [1], . . . ,REG [n] in any order. We can construct a collect reading function as a composition of cor-

responding atomic reading functions π1, . . . , πn: for each collect operation, define π(C)[i] = πi(r
C
i),

where rCi is the read operation on REG [i] performed within C . The reader can easily see that the

resulting reading function satisfies properties B0–B2 above.

8.1.2. A collect object has no sequential specification

An abstraction A has a sequential specification S , if its behavior can be expressed through a set of

sequential histories in S . Formally:

• Every implementation of A is an atomic implementation of S , and

• Every atomic implementation of S is an implementation of A.

Note that the second property implies that every sequential history of S should be a history of A. If an

abstraction A has a sequential implementation, we say that A is an atomic object.

Lemma 5 Collect is not an atomic object.

Proof Suppose, by contradiction, that the collect abstraction has a sequential specification S .

Consider the execution history in Figure 8.1. Here the collect() operation issued by p1 is concurrent

with two store operations issued by p2 and p3. The history could have been exported, for example, by

an execution of the simple algorithm described above (Section 8.1.1), in which p1, within its collect()
operation, reads REG [2] before the write on REG [2] performed by p2 and REG [3] after the write on

REG [3] performed by p3.

By our assumption, the history should be atomic with respect to S . We recall that any linearization

of H should respect the real-time order on operations and, thus, we should put [store(v) by p2] before

[store(v′) by p3] in any linearization of H . We establish a contradiction by showing that there is no way

to find a place for the collect() operation in any such linearization.

Suppose that S allows placing the collect() operation before store(v′) by p3. Thus, S contains a

sequential history that violates property B0 (the collect operation returns a value which is not written

yet).

Now suppose that S allows placing the collect() operation after store(v′) by p3. This results in a

history that violates property B1 (the collect operation returns an overwritten value).

In both cases, S contains a history that does not respect the properties of collect. ✷Lemma 5

Note that the proof will hold even for a weaker abstraction that only satisfies B0 and B1: a collect

abstraction would not have a sequential specification even without the requirement that any collect op-

eration should contain all preceding collect operations.

p1

p2

⊥

⊥

⊥

collect()→ [⊥,⊥, v′]

p3
store(v′)

store(v)

Figure 8.1.: A collect object has no sequential specification

86

8.2. Snapshot object

One of the reasons why the collect object cannot be captured by a sequential specification is that it allows

concurrent collect operations to return views that are not “ordered”, i.e., not related by containment.

In this chapter, we introduce an “atomic restriction” of collect: a snapshot object that exports two

operations: update() and snapshot (). The snapshot () operation returns a vector of n values (one per

process). The value in position i of the vector contains the argument of the last preceding or a concurrent

update() operation executed by process pi.

8.2.1. Definition

In every history H , a snapshot object satisfies properties B0–B2 of collect (Section 8.1.1), where store

and collect are replaced with update and snapshot , respectively, plus the following two properties:

B3 For any two views V and V ′ obtained by snapshot operations, (V ≤ V ′) ∨ (V ′ ≤ V).

B4 For any two updates u and u′, where u is performed by a process pi, and any view V obtained by

a snapshot operation, if u′ ∈ V and u→H u′, then V contains u or a later update at position i.

In other words, non-concurrent updates cannot be observed by snapshot operations in the opposite

order: new-old inversion on the level of snapshot and updates is not allowed.

If snapshot operations S and S′ return views V and V ′, respectively, such that V ≤ V ′, we say that S
is contained in S′, and write S ≤ S′. Thus, B3 implies that any two snapshot operations are related by

containment.

8.2.2. The sequential specification of snapshot

The sequential specification of type snapshot is defined as a set of sequential histories of update and

snapshot operations. In every such sequential history, each position i of the vector returned by every

snapshot operation contains the argument of last preceding update operation of pi (if any, or the initial

value⊥ otherwise). Note that, unlike the operational definitions of collect and snapshot objects proposed

above, the definition of the sequential snapshot type is valid even if we do not assume that every value

written by a given process is unique.

Intuitively, a concurrent implementation of the snapshot type gives the illusion of update and snap-

shot operations taking place instantaneously. We show that this type indeed captures the behavior of a

snapshot object.

Lemma 6 The snapshot abstraction is atomic (with respect to the snapshot type).

Proof Consider a finite history H of a snapshot implementation. Recall that H satisfies properties

B0–B2 of collect (where store and collect are replaced with update and snapshot), plus B3 and B4.

We construct a linearization L of H as follows. First we order all complete snapshot operations in H ,

based on the ≤ relation, which is possible by property B3.

Let update(v) = U be an operation performed by pi. U is then inserted in L just before the first

snapshot operation that returns v or a later value in position i, or at the end of the sequence if there is no

such a snapshot. After having done this for every update, we obtain a sequence [U0], S1, [U1], S2, [U2],
. . ., Sk, [Uk], where each [Uj] is a (possibly empty) sequence of update operations U such that snapshot

Sj returns values older that written by U and Sj+1 returns the value written by U or a later value. Now

we rearrange elements of each [Uj] so that the real-time order is respected. This is possible since the

real-time order is acyclic.

87

Now we show that the resulting linearization L respects the order →H . Consider two operations op
and op′, such that op→H op′. Three cases are possible:

• Both op and op′ are update operations. Let op and op′ belong to [Uℓ] and [Um], respectively. If

ℓ < m, op→L op′, as [Uℓ] precedes [Um] in L. If ℓ = m, L), then op→L op′, as L preserves the

real-time order of H in each [Um].

Suppose now that ℓ > m. But, by B4, Sm+1 contains op′ and any update that precedes it,

including op. By the construction of L, op′ cannot belong to Uℓ—a contradiction.

• Both op and op′ are snapshot operations that return views V and V ′, respectively. If op′ is in-

complete, then it does not appear in L. If op′ is complete, then by B2, V ≤ V ′. Since L orders

snapshots based on the ≤ relation, if op′ appears in L, we have op→L op′ in L.

• op is an update and op′ is a snapshot. By B1, op′ returns the value written by op or a later value,

and, by the construction of L and B3, op→L op′.

• op is a snapshot and op′ is an update. By B0, the value written by op′ does not appear in the result

of op. By the construction of L, op→L op′.

Thus, any snapshot object is an atomic implementation of the snapshot type.

Now consider a history H of a atomic implementation of the snapshot type. We are going to show

that H satisfies properties B0 − B4. Let L be a linearization of H . Thus, L is a legal (with respect to

the snapshot type) sequential history, that is equivalent to a completion of H and respects the real-time

order in H . In particular, L contains every complete operation in H .

• Suppose that a snapshot operation S returns a value v at position i in H . Since L is legal, v is the

value written by the last update u of pi that precedes S in L. Since L respects the real-time order,

S cannot precede u in H , and, thus, B0 is ensured in H .

• Suppose an update u precedes a snapshot S in H . Since L respects the real-time order of H , u
precedes S also in L. Since L is legal, S returns the value written by u or a later value at the

corresponding position and, thus, B1 is ensured in H .

• Suppose a snapshot S1 precedes a snapshot S2 in H . Since L respects the real-time order of H ,

S1 precedes S2 also in L. Legality of L implies that S1 ≤ S2 and, thus, B2 is ensured in H .

• All complete snapshot operations appear in L and, since L is legal, are related by≤: B3 is ensured

in H .

• Suppose that an update u1 precedes an update u2 and a snapshot S returns the value written by

u2. Since L respects →H and is legal, we have u1 →L u2 and u2 →L S. Thus, u1 →L S and,

since L is legal, S returns the value written by u1 or a later value at the corresponding position:

B4 is ensured in H .

Thus, any atomic implementation of the snapshot type is indeed a snapshot object. ✷Lemma 6

8.2.3. Non-blocking snapshot

We start with a simple non-blocking snapshot implementation that only guarantees that at least one

correct process completes each of its operations. The construction assumes that the underlying base

registers can store values of arbitrary (unbounded) size, i.e., we may associate ever-growing sequence

88

operation update(v) invoked by pi:
sni := sni + 1 { local sequence number generator }
REG [i] := [v, sni] { store the pair }

Figure 8.2.: Update operation

operation snapshot ():
1 aa := REG .scan();
2 repeat forever

3 bb := REG .scan();
4 if (aa = bb) then return (aa.val); { return the vector of read values }
5 aa := bb

Figure 8.3.: Snapshot operation

numbers with every stored value. Then we turn the construction into an unbounded wait-free one.

Finally, we present a wait-free snapshot implementation that uses bounded memory.

Our n-process snapshot implementation uses an array of atomic registers REG []. Each value that

can be stored in a register REG [i] is associated with a sequence number that is incremented each time

a new value is stored. Each REG [i] consists of two fields, denoted REG [i].sn and REG [i].val. The

implementation of update() is presented in Figure 8.2. Here sni is a local variable, initially 0, that pi
uses to generate sequence numbers.

In an update operation, process pi simply writes the value, together with its sequence number, in the

corresponding register. To ensure that the result of every snapshot operation is consistent, i.e., contains

the most recent the implementation uses the “double scan” technique: the process keeps reading registers

REG [1, . . . , n] until two consecutive collects return identical results. The result of the last scan is then

returned by the snapshot operation.

The scan() function asynchronously reads the last (sequence number, data) pairs posted by each pro-

cess:

function REG .scan():
for j ∈ {1, . . . , n} do

R[j] := REG [j];
return (r)

Theorem 19 The algorithm in Figures 8.2 and 8.3 is a non-blocking atomic snapshot implementation.

Proof To prove that the implementation is non-blocking, consider any infinite execution of the algo-

rithm.

The update operation terminates in only one base-object step. Suppose now that a snapshot operation

performed by a correct process pi never terminates. By the algorithm, pi thus executes infinitely many

scans of REG . The only reason not to return in line 4 is to find out that one of the positions in REG has

changed since the last scan. Thus, for every two consecutive scan operations C1 and C2 executed by pi,
another process pj executes an update operation U such that write to REG [j] in U takes place between

the read of REG [j] in C1 and the read of REG [j] in C2. Since there are only finitely many processes,

at least one process performs infinitely update operations concurrently with the snapshot operation of

89

pi. Thus, in every infinite execution of the algorithm, at least one correct process completes every its

operation. So the implementation is indeed non-blocking.

Now we show that the implementation is linearizable with respect to the snapshot type. Let E be any

finite execution of the algorithm and H be the corresponding history. Consider any complete snapshot ()
operation in E. Let C1 and C2 be its last two scans. By the algorithm, C1 and C2 return the same result.

Now we choose the linearization point of the snapshot operation to be any point in E between the

response of C1 and the invocation of C2 (see example in Figure 8.4). Otherwise, if a snapshot operation

does not return in E, we remove the operation from our completion of the corresponding history H .

Consider now an update(v) operation executed by a process pi in E. We linearize the operation at

the point when it performs a write on REG [i] in E (if it does not, we remove it from the completion of

H).

Let L be the resulting linearization of H , i.e., the sequential history where operations appear in the

order of their linearization points in E. By the construction, L is equivalent to a completion of H . Also,

since each operation is linearized within its interval in E, L respects the real-time order of H . We show

that L is legal, i.e., at every position i, every snapshot operation in L returns the value written by the

latest preceding update of pi.

Let S be a snapshot operation in L, and let C1 and C2 be the two last scans of S. For each pi, let ui
be the last update operation of pi preceding S in L. Recall that ui is linearized at the write on REG [i]
and S is linearized between the response of C1 and the invocation of C2. Since, by the algorithm, C1

and C2 read the same value in REG [i], no write on REG [i] takes place between the read of REG [i]
performed within C1 and the read of REG [i] performed within C2. Thus, since the write operation

performed within ui is the last write on REG [i] to precede the linearization point of S in E, we derive

that it is also the last write on REG [i] to precede the read of REG [i] performed within C1.

Therefore, for each pi, the value of pi returned by C1 and, thus, by S is the value written by ui. Hence,

L is legal, and the algorithm in Figures 8.2 and 8.3 gives a linearizable implementation of snapshot.

✷Theorem 19

linearization point of snapshot()

REG [1]

REG [4]

REG [3]

REG [2]

second scan() snapshot()

time line

aai[2].sn = b

aai[3].sn = c

aai[1].sn = a = REG [1].sn

bbi[2].sn = b

aai[4].sn = d

bbi[1].sn = a

bbi[3].sn = c

bbi[4].sn = d = REG [4].sn

first scan()

Figure 8.4.: Linearization point of a snapshot () operation

90

8.2.4. Wait-free snapshot

In the non-blocking snapshot implementation in Figures 8.2 and 8.3, update operations may starve a

snapshot operation out by “selfishly” updating REG . This implementation can be turned into a wait-

free one using helping: an update operations can help concurrent snapshot operations to terminate. An

update operation may itself take a snapshot of and store the result together with the new value in REG

(Figure 8.5). Of course, for this helping mechanism to work, we need to make sure that the intertwined

snapshot and update operations do not prevent each other from terminating.

U2

pi

pj

U1

S

Shelp

Figure 8.5.: Each update() operation includes a snapshot () operation

First we can make the following two observations on the non-blocking snapshot implementation:

• If two consecutive scans performed within a snapshot operation are not identical, then at least one

process has concurrently performed an update operation.

• If a snapshot operation S issued by a process pi witnesses that the value of REG [j] has changed

twice, i.e., pj concurrently executed two update operations u1 and u2, then the second of these up-

dates was entirely performed within the interval of S (see Figure 8.5). This is because S observed

the value written by u1 (and, thus, u2 was invoked after the invocation of S) and the (atomic)

write by pj of the base atomic register REG [j] is the last operation of u2.

As the execution interval of the second update falls entirely within the interval of S, we may use the

update to “help” S as follows:

• Within u2, pj takes a snapshot itself (using the algorithm in Figure 8.3) and writes the result help

to REG [j].

• Within S, pi uses the result read in REG [j] as the response of S. This is going to be a valid result,

since the execution of u2 (and, thus, of the snapshot performed by u2) takes place entirely within

the interval of S, so S can simply “borrow” the snapshot result help from U2.

Note that for this kind of helping to work, S must witness at least two concurrent updates of the same

process. For example, even though the write on REG [j] performed within u1 takes place within the

interval of S, the snapshot written by u1 together with its value may have taken place way before the

invocation of S. Thus, adopting the result of u1’s snapshot as the result of S may violate linearizability,

since it may miss updates executed after the snapshot taken by u1 but before the invocation of S. This

is why, before adopting the snapshot taken by pj , pi should wait until it observes the second change in

REG [j].
The resulting implementations of update() and snapshot () are described in Figure 8.6. The atomic

register REG [i] consists now of three fields, REG [i].val and REG [i].sn as before, plus the new field

REG [i].help array that contains the result of the snapshot taken by pi in the course of its latest update

operation.

The new local variable idcould helpi is used by process pi when it executes snapshot (). Ini-

tially ∅, idcould helpi contains the set of the processes that terminated update operations concurrently

91

with the snapshot operation currently executed by pi (lines 11-15). When pi observes that a process

pj ∈ could help updated its value in REG , i.e., pi finds out that aai[j].sn 6= bbi[j].sn, pi returns

REG [j].help array as the result of its snapshot operation.

operation update(v) invoked by pi:
(1) help arrayi := snapshot();
(2) sni := sni + 1;

(3) REG [i] := (v, sni, help arrayi)

operation snapshot():
(4) could helpi := ∅;
(5) aai := REG.scan();
(6) while true do

(7) bbi := REG .scan();
(8) if (∀j ∈ {1, . . . , n} : aai[j].sn = bbi[j].sn) then

(9) return (aai.val)
(10) else for all j ∈ {1, . . . , n} do

(11) if (aai[j].sn 6= bbi[j].sn) then

(12) if (j ∈ could helpi) then

(13) return (bbi[j].help array)
(14) else

(15) could helpi := could helpi ∪ {j}
(16) aai := bbi

Figure 8.6.: Atomic snapshot object construction

8.2.5. The snapshot object construction is bounded wait-free

Theorem 20 Each update() or snapshot () operation returns after at most O(n2) operations on base

registers.

Proof Let us first observe that an update() by a correct process always terminates as long as the

snapshot () operation it invokes always returns. So, the proof consists in showing that any snapshot ()
issued by a correct process pi terminates.

Suppose, by contradiction, that a snapshot operation executed by pi has not returned after having

executed n times the while loop (lines 5-16). Thus, each time it has executed the loop, pi has found out

that for some new j /∈ could helpi, aai[j].sn 6= bbi[j].sn (line 11), i.e., pj has executed a new update()
operation since the last scan() of pi. After this j is added to the set could helpi in line 14.

Note that i /∈ could helpi (pi does not change the value of REG [i] while executing snapshot ()).
Thus, after n− 1 iterations, could helpi contains all other n− 1 processes {1, . . . , i− 1, i+ 1, . . . , n}.
Therefore, when pi executes the while loop for the nth time, for any pj such that aai[j].sn 6= bbi[j].sn
(line 11), it finds j ∈ idcould helpi in line 12. By the algorithm, pi returns in line 13, after having

executed n iterations in lines 5-16—a contradiction.

Thus, every snapshot operation returns after having executed at most n while loops in lines 5-16.

Since every loop involves exactly n base-object reads (in the scan operation on registers REG [1], . . .,
REG [n]), every snapshot terminates in n2 base-object steps. An update operation additionally executes

only one base-object write, thus its complexity is also within O(n2). ✷Theorem 20

92

8.2.6. The snapshot object construction is atomic

Theorem 21 The object built by the algorithms described in Figure 8.6 is atomic with respect to the

snapshot type.

Proof Let E be an execution of the algorithm and H be the corresponding history of E. To prove that

the algorithm is indeed an atomic snapshot implementation, we construct a linearization of H , i.e., a

total order L on the operations in H such that: (1) L is equivalent to a completion of H , (2) L respects

the real-time order of H , and (3) L is legal, i.e., each snapshot () operation S in L returns, for each

process pj , the value written by the last update() operation of pj that precedes S in L.

The desired linearization L is built as follows. The linearization point of a complete update() oper-

ation in E is the write in the corresponding 1WMR register (line 3). Incomplete update operations are

not included to L. The linearization point of a snapshot () operation S issued by a process pi depends

on the line at which it returns.

(i) If S returns in line 9 (successful double scan()), then the linearization point is any time between

the end of the first scan() and the beginning of the second scan() (see the proof of Theorem 19 and

Figure 8.4).

(ii) If S returns in line 13 (i.e., pi terminates with the help of another process pj), then the linearization

point is defined recursively as the linearization point of the corresponding update operation of pi. In the

example depicted in Figure 8.7, the arrows show the direction in which snapshot results are adopted by

one operation from another.

pi
snapshot()

pj1

update() update()

snapshot()

help array

update()

successful double scan

update()
pjk

help array

snapshot()

Figure 8.7.: Linearization point of a snapshot () operation (case ii)

We show now that the linearization point is well-defined. If S returns in line 13, the array (say

help array) returned by pi has been provided by an update() operation executed by some process

pj1 . As we observed earlier, this update() has been entirely executed within the interval of S, since

help array is the result of the second update operation of pj that is observed by pi to be concurrent with

S. Thus, this update started after the invocation of S and its last event (the write in REG [j] in line 8)

before the response of S.

Recursively, help array has been obtained by pj1 from a successful double scan, or from another

process pj2 . As there are at most n concurrent processes, it follows by induction that there is a process

pjk that has executed a snapshot () operation within the interval of S and has obtained help array from

a successful double scan.

The linearization point of the snapshot () operation issued by pi is thus defined as the linearization

point of snapshot () operation of pjk whose double scan determined help array .

93

This association of linearization points to the operations in H results in a complete sequential history

L that puts the operations in H in the order their linearization points appear in E.

L trivially satisfies properties (1) and (2) stated at the beginning of the proof. Reusing the proof of

Theorem 19, we observe that, for every pj , every snapshot operation S (be it a standalone snapshot or a

part of an update) returns the value written to REG [j] by the last update of pj to precede the linearization

point of S in E. Thus, L also satisfies (3), and the algorithm in Figure 8.6 is an atomic implementation

of snapshot. ✷Theorem 21

8.3. Bounded atomic snapshot

Implementing atomic abstractions is of our central concern. In Chapter 6, we described a space-optimal

implementation of an atomic bit using three safe bits. In Chapter 7, we discussed how to implement a

multi-valued bounded atomic registers from bounded regular registers.

In contrast, our implementation of the atomic snapshot abstraction in Section 8.2.4 assumes under-

lying atomic registers of unbounded capacity. Indeed, the values written to the abstraction by update

operations are assumed to be unique, e.g., equipped with distinct sequence numbers that are taken in an

unbounded range.

On can see an apparent gap between these transformations, and a natural question is whether we can

use atomic registers of bounded size to implement atomic snapshot.

8.3.1. Double collect and helping

The unbounded construction of atomic snapshots was based on two simple ideas: double collect and

helping.

Two consecutive collects returning identical results within a snapshot operation guarantee that no

register has been changed in the interval of time between the return of the first collect and the invocation

of the second one. Thus, all the updates affecting the result of these collects can be safely linearized

before the end of the first one.

If, after taking n collects, process pi did not observe two identical ones, then at least one of the n− 1
other processes (let us denote it pj) performed two concurrent updates. Now assume that each update

operation of pj includes taking a snapshot and attaching its outcome to the written snapshot value.

Clearly, the snapshot attached to the second update performed by pj and witnessed by pi took place

within the interval of the snapshot operation of pi. Thus, it is safe for pi to adopt this outcome as its

own.

Notice, however, that these mechanisms rely on the assumption that every value written to the snapshot

object is unique: otherwise two identical collects do not necessarily imply that no concurrent update took

place. An amusing exercise is to find an incorrect execution of our algorithm, assuming that the “unique-

write” requirement is lifted. Intuitively, the so called ABA problem (A in a snapshot position is replaced

with B and then with A again, so that a concurrent reader does not see the change) may cause a snapshot

operation to return an inconsistent value (see Exercise 3).

In histories with an unbounded number of updates, using a distinct value for each update operation

requires unbounded memory. But suppose now that we are after a bounded atomic snapshot object:

processes only write values from a bounded range. It turns out that a simple bounded-space handshaking

mechanism can be used to detect modifications in a snapshot position.

94

8.3.2. Binary handshaking

Let us recall the signalling mechanism in the 1W1R atomic register construction (Chapter 6): the writer

uses a special bit W to inform the reader that the value of the implemented register has been modified,

and the reader uses another special bit R to inform the writer that the last written value has been read.

Intuitively, in an atomic snapshot construction, every process executing a snapshot operation acts as a

reader, and every process executing an update operation acts as a writer. Therefore, for each distinct pair

of processes (pi, pj), we can maintain two atomic binary registers W [i, j] and R[i, j], where W [i, j] can

be written by pi when it performs an update and read by pj when it performs a snapshot, while R[i, j]
can be written by pj when it performs a snapshot and read by pi when it performs an update.

Now suppose that after pi modifies REG [i], it also checks R[i, j] for each j 6= i and sets W [i, j] to

be different from R[i, j]. Respectively, whenever pj collects the values of REG it checks W [i, j] and,

if needed, sets R[i, j] to be equal to W [i, j]. Therefore, whenever pj takes a subsequent scan of REG

and observes R[i, j] 6= W [i, j], it may deduce that REG [i] has been recently changed.

It is still, however, possible that pi changes REG [i] but pj takes its scan before pi modifies W [i, j].
That is why we also introduce an additional toggle bit that is attached to the value written to REG [i].
The bit REG [i].toggle is inverted each time REG [i] is written by pi. This way pj can detect a concurrent

update operation via a change either in REG [i].toggle or in W [i, j].

8.3.3. Bounded snapshot using handshaking

Figure 8.8 describes a bounded implementation of the snapshot object. Now the atomic register REG [i]
consists of three fields, REG [i].val for the written value, REG [i].help array for the result of the snap-

shot taken by pi within its latest update operation, and REG [i].toggle for the bit inverted with each new

update performed by pi.
The update operation is very similar to that in the unbounded algorithm (Figure 8.6). But instead of

using a unique sequence number with every written value, process pi inverts the toggle bit and makes

sure that W [i, j] 6= R[i, j], in order to inform every other process pj that a new value has been written.

In the snapshot operation, process pi first ensures that W [j, i] = R[j, i] for every j 6= i, and then

performs two scans of REG . We are going to show that, for any j 6= i, REG [j].toggle has different

values in these two scans or W [j, i] does not equal R[j, i] if and only if REG [j] has been concurrently

modified. Thus, if no j satisfies the conditions in line 14, it is safe to return the outcome of the latest

scan taken by pi (line 20). If, for some j, the conditions are satisfied in three iterations, then it is safe

to return the snapshot attached to last the value written by pj (line 16). Note that, unlike the unbounded

version (Figure 8.6), two concurrent modification of the shared memory performed by another process

are not enough (see Exercise 7).

8.3.4. Correctness

Essentially, we use the correctness arguments of the unbounded snapshot algorithm (Section 8.2.4).

As before, we linearize each update operation of a process pi at the point it writes to REG [i]. Each

snapshot operation that detected no conflicts and returned in line 20 in any point between the end of its

first scan (line 11) and the beginning of its second scan (line 12), taken just before returning. Recursively,

each snapshot operation that adopts the value written by a concurrent update operation op (line 16) is

linearized at the linearization point of the corresponding snapshot operation performed within op (line 1).

It remains to prove two points in this bounded algorithm though.

First, we need to show that if a snapshot operation S does not detect any change in REG [j] in line 14,

then indeed no REG [j] has not been modified between the moment it was read in line 11 and the moment

point it was read in line 12.

95

operation update(v) invoked by pi:
(1) help array i := snapshot();
(2) REG[i] := (v, help array i,¬REG[i].toggle);
(3) for all j ∈ {1, . . . , n}, i 6= j do

(4) if R[i, j] = W [i, j] then

(5) W [i, j] := 1−W [i, j]

operation snapshot():
(6) could helpi := [0, . . . , 0];
(7) while true do

(8) for all j ∈ {1, . . . , n}, i 6= j do

(9) if R[j, i] 6= W [j, i] then

(10) R[j, i] := 1−R[j, i]
(11) aai := REG.scan();
(12) bbi := REG .scan();
(13) for all j ∈ {1, . . . , n}, i 6= j do

(14) if R[j, i] 6= W [j, i] or

aai[j].toggle 6= bbi[j].toggle then

(15) if could helpi[j] = 2 then

(16) return (REG[j].help array)
(17) else

(18) could helpi[j] := could helpi[j] + 1
(19) else

(20) return (bbi.val)

Figure 8.8.: Bounded atomic snapshot

Lemma 7 Let s1 and s2 be two consecutive scans performed within a snapshot operation S by a process

pi. If REG [j] has been modified between the moment it has been read in s1 and the moment it has been

read in s2, then the check in line 14 performed by S immediately after s2 will succeed.

Proof If REG [j] has been modified only once after it was read in s1 but before it was read in s2, then

the toggle field is different in aai[j] and bbi[j] and, thus, the check in line 14 will succeed.

Suppose now that REG [j] has been modified twice or more in the chosen interval. By the update

algorithm, between any two modifications of REG [j], pj must make sure that R[j, i] 6= W [j, i] (lines 8-

5). Since between s1 and s2, pi does not modify R[j, i], when it reads W [j, i] immediately after the

scans (line 14), it will find R[j, i] 6= W [j, i] in line 14 and the check will succeed. ✷Lemma 7

Thus, a snapshot operation that, for all j, passed through the checks in line 14 and returned in line 20

can be safely linearized at any point between its last two scans.

Second, we need to show that it is also safe to a snapshot operation to “borrow” the outcome of a

snapshot taken by a process that has been witnessed “moving” three times (line 16). within the interval

of S. For this, we first prove the following auxiliary result:

Lemma 8 Let s1 and s2 be two consecutive scans performed within a snapshot operation S by a process

pi (lines 11 and 12). If the check in line 14 performed by S immediately after s2 succeeds for some j,

then REG [j] or W [j, i] has been modified in the interval between time t1, when W [j, i] has been read

just by pi before s1 (line 9), and time t2, when W [j, i] has been read by pi just after s2 (line 14).

Proof Suppose that the check in line 14 succeeds because the toggle bit of REG [j] has changed. This

can only happen if pj has written to REG [j] (line 2)) between the reads of the register performed by pi
within s1 and s2 and, thus, in the desired interval.

96

Suppose now that pi finds out, in line 14, that R[j, i] 6= W [j, i]. But after having read W [j, i] at time

t1 and before executing s1, pi has made sure that R[j, i] = W [j, i] (lines 9 and 10. Thus, the only reason

to find out later that R[j, i] 6= W [j, i] can be a modification of W [j, i] (line 5) performed in the interval

between t1 and t2. ✷Lemma 8

Lemma 9 If a snapshot operation S returns the view provided by an update operation U (line 16), then

the execution of the snapshot S′ taken by U falls within the interval of S.

Proof Suppose that pi, within a snapshot operation S, returns the view written by an update operation

U performed by pj . By the algorithm and Lemma 8, during S, pj “moved” (by modifying REG [j] or

W [j, i]) at least three times.

Note that pj can modify each of the registers REG [j] and W [j, i] at most once during an update

operation: in lines 2 and 5, respectively. Thus, if three checks in line 14 performed by S succeed, the

first and the third modifications of REG [j] and W [j, i] witnessed by S must belong to different update

operations performed by pj , let us denote these update operations by U1 and U2.

Since an update operation performed by pj first takes a snapshot, then writes the outcome to REG [j]
(together with its value and the toggle bit), and then modifies W [j, i] (if needed), we conclude that

the value read by S in REG [j] in line 16 was written by a concurrent operation U , which is U2 or a

subsequent update operation. But since U1 is concurrent with S and U succeeds U1, we have that the

snapshot operation S′ taken within U is entirely contained within the interval of S. ✷Lemma 9

Thus, we can safely assign the linearization point of S to the linearization point of S′. As in the un-

bounded case, this recursive assignment of linearization points to snapshot operations is well-defined.

The reader is encouraged to check this and to show that the sequential history based on these lineariza-

tion points is legal, following the proof for the unbounded algorithm.

8.4. Bibliographic notes

The collect abstraction was introduced by Aspnes and Waarts [5], refined and implemented in an adaptive

way by Attiya, Fouren, and Gafni [7]. The notion of atomic snapshot was introduced by Afek et al. in [1].

Exercises

1. Would the algorithm implementing collect (Section 8.1.1) be correct if instead of atomic registers

regular ones were used?

If not, would it be correct if we only require properties B0 and B1 to be satisfied?

2. Give a sequentially consistent wait-free implementation of atomic snapshot with O(n) step com-

plexity.

3. Show that the non-blocking atomic snapshot algorithm (Section 8.2.3) is not correct if the values

of update operations are not unique.

Hint: consider an instance of the classical ABA problem: a register is written with value A, then

overwritten with value B, and then overwritten with A again, so that a concurrent reader reading

A and then A again cannot detect that the register temporarily stored B.

4. Show that the bounded implementation of atomic snapshot (Section 8.3) is not correct if we do

not use toggle bits.

97

5. Show, by presenting a counter-example, that the bounded snapshot algorithm (Figure 8.8) would

be incorrect if we did not use the toggle bit.

6. Show that the bounded algorithm is incorrect if the condition in line 15 is replaced with could helpi[j] =
1.

7. Show that the bounded algorithm is incorrect if line 16 is replaced with return (bbi[j].help array).

98

9. Immediate snapshot and iterated

immediate snapshot

PK: THE CHAPTER NOT YET FINISHED

In Chapter 8, we discussed the atomic-snapshot abstraction that provides two operations, update,

which allows a process to write a value in a dedicated memory location, and snapshot, which atomically

returns the “current” state of the memory. Strong and useful, the atomic-snapshot abstraction, however,

does not preclude a situation when snapshots taken by different processes are “unbalanced”: a snapshot

Si taken by pi contains a value written by pj but the snapshot Sj taken by pj contains more recent

values (and, thus, is more up-to-date) than Si. In this chapter, we discuss a restricted version of atomic

snapshot, called immediate snapshot, that only exports “balanced” runs: IF pi “sees” pj , than Si contains

Sj .

9.1. Immediate snapshots

9.1.1. Definition

An immediate-snapshot object exports a single operation update snapshot() that takes a value as a pa-

rameter and returns a vector of values (a view) in response. It is required that the executions of these

operations appear as executed in “batches”. In each batch, a fixed subset of processes execute their

update snapshot() in parallel: the processes in the subset first execute their updates and then take their

snapshots. Obviously, the results of the snapshots taken by the processes in the same batch are iden-

tical. Intuitively, these snapshots are operations “immediate” in the sense that the snapshot taken by a

process does not “lag” too much behind its update. As we shall see, the immediate-snapshot model has

a straightforward geometrical representation which, in turn, enables simple and elegant reasoning about

the model’s computability.

As in the original definition of atomic snapshots (Chapter 8), we assume that each written value is

unique. Any history of an immediate-snapshot object satisfies the following properties.

• Self-inclusion. For any operation update snapshot(vi) that returns Vi, we have (i, vi) ∈ Vi.

• Containment. For any two operations update snapshot(vi) and update snapshot(vj) that return

Vi and Vj , respectively, we have Vi ≤ Vj or Vj ≤ Vi.

• Immediacy. For any operation update snapshot(vi) and update snapshot(vj) that return Vi and

Vj , respectively, if (i, vi) ∈ Vj then Vj ≤ Vi.

The first two properties will automatically hold if we take an atomic snapshot object and implement

update snapshot(vi) as update(vi) followed by snapshot(). However, the immediacy property will not

be satisfied here: it is possible that an update operation of a process pi is followed by an update and

snapshot operation of another process pj , and then multiple updates and snapshots of other processes.

The subsequent snapshot by pi would then strictly succeed the snapshot taken by pj , as it would contain

the updates that occurred after pj performed its snapshot (see Exercise 3).

FIGURE

99

Notice that the immediacy property implies that the immediate snapshot object has no sequential

specification. Indeed, a history in which update snapshot(vi) and update snapshot(vj) return Vi and

Vj , respectively, such that (i, vi) ∈ Vj and (j, vj) ∈ Vj does not allow for a legal ordering of these two

operations with a sequential semantics that matches the properties above. We leave it to the reader to

prove this claim, e.g., along the lines of the proof of Lemma 5 (Exercise 1).

9.1.2. Block runs

We can view the immediate-snapshot model as a subset of runs of the conventional atomic-snapshot

model in which every process alternates between performing updates (on its distinct location in the

shared memory) and taking atomic snapshots. Every run in the immediate-snapshot model is induced

by a block sequence:

B1, B2, B2, . . . ,

where each Bi is a non-empty set of processes. The induced run consists in B1 performing updates (in

an arbitrary order) and then taking snapshots (in the arbitrary order), followed by all processes in B2

performing updates and then taking snapshots, and so on.

It is not hard to see that the snapshots taken by the members of the same Bi are identical and for all

i < j, the snapshot Vi taken by Bi and the snapshot Vj taken by Bj satisfy Vi ≤ Vj . Moreover, if Vi

only contains values that processes in Bj , j ≤ i have written in the induced run. Thus, if (i, vi) ∈ Vj ,

where vi is the value written by pi just before it obtained immediate snapshot Vi, then Vi ≤ Vj .

9.1.3. A one-shot implementation

We begin with an implementation of the immediate-snapshot abstraction, assuming that every process

performs at most one update snapshot() in a run.

The algorithm, presented in Figure 9.1, uses a shared array of 1WMR atomic registers REG [1 : n],
where REFG [i] can be written only by pi and read by all processes. Each REFG [i] stores a pair (ℓi, vi),
initially (n+ 1,⊥), where vi is the value written by pi and ℓi is the level reached by pi so far.

Operation

The algorithm operates as follows. Every process pi begins with posting its value vi in VAL[i] and

announcing its participating at level n by writing n in REG [i] and . Then it reads REG [1 : n] to check

the levels reached by other processes. If all n processes are at levels n or less, then pi returns the set of

n their values (read in VAL). Otherwise, pi goes down to level n − 1. If, inductively, after writing ℓ
(ℓ = n− 1, . . . , 1) in REG [i] and checking REG [1 : n], pi finds out that ℓ processes reached levels ℓ or

lower, it returns the values of these ℓ processes. Clearly, the process returns at level 1 at the latest, i.e.,

the algorithm is bounded wait-free: it takes O(n2) basic reads and writes to complete an operation.

Correctness

To get an intuition about the algorithm’s correctness, let us consider a run in which a set of k processes

proceed in lock step, i.e., the k processes alternate between concurrently writing to REG and reading

REG [1 : n]. Notice that in this run, whenever a process reaches a level ℓ and reads REG [1 : n], it

witnesses exactly k processes at the same level. Thus, all the processes will return the same set of k
values as soon as they reach level k.

At the other extreme, consider a sequential execution of n processes performing update snapshot()
operations one by one. The first process, as it only sees itself, will be obliged to return at level 1.

100

Shared:

value array of registers VAL[1 : n], initially⊥
integer array of registers REG[1 : n], initially n+ 1

Local:

value array val [1 : n], initially⊥
integer level , initially n+ 1

operation update snapshot(vi) invoked by pi:
VAL[i] := vi

(1) repeat level := level − 1
(2) REG[i] := level

V := ∅
(3) for each j ∈ {1, . . . , n} do

ℓ := REG [j]
if ℓ ≤ level then V := V ∪ {j}

(4) until |V | ≥ level

(5) for each j ∈ {1, . . . , n} do

if j ∈ V then

val [j] := VAL[j]
(6) return (val)

Figure 9.1.: A one-shot IS implementation

Inductively, the k-th process in the sequential order (k = 2, . . . , n), will output at level k: it will see

itself and k − 1 processes before it. Thus, the processes will return strictly increasing sets of values,

from a singleton containing the value of the first process to the

More generally, the last process pi to reach level n, i.e., to write (n, vi) in REG [i] will see exactly

n processes at levels n or lower. Thus, pi returns the set of n values, and at most n − 1 processes will

reach levels n − 1 or lower. Inductively, we can show that if ℓ processes reach level ℓ (ℓ = n, . . . , 2), at

least one process will return at this level, and at most ℓ− 1 will proceed to level ℓ− 1.

Formally, what we need to show is that, in every run of the algorithm, the sets of values returned

by the processes satisfy the three properties of immediate snapshot: self-inclusion, containment and

immediacy.

Lemma 10 The algorithm in Figure 9.1 is bounded wait-free.

Proof In every round (lines 1–4), a process performs one write and n reads. In the round n (reaching at

level 1), the process will see at least one value (its own). Thus, at the latest, the process returns in round

n and, thus, every operation performs O(n2) basic read-write steps. ✷Lemma 10

Consider any run of the algorithm. Let Sℓ denote the set of processes that ever reach level ℓ in that

run. By the algorithm, S1 ⊆ S2 ⊆ . . . ⊆ Sn.

Lemma 11 For all ℓ ∈ {1, . . . , n}, |Sℓ| ≤ ℓ.

Proof We proceed by downward induction on ℓ. The base case ℓ = n is trivial, as there are at most n
processes taking steps in any run.

Suppose that for some ℓ ∈ {2, . . . , n}, |Sℓ| ≤ ℓ, i.e., at most ℓ processes reach level ℓ. If |Sℓ| < ℓ,
then we are done, as Sℓ−1 ⊆ Sℓ. Otherwise, suppose that |Sℓ| = ℓ, and let pj be the last process in this

set of ℓ processes that reaches level ℓ, i.e., writes ℓ in REG in line 2. By the algorithm, pj witnesses

exactly n processes at levels ℓ and lower and, thus, returns in level ℓ. Therefore, at most ℓ − 1 process

ever reach level ℓ− 1. ✷Lemma 11

101

Theorem 22 The algorithm in Figure 9.1 is a bounded wait-free implementation of immediate snapshot.

Proof By Lemma 10, the algorithm is bounded wait-free.

Consider any run of the algorithm, and let Vi denote the set of values returned by a process pi in that

run. Let ℓi denote the level at which pi returns. By the algorithm, pi reached level ℓi by writing ℓi in

REG [i], then read REG [1 : n] and then returned the set of ℓi values written by processes that reached

level ℓi or lower.

Thus, pi returned values written by a subset of Sℓi of size ℓi or more, including its own value—the

property of self-inclusion is ensured. Furthermore, by Lemma 11, Sℓi ≤ ℓi and, thus, pi returned exactly

the values of processes in Sℓi .

Consider any other process pj that returned in the given run and suppose, without loss of generality,

that pj returned at level ℓj < ℓi. Recall that Sℓj ⊆ Sℓi and, thus, Vj ⊆ Vi—the property of containment

is ensured.

Finally, consider any process pj such that pj ∈ Sℓi and, thus, vj ∈ Vi. Since pj reached level ℓi in

that run, it can only return some the values written by some Sℓj such that ℓj ≤ ℓi. Since , Sℓj ⊆ Sℓi , we

have Vj ⊆ Vi—the property of immediacy is ensured. ✷Theorem 22

9.2. Fast renaming

To illustrate how the IS model can be used, we describe an elegant algorithm solving the classical

renaming problem. In the renaming algorithm, processes take, as inputs, with original names from a

large range and return, as outputs, new names taken in a smaller range the size of which is proportional

to the number of participating processes. More precisely, the following properties must be satisfied in

every run of a renaming algorithm:

Termination: Every correct process eventually output a name.

Uniqueness: Now two distinct processes output the same name.

Name-Adaptivity: The output names belong to the range {1, . . . , 2p − 1}, where p is the number of participating

processes.

To rule out a trivial solution in which process pi outputs name i we add the following requirement:

Anonymity: For all pi and pj , the algorithm of pi with input x is the same as the algorithm of pj with input x.

We should be careful here. In solving renaming, assuming that a single-writer multi-reader share

memory is available somewhat undermines the very motivation behind this problem that, even

though there is a bound on the number of participating processes in every run, the participants

themselves may come from a very large (unbounded) space. One may ask how the assignment

of distinct single-writer registers to participating can be implemented in such a system. The chal-

lenge of simulating single-writer multi-reader memory in such a system (also called bootstraping)

has been addressed in [25, 26]. In this chapter, we however rule this out by assuming anonymous

algorithms.

102

9.2.1. Snapshot-based renaming

A simple snapshot-based renaming algorithm in Figure 9.2 is based on “arbitration”. A process starts

with writing its input name in its dedicated register. Then it takes a snapshot of the memory to evaluate

the set of participants, selects a name based on its ranking in the set (using the compare operator), writes

the chosen name, together with its input, back in its register, and takes a snapshot again. If no other

process chose the same name, the process terminates with the chosen output. Otherwise, the process

chooses, as its new name, the first name with its ranking in the current set of participants that is not

claimed by another process and repeats the procedure.

Shared:

atomic-snapshot object AS

operation rename(vi) invoked by pi with input vi:
name := 1
repeat forever

AS .update([name, vi])
S := AS .snapshot()
if S contains no [name′, vj] such that name′ = name and vj 6= vi then

return name

rank := the rank of vi in {vj | [∗, vj] ∈ S}
free := {u | [u, ∗] /∈ S}
name := the r-th element in free

Figure 9.2.: A renaming algorithm using atomic snapshots

When p processes participating, the largest name a process may choose is 2p− 1. Intuitively, a given

process can “block” at most two names at a time: one it has written to the memory and one that it is

about to write. As a result, in the worst case, the process may see p− 1 blocked and have rank p among

the participants: thus, the largest name 2p − 1.

9.2.2. IS-based renaming

In the recursive IS-based algorithm described in Figure 9.2, we use one-shot IS instances to evaluate the

set of participating processes. Each invocation of the IS instance is associated with a range of names

that the processes invoking this instance are allowed to return. The range is determined via a starting

point (denoted start) and a direction (denoted dir ∈ {−1, 1}) in which names of the range, starting from

start, are allocated. A list of integer values tags contains the sequence of starting points of preceding

recursive calls of get name.

For instance, if p processes invoke get name(tags, start, dir), then the algorithm guarantees that all

names output by these processes fall within the range start + dir, . . . , start + dir(2p − 1) of 2p − 1
names.

The property of IS that the number of processes that output a set of values of size ℓ is precisely ℓ minus

the number of processes that output strictly smaller sets of values guarantees that all output names are

distinct.

For each sequence L of values in {1, . . . , n}, the algorithm uses a distinct one-shot IS object IS[L]. A

process invokes get name(L, f, d) where L is the list of sizes of sets obtained in all preceding IS calls.

As we will show, all such sequences L are monotonically decreasing.

The get a new name, every process pi invokes get name(ǫ, 0, 1), where ǫ is the empty list. Within

get name(L, start, dir), the process first invokes IS[L].update snapshot(vi), where vi is its input name,

103

(7 · 3, 8, 1)

7 output 1

6

1, 2, 3

4, 5

(ǫ, 0, 1)
range 1, . . . , 13

IS[ǫ]

1

2

4

7

range 10
(7 · 3 · 2, 11,−1)

(7, 13,−1)
range 8, . . . , 12

output 12

1, 2

3

IS[7]

3

1

1 output 102 output 9

1

1

2

IS[7 · 3]

1

IS[7 · 3 · 2]

(4, 7,−1)
range 4, 5, 6 5 output 4

IS[4]

4 output 6

2

1

range 2
(2, 3,−1)

6 output 2

IS[2]

1

range 9, 10, 11

Figure 9.3.: An execution of the renaming algorithm in Figure 9.4

to get a set S of input names. If vi happens to be the largest name in S, pi returns the “most far-

away” name in the range start + dir, . . . , start + dir(2|S| − 1), i.e., name = start + dir(2|S| − 1).
Otherwise, pi selects name as a new starting point and inverses the direction by recursively calling

get name(L · |S|, name,−dir) to get its new name.

In Figure 9.3, we describe an execution of the algorithm for seven processes with original names

1, . . . , 7. The processes invoke get name with parameters (ǫ, 0, 1) which means that they compete for

names in the range 1, . . . , 13}. Suppose that after accessing IS[ǫ], processes with names 1, 2 and 3 see

all 7 processes, processes with names 4, 5 see four processes 4, 5, 6, 7, processwith name 6 sees 6, 7 and

process with name 7 sees only itself.

As their names are not the maximal in the set, 1, 2 and 3 invoke get name with parameters (7, 13,−1),
i.e., they compete for names in the range 12, 11, 10, 9, 8 (in the descending order). After accessing IS[7],
process with name 3 sees only itself and outputs 12 (the “first” name in the range). Processes with names

1 and 2 see all of the three processes and invoke get name with parameters (7 · 3, 8, 1) to compete for

names in the range 9, 10, 11 (in the ascending order).

After accessing IS[7 ·3], process 2 sees only itself and outputs 9 (the “first” name in the corresponding

range). Process with name 1 sees both 1 and 2 and, thus, invokes get name(7 · 3 · 2, 11,−1) to finally

output 10.

Shared:

for each L, list of values in {1, . . . , n}: one-shot IS instance IS[L]

operation get name(L, start, dir) invoked by pi with input vi:
S := IS [L].update snapshot(vi)
st := start + dir(2|S| − 1)
if vi = max(S) then

name := st

else

name := get name(L · |S|, st,−dir)
return name

operation rename(vi) invoked by pi with input vi:
return get name(ǫ, 0, 1)

Figure 9.4.: A renaming algorithm using one-shot IS instances

Given that an access to one-shot IS object exhibits O(n2) read-write steps, we get the following result.

104

Lemma 12 In every run of the renaming algorithm in Figure 9.4, every correct process returns in O(n2)
read-write steps.

Proof By the algorithm, the participating processes start with calling get name(ǫ, 0, 1). We observe

first that the participant with the highest input name will return the value computed in line 9.2.2 of this

call. Indeed, regardless of the set of participating processes, it obtains in line 9.2.2, it will always itself

to have the maximal name. The property holds for any recursive call of get name (line 9.2.2). Thus,

the number of processes that reach line 9.2.2 within a call of get name is at least by one smaller than

the number of processes that started this call. When the total number of processes preforming a call of

get name(L, start, dir) drops to one, this process will return the value computed in 9.2.2.

Thus, in the worst case, a process returns in the n-th recursive calls of get name. Each recursive

call involves a single invocation of a single invocation of update snapshot on a one-shot IS instance

which gives O(n2) read-write complexity per instance and, thus, O(n3) total step complexity per call of

rename(vi). ✷Lemma 12

The safety properties of renaming (Uniqueness and Name-Adaptivity) are shown via the following aux-

iliary lemma:

Lemma 13 Suppose that at most k > 0 processes call get name(L, s, d) in a run of the algorithm in

Figure 9.4. Then these calls can only return distinct values outside {s+ d, . . . , s+ d(2k − 1)}.

Proof We note first that, since the size of the set returned by a one-shot IS instance unambiguously

identifies the set itself, every two processes that call get name(L,−,−) agree on the remaining two

parameters.

Now we proceed by induction on k. The claim holds trivially when k = 1: the only process to

call get name(L, start, dir) obtains a set of size 1 from IS[L] and returns value start + dir computed in

line 9.4.

Now suppose that the claim holds for all values k′ < k and consider a run in which k processes call

get name(L, start, dir).

Suppose that the k processes obtained sets of distinct sizes 1 ≤ ℓ1 < . . . < ℓm from IS[L].

We can show that ℓm = k and if m ≤ 2, then for all j = 2 . . . ,m, the number of processes that

obtained a set of size ℓj is ℓj − ℓj−1. We leave it to the reader to prove this claim (Exercise 2).

Note that the process with the highest input name that obtained the set of size ℓ1 will output a value.

Thus, at most ℓ1 − 1 < k processes can recursively call get name(L · ℓ1, s + d(2ℓ1 − 1),−d). If

ℓ1 > 1, by the induction hypothesis, these at most ℓ1 − 1 processes can only get names in the range

{s + d(2ℓ1 − 1) − d, . . . , s + d(2ℓ1 − 1) − d(2(ℓ1 − 1) − 1)} = {s + 2d, . . . , s + d(2ℓ1 − 2)} ⊆
{s+ d, . . . , s+ d(2k − 1)}.

Now suppose that m ≥ 2 and consider j = 2, . . . ,m. By the algorithm, at most ℓj − ℓj−1 < k
can recursively call get name(L · ℓj, s + d(2ℓj − 1),−d) which, by the induction hypothesis, can only

return names in the range {s + d(2ℓj − 1) − d, . . . , s + d(2ℓj − 1) − d(2(ℓj − ℓj−1) − 1)} = {s +
2ℓj−1d, . . . , s+ d(2ℓj − 2)} which, as 1 ≤ ℓj−1 < ℓj ≤ k, is a subset of {s + d, . . . , s+ d(2k − 1)}.

Thus, all outputs are distinct subsets of non-overlapping ranges {s + 2d, . . . , s + 2ℓ1d − 2d)}, {s +
2ℓ1d, . . . , s + 2ℓ2d − 2d}, . . ., {s + 2ℓm−1d, . . . , s + 2ℓmd − 2d}, all of which are subsets of {s +
d, . . . , s+ d(2k − 1)}. Hence, all outputs values are distinct and belong to {s+ d, . . . , s+ d(2k − 1)}.

✷Lemma 13

We are finally ready to prove that our algorithm is correct.

Theorem 23 The algorithm in Figure 9.4 solves renaming with O(n3) read-write step complexity.

105

Proof Consider any run of the algorithm. By Lemma 12, every correct process returns in O(n3) steps—

the Termination property holds.

Suppose that p processes participate. Since every process obtains a new name by calling get name(ǫ, 0, 1),
Lemma 13 implies that all output names are distinct and belong to {1, . . . , 2p−1}—the Uniqueness and

Name-Adaptivity properties are satisfied. Finally, the algorithm only uses input names and not process

identifiers, ensuring the Anonymity property. ✷Theorem 23

9.3. Long-lived immediate snapshot

The immediate-snapshot (IS) model is at least as powerful as the classical read-write one. Assuming the

full-information protocol (every written value contains the outcome of the most recent update snapshot()
operation), a run the IS model can be represented as a run of the full-information Atomic-Snapshot

model. Thus, anything that can be solved in the AS model, can also be solved in the IS one.

In this section, we show that the inverse is also true. We present an algorithm that, in the AS model,

simulates a run of IS model.

9.3.1. Overview of the algorithm

The idea behind our simulation is to use the one-shot implementation in Figure 9.1 on an unbounded

number of floors. Intuitively, each floor corresponds to the total number of write operations a process

completed at a given point of a run. For simplicity, we assume that every process maintains a local

counter (initially 0) that is incremented and used as an argument each time the update snapshot operation

is invoked. The operation returns a view: an array of counter values of all the processes. Every process

pi maintains an array A[i] of views, one for each process that can be written by pi and read by all other

processes.

In the update snapshot operation, every process pi first updates a snapshot memory with its current

counter valus, takes a snapshot V , and for each pj , if V contains a more recent value for pj , updates the

view of pj as seen by pi, A[i][j] with V . Then pi computes V , the minimal view in {A[1], . . . , A[n]}
that stores its most recent value. The starting floor for pi is then computed as the sum of counter values

in V :
∑

j V [j].

The process then registers its view at level f (line 9.3.1) and, starting from floor f − 1 downwards,

accesses IS instances until it finds a registered view with a previous value of pi that was “seen” by

some process in the view obtained from the IS instance at that floor. At this moment, pi returns a view

constructed as a “maximum” of the registered view and the result of the IS instance.

9.3.2. Proof of correctness

PK: TO FINISH

9.4. Iterated immediate snapshot

We now consider iterated shared-memory models. In such models, processes communicate via a series

of shared memories M1, M2, A process proceeds in consecutive rounds 1, 2, . . ., and in each round

i it accesses memory Mi. In this section, we assume that every memory Mi is an instance of immediate

snapshot, and a process simply applies the update snapshot() operation to access it.

106

Shared:

C, a collect object, each position C[i] is a counter value for pi
A[1, . . . , n], array of registers, each A[i] is an array of views

For each floor f ∈ N:

ISf , one-shot IS instance

viewf , register storing a view

flagf [1, . . . , n], array of boolean registers

operation update snapshot(count) invoked by pi:
C.update(count) { publish a new distinct value }
U := C.snapshot() { get a view }
for all j = 1, . . . , n do

if U(i) > A[i][j] then

A[i][j] := U
V := min{A[j][i]|A[j]i = count} { take a minimal view that contains pi’s new value }
f :=

∑
j
V [j] { compute the starting floor }

viewf := V { register at floor f }
repeat forever

f := f − 1
flagf [i] := (view[f] 6= ⊥) { check if any process started at level f }
W := ISf .update snapshot(count) { Access IS at floor f }
if count > viewf [i] and for some j ∈ W , flagf [j] = true then

return max(W, viewf) { take the maximum of the two views }

Figure 9.5.: A long-lived IS memory implementation

Iterated immediate snapshot memory (IIS) is of particular interest for us for two reasons. First, IIS is

equivalent to the conventional (non-iterated) read-write shared-memory model, as long as we are con-

cerned with solving distributed tasks or designing non-blocking algorithms (Section 9.4.1). Second, it

has a very simple geometric representation, enabling a straightforward characterization of computability

(Section 9.4.2).

9.4.1. An equivalence between IIS and read-write

It is straightforward to implement IIS in the read-write shared memory model using the construction in

Section 9.1 for each Mi independently.

For the other direction, it is hopeless to look for wait-free implementations of the read-write memory

in the IIS model in which every correct process is able to complete each of its operations. Consider a run

in which a correct process pi is “left behind” in every IIS iteration and, as a result, it never appears in the

view of any other process. No write operation performed by pi in any read-write implementation, based

on IIS, will be able to affect read operations performed other processes. Thus, no correct read-write

implementation can guarantee that pi completes any of its writes in that run.

However, as we will show now, IIS can simulate read-write memory in a non-blocking way. Recall

that a non-blocking implementation guarantees that in an infinite execution at least one process makes

progress. We focus on algorithms in which a process may complete its computation and terminate or

perform infinitely many reads and writes. Thus, our simulation will guarantee that every correct process

either terminates or performs infinitely many (simulated) reads and writes.

We use IIS to implement the read-write model in which memory is organized as a vector of single-

writer multiple-reader registers, and every process alternates updates of its dedicated register with atomic

snapshots of the memory. Again, we assume that every process runs the full-information protocol: first

107

it writes its input value and every subsequent update includes the outcome of the preceding snapshot.

The implementation maintains, at every process pi, a local array ci[1, . . . , n], called a vector clock.

Each ci[j] has two components:

• ci[j].clock that contains the number of update operations of pj “witnessed” by pi so far, and

• ci[j].val that contains the most recent value of pj’s vector clock “witnessed” by pi so far.

The simulation, presented in Figure 9.6, works as follows. To perform an update, pi increments

ci[i].clock and sets ci[i].clock to be the “most recent” vector clock observed so far. To take a memory

snapshot, pi goes through multiple iterations of IIS until the “size” of the currently observed vector

clock, |ci| =
∑

j ci[j].clock , gets “large enough”. We explain what we mean by “most recent” and

“large enough” below.

In every round of our implementation, pi writes its current view of the memory and stores an update

of it in a local variable view = view [1], . . . , view [n] (line 3). Then for every process pj , pi computes

the position

k = argmax ℓview [ℓ][j].clock

and fetches view [k][j].val . The resulting vector of the “most recent” values written by the processes is

denoted by top(view).

Then pi checks if |c| =
∑

j c[j].clock , the sum of clock values of all the processes equals the current

round number. Intuitively, the condition that the currently simulated snapshot of pi contains all the most

recent written values and relates by containment to the results of all other simulated snapshot operations.

Indeed, as the clock values grow monotonically, snapshots S and S′ produced in IIS rounds r and r′,
r ≤ r′, satisfy S ≤ S′.

Formally, every process pi goes through a number of phases, where phase k = 1, 2, . . . starts when

pi’s local variable ci[i].clock is assigned value k (line 1 for k = 1 or line 11 for k > 1). Phase k ends

when pi departs after executing line 8 or starts phase k+1. The argument of the write operation of phase

k is the value of c[i].val initialized at the end of phase k− 1 in line 10 if k > 1 and the input value of pi
otherwise. The outcome of the k-th simulated snapshot operation is chosen to be the last value of c.val
computed in line 5 of the phase.

Shared variables: IS memories IS1, IS2, . . .

Local variables at each pi: ci[1, . . . , n], initially [⊥, . . . ,⊥]

Code for process pi:
(1) r := 0; c[i].clock := 1; ci[i].val := input of pi; { memorize pi’s input }
(2) repeat forever

(3) r := r + 1
(4) view := ISr.update snapshot(c) { update the view using ISr }
(5) c := top(view) { update the clock vector with the most recent information }
(6) if |c| = r then { if the current snapshot is complete }
(7) if decided(c.val) then { if ready to decide }
(8) return decision(c.val)
(9) endif

(10) ci[i].val := c { compute the next value to write }
(11) ci[i].clock := ci[i].clock + 1 { update the local clock }
(12) endif

(13) end repeat

Figure 9.6.: Implementing AS using IIS

108

To justify that our simulation is correct, we first prove a few auxiliary lemmas. Let view r
i and cri

denote, respectively, the view and the clock vector evaluated by process pi in round r, i.e., in lines 4

and 5, respectively, of the rth iteration of the algorithm. We say that cri ≤ crj if ∀k : cri [k].clock ≤
crj [k].clock , i.e., cri contains at least as recent perspective on the simulated state as crj . Recall that

|cri | =
∑

j c
r
i [k].clock.

Lemma 14 For all r ∈ N, pi, pj ∈ Π, |cri | ≤ |c
r
j | implies cri ≤ crj .

Proof By the Set Inclusion property of IS (see Section 9.1), the views evaluated by pi and pj in line 4

of round r are related by containment, i.e., view r
i ⊆ view r

j or view r
j ⊆ view r

i . Since cri and crj are

computed as the vector of the most up-to-date values gathered from the views (line 5), we have cri ≤ crj
or crj ≤ cri .

Suppose, by contradiction that |cri | ≤ |c
r
j | but cri � crj , i.e., crj ≤ cri but crj 6= cri . Since the operation

|c| sums up the values of c[i].clock , we get |crj | > |c
r
i |—a contradiction. Thus, |cri | ≤ |c

r
j | indeed implies

cri ≤ crj . ✷Lemma 14

Since, by Lemma 14, |cri | = |c
r
j | implies cri = crj , we have:

Corollary 2 All processes that complete a snapshot operation in round r, evaluate the same clock vector

c, |c| = r.

Lemma 15 For all r ∈ N, pi ∈ Π, |cri | ≥ r.

Proof By the Self-Inclusion property of IS, c11[i].clock = 1, and, thus, |c11| ≥ 1. Suppose, inductively,

that for all pi, |cri | ≥ r for some r ≥ 1.

Since the view computed by pi in round r is written afterward to ISr+1, the values of |cri | do not

decrease with r. Thus, if |cri | > r, then |cr+1
i | ≥ |cri | ≥ r + 1. On the other hand, if |cri | = r, i.e.,

pi completes its snapshot operation in round r, then pi increments ci[i].clock and we have |cr+1
i | >

|cri |+ 1 ≥ r + 1. In both cases, |crr+1| ≥ r + 1 and the claim follows by induction. ✷Lemma 15

The values of cri .clock can only increase with r. Thus, by Lemmas 14 and 15, we have:

Corollary 3 If |cri | = r (i.e., pi completes a snapshot operation in round r), then for all pj and r′ > r,

we have cri ≤ cr
′

j .

Now we show that some correct process always makes progress in the simulated run. We say that a

process terminates once it reaches line 8. Note that if a process terminates in round r, it does not access

any ISr′ , for r′ > r.

Lemma 16 For all r ∈ N, if there is a correct process reaches round r, eventually some correct non-

terminating process its current phase in round r′ ≥ r.

Proof By contradiction, assume that there is an execution in which some correct non-terminated process

is in round r and no correct non-terminated process ever completes its current phase, i.e., no process pi
ever increases the value of ci[i].clock . Thus, there exists a clock vector c such that ∀r′ ≥ r, pi ∈ Π:

cr
′

i = c.
By Lemma 15, for all pi and r′ ≥ r, |c| = |cri | ≥ r. Consider round r′ = |c| ≥ r. By the assumption,

every correct non-terminated process pi evaluates cr
′

i = c and, by the algorithm, terminates in round

r′—a contradiction. ✷Lemma 16

Now we are ready to prove correctness of our simulation.

109

Theorem 24 Every run R simulated by the algorithm in Figure 9.6 is indistinguishable from a run Rs

of the full information protocol in the AS model in which either every correct (in R) process terminates

or some correct process takes infinitely many steps.

Proof Given R, we construct Rs as follows. Assuming that pi completes its kth phase in r, let W k
i and

Sk
i denote, respectively, the corresponding simulated update and snapshot operations. First we order all

resulting Sk
i according to the round numbers in which they were completed. Then we place each W k

i

just before the first snapshot that contains the kth simulated view of pi.

By Corollary 2, all snapshot outcomes produced in the same round are identical. By Corollary 3,

snapshot outcomes grow with the round numbers. Thus, in Rs, every two snapshots are related by

containment, and every next snapshot is a copy or a superset of the previous one. Furthermore, the Self-

Inclusion property of one-shot IS instances used in the algorithm implies that every Sk
i contains the kth

simulated view of pi. Thus, in Rs, every pi executes the operations appear in the order they take place

in R: W 1
i , S1

i , W 2
i , S2

i ,

By construction, the outcome of every Sr
i contains the most recent written value for each process.

✷Theorem 24

Now suppose that a given distributed task is solvable in the AS model: in every run, every process

eventually reaches a decided state, captured in line 7 of our algorithm.

Assuming, without loss of generality, that a decided process simply stops taking steps, our non-

blocking solution brings the next correct process to the output, then the next one, etc., until every correct

process outputs. Note that there is no loss of generality in assuming that a process stops after producing

an output, since it juts corresponds to the execution in which the process crashes just after deciding.

Therefore, Theorem 24 implies that IIS is equivalent to AS (or, more generally the read-write model)

in terms of task solving:

Corollary 4 A task is solvable in IIS if and only if it is solvable in the read-write asynchronous model.

Note that in the above prove is that we do not use the Immediacy property of IS. Thus, the simulation

would still be correct even if we replace view := ISr.update snapshot(c) in line 4 with ASr.update(c)
followed by view := ASr.snapshot (c).

9.4.2. Geometric representation of IIS

The IIS model allows for a simple geometric representation. All possible runs of one round of IIS can

be represented as a standard chromatic subdivision of the (n− 1)-dimensional simplex.

The example depicted in Figure 9.7 describes the views obtained by three processes, p1, p2, and p3,

after each executes For example, the blue corner of the triangle models the view of p1 in a run where

it only sees itself. The internal points on the blue-green face model the views of p1 and p2 in runs

where they see each other but miss p3. Finally, the internal points of the triangle model the views of the

processes in which they see all three. A triangle in the subdivision models the set of views that can be

obtained in the same run.

As we can see, the resulting views and runs result in a nice simplicial complex that is simply a subdi-

vision of the triangle corresponding to the initial state of the system. Multiple rounds of the IIS model

can thus be represented as an iterated standard chromatic subdivision, where each of the triangles is

subdivided, then each of the resulting triangles is subdivided, etc.

Notice that one round of the (full-information) AS model produces runs that do not fit the subdivision

depicted in Figure 9.7. For example, the AS model allows a run in which p1 only sees itself and p2,

but both p2 and p3 see all three processes. In Figure 9.7 this runs corresponds to the triangle formed

110

(p3), (p2), (p1)

p1 p2

p3

(p1), (p2, p3)

Figure 9.7.: One round of 3-process IIS as a standard chromatic subdivision of a chromatic 2-simplex:

blue vertices model the possible resulting states of p1, green–p2, and red–p3.

by the blue vertex on the face (p1, p2) and the green and read vertices in the interior that overlaps with

other triangles in the subdivision. But since this run does not satisfy the Immediacy property of IS, it is

excluded by the IS model.

The fact that one round of the IS model is captured by the subdivision depicted in Figure 9.7 is obvious

for three processes. More generally, to model runs of the IIS model in a system of n processes, consider

the initial system state s represented as (n−1)-dimensional chromatic simplex s, i.e., a set of n vertices,

each vertex corresponding to a distinct process. Chrs is now defined inductively on the dimension of s.

If s is zero dimensional, which corresponds to a system of only one process, we let Chrs = s.

Suppose now, inductively, that s has dimension n−1, and that we already took the chromatic subdivision

of its (n − 2)-skeleton, i.e., all subsets of size at most n − 1. Take a new (n − 1)-simplex s
′. For each

face t of s, let t̄′ be the complementary face of s′, that is, the face of s′ corresponding to the processes

that do not appear in t. Then every simplex consisting of the vertices t̄′ and the vertices of any simplex

in the chromatic subdivision of t is added to the resulting simplicial complex Chrs. If we iterate this

construction k times we obtain the kth chromatic subdivision, ChrkC .

The fact that Chrs is indeed a subdivided simplex was independently shown by Linial [73] and Ko-

zlov [65].

Bibliographic notes

Borowsky and Gafni [14] introduced the notion of immediate snapshot (IS) and gave the first one-shot

IS implementation for the read-write model.

The task of renaming was originally posed and solved by Attiya et al. [6] for the message-passing

model. The adaptive renaming algorithm in Figure 9.2 is due to Attiya and Welch [9, Chapter 16] who

adapted the algorithm by Attiya et al. [6] to the read-write shared-memory model. Attiya, Gafni and

Fouren [?] showed that this algorithm and several alternative algorithms published at the time expose

exponential (in p) read-write step complexity in some executions. The O(p3) renaming algorithm de-

scribed in Figure 9.4 was proposed by Borowsky and Gafni [14].

Afek, Gafni, Morrison, DC 2007 [AGM07] - wait-free long-lived IS

The IIS simulation of the conventional read-write model is due to Gafni and Rajsbaum [41].

Exercises

1. Show that the IS object does not have a sequential specification.

111

2. Suppose that k processes accessed a one-shot IS objects and obtained sets of distinct sizes 1 ≤
ℓ1 < . . . < ℓs.

Show that ℓs = k and if s ≤ 2, then for all j = 2 . . . , s, the number of processes that obtained a

set of size ℓj is ℓj − ℓj−1.

3. Assuming the full information protocol, show that the IS model is stronger that the AS model:

every run of the IS model can be represented as a run of AS model.

4. Prove that the algorithm described in Figure 9.2 is correct.

5. Does the AS-based renaming algorithm in Figure 9.2 have a run in which n processes output

names 1, 2, . . . , n? What about the IS-based algorithm in Figure 9.4?

112

Part IV.

Consensus objects

113

10. Consensus and universal construction

In the first part of this book, we considered multiple powerful abstractions that can be implemented, in

the wait-free manner, from read-write registers. In this chapter, we address a more general question:

Given object types T and T ′, is there a wait-free implementation of an object of type T
from objects of type T ′?

We define a fundamental consensus object type and show that consensus objects are universal: any object

type can be implemented, in the wait-free manner, using read-write registers and consensus objects.

In the next chapter, we show that read-write register cannot, by themselves, implement a wait-free

consensus object shared by 2 processes and, thus, are not universal even in a system of 2 processes. This

observation brings the notion of a consensus number of a given object type: the maximal number of

processes in which the type is universal.

Overall, in this chapter we give a definition of consensus and demonstrate its power in implementing

arbitrary object types. In the next chapter, we discuss the downside of this abstraction, namely, the

difficulty of its implementations.

10.1. Consensus object: specification

The consensus object type exports an operation propose() that takes one input parameter v in a value

set V (|V | ≥ 2) and returns a value in V . Let ⊥ denote a default value that cannot be proposed by a

process (⊥ /∈ V). Then V ∪ {v}is the set of states a consensus object can take, ⊥ is its initial state,

and its sequential specification is defined in Figure 10.1. A consensus objects can thus be seen as a

“write-once” register that keeps forever the value proposed by the first propose() operation. Then, any

subsequent propose() operation returns the first written value.

Given a linearizable implementation of the consensus object type, we say that a process proposes v if

it invokes propose(v) (we then say that it is a participant in consensus). If the invocation of propose(v)
returns a value v′, we say that the invoking process decides v′, or v′ is decided by the consensus object.

We observe now that any execution of a wait-free linearizable implementation of the consensus object

type satisfies three properties:

• Agreement: no two processes decide different values.

• Validity: every decided value was previously proposed.

Indeed, otherwise, there would be no way to linearize the execution with respect to the sequential

specification in Figure 10.1 which only allows to decide on the first proposed value.

operation propose(v):
if (x = ⊥) then x := v endif;

return (x).

Figure 10.1.: Sequential specification of consensus

115

• Termination: Every correct process eventually decides.

This property is implied by wait-freedom: every process taking sufficiently many steps of the

consensus implementation must decide.

10.2. A wait-free universal construction

In this section, we show that if, in a system of n processes, we can wait-free implement consensus, then

we can implement any total object type.

Recall that a total object type can be represented as a tuple (Q, q0, O,R, δ), where Q is a set of states,

q0 ∈ Q is an initial state, O is a set of operations, R is a set of responses, and δ is a binary relation on

O ×Q × R ×Q, total on O ×Q: (o, q, r, q′) ∈ δ if operation o is applied when the object’s state is q,

then the object can return r and change its state to q′. Note that for non-deterministic object types, there

can be multiple such pairs (r, q′) for given o and q.

The goal of our universal construction is, given an object type τ = (Q,O,R, δ), to provide a wait-free

linearizable implementation of τ using read-write registers and atomic consensus objects.

10.2.1. Deterministic objects

For deterministic object types, δ can be seen as a function O × Q → R × Q that associates each state

an operation with a unique response and a unique resulting state. The state of a deterministic object

is thus determined by a sequence of operations applied to the initial state of the object. The universal

construction of an object of a deterministic type is presented in Figure 10.2.

Every process pi maintains a local variable linearized i that stores a sequence of operations that are

executed on the implemented object do far. Whenever pi has a new operation op to be executed on the

implemented object it “registers” op in the shared memory using a collect object R. As long as pi finds

new operations that were invoked (by pi itself or any other process) but not yet executed in R, it tries to

agree on the order in which operations must be executed using the “next” consensus object C[ki] that was

not yet accessed by pi. If the set of operations returned C[ki] contains op, pi deterministically computes

the response of op using the specification of the implemented object and linearized i. Otherwise, pi
proceeds to the next consensus object C[ki + 1].

Intuitively, this way the processes make sure that their perspectives on the evolution of the imple-

mented object’s state are mutually consistent.

Correctness.

Lemma 17 At all times, for all processes pi and pj , linearized i and linearized j are related by contain-

ment.

Proof We observe that each linearized i is constructed by adding the batches of requests decided by

consensus objects C1, C2, . . ., in that order. The agreement property of consensus (applied to each of

these consensus objects) implies that, for each pj , either linearized i is a prefix of linearized j , or vice

versa. ✷Lemma 17

Lemma 18 Every operation returns in a finite number of its steps.

Proof Suppose, by contradiction, that a process pi invokes an operation op and executes infinitely

many steps without returning. By the algorithm, pi forever blocks in the repeat-until clause in lines 8-

14. Thus, pi proposes batches of requests containing its request (op, i, seq i) to an infinite sequence of

116

Shared objects:

R, collect object, initially ⊥
C1, C2, . . . , consensus objects

Local variables, for each process pi:
integer seqi, initially 0 { the number of executed requests of pi }
integer ki, initially 0 { the number of batches of executed requests }
sequence linearized i, initially empty { the sequence of executed requests }

Code for operation op executed by pi:
6 seqi := seq i + 1
7 R.store(op, i, seq i) { publish the request }
8 repeat

9 V := R.collect() { collect all current requests }
10 requests := V − {linearized i} { choose not yet linearized requests }
11 ki := ki + 1
12 decided := C[ki].propose(requests)
13 linearized i := linearized i.decided { append decided requests }
14 until (op, i, seq i) ∈ linearized i

15 return the result of (op, i, seqi) in linearized i using δ and q0

Figure 10.2.: Universal construction for deterministic objects

consensus instances C1, . . . but the decided batches never contain (op, i, seq i). By validity of consensus,

there exists a process pj 6= pi that accesses infinitely many consensus objects. By the algorithm, before

proposing a batch to a consensus object, pj first collects the batches currently stored by other processes in

a collect object R. Since pi stores its request in R and never updates it since that, eventually, every such

process pj must collect the pi’s request and propose it to the next consensus object. Thus, every value

returned by the consensus objects from some point on must contain the pi’s request—a contradiction.

✷Lemma 18

Theorem 25 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 10.2 describes a wait-free

linearizable implementation of τ using consensus objects and atomic registers.

Proof Let H be the history an execution of the algotihm in Figure 10.2. By Lemma 17, local variables

linearized i are prefixes of some sequence of requests linearized . Let L be the legal sequential history,

where operations and are ordered by linearized and responses are computed using q0 and δ. We con-

struct H ′, a completion of H , by adding responses to the incomplete operations in H that are present in

L. By construction, L agrees with the local history of H ′ for each process.

Now we show that L respects the real-time order of H . Consider any two operations op and op′ such

that op →H op′ and suppose, by contradiction that op′ →L op. Let (op, i, si) and (op′, j, sj) be the

corresponding requests issued by the processes invoking op and op′, respectively. Thus, in linearized ,

(op′, j, sj) appears before (op, i, si), i.e., before op terminates it witnesses (op′, j, sj) being decided

by consensus objects C1, C2, . . . before (op′, j, sj). But, by our assumption, op →H op′ and, thus,

(op′, j, sj) has been stored in the collect object R after op has returned. But the validity property of

consensus does not allow to decide a value that has not yet been proposed—a contradiction. Thus,

op→L op′, and we conclude that H is linearizable. ✷Theorem 25

117

Shared objects:

R, collect object, initially⊥ { published requests }
C1, C2, . . . , consensus objects

S, collect object, initially (1, ǫ) { the current consensus object and the last committed sequence of requests }

Local variables, for each process pi:
integer seq i, initially 0 { the number of executed requests of pi }
integer ki, initially 0 { the number of batches of executed requests }
sequence linearized i, initially ǫ { the sequence of executed requests }

Code for operation op executed by pi:
16 seq i := seq i + 1
17 R.store(op, i, seq i) { publish the request }
18 (ki, linearized i) := max(S.collect()) { get the current consensus object and the most recent state }
19 repeat

20 V := R.collect() { collect all current requests }
21 requests := V − {linearized i} { choose not yet linearized requests }
22 decided := C[ki].propose(requests)
23 linearized i := linearized i.decided { append decided requests }
24 ki := ki + 1
25 until (op, i, seq i) ∈ linearized i

26 S.store((ki + 1, linearized i)) { publish the current consensus object and state }
27 return the result of (op, i, seq i) in linearized i using δ and q0

Figure 10.3.: Bounded wait-free universal construction for deterministic objects

10.2.2. Bounded wait-free universal construction

The implementation described in Figure 10.2 is wait-free but not bounded wait-free. A process may take

arbitrarily many steps in the repeat-until clause in lines 8-14 to “catch up” with the current consensus

object.

It is straightforward to turn this implementation into a bounded wait-free. Before returning an opera-

tion’s response (line 15), a process posts in the shared memory the sequence of requests it has witnessed

committed together with the id of the last consensus object it has accessed. On invoking an operation,

a process reads the memory to get the “most recent” state on the implemented object and the “current”

consensus id. Note that multiple processes concurrently invoking different operations might get the same

estimate of the “current state” of the implementation. In this case only one of them may “win” in the

current consensus instance and execute its request. But we argue that the requests of “lost” processes

must be then committed by the next consensus object, which implies that every operation returns in a

bounded number of its own steps.

The resulting implementation is presented in Figure 10.3.

To prove the following theorem, we recall that collect objects R and S can be implemented with O(n)
read-write step complexity (Chapter 8).

Theorem 26 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 10.3 describes a wait-free

linearizable implementation of τ using consensus objects and atomic registers, where every operation

returns in O(n2) shared-memory steps.

Proof As before, all invoked operations are ordered in the same way using a sequence of consensus

objects, so the proof of linearizability is similar the one of Theorem 25.

To prove bounded wait-freedom, consider a request (op, i, ℓ) issued by a process pi. By the algorithm,

pi first publishes its request and obtains the current state of the implemented object (line 18), denoted k
and s, respectively. Then pi proposes all requests it observes to be proposed but not yet committed to

118

consensus object Ck. If (op, i, ℓ) is committed by Ck, then pi returns after taking O(n) read-write steps

(we assume that both collect operations involve O(n) read-write steps).

Suppose now that (op, i, ℓ) is not committed by Ck. Thus, another process pj has previously proposed

to Ck a set of requests that did not include (op, i, ℓ). Thus, pj collected requests in line 20 before or

concurrently with the store operation in which pi published (op, i, ℓ) (line 17). Moreover, pj did not store

the result of its operation in S (line 26) before pi performed its collect of S in line 18. The situation may

repeat when pi proceeds to consensus object Ck+1, but only if there is another process pk that previously

“won” Ck+1 with a sequence not containing (op, i, ℓ), but has not yet stored its state in S. Note that pk
must be different from pj , otherwise , pj would store ki +1 in S before collecting R which, as (op, i, ℓ)
was not found in R by pj should have happened before of concurrently with the store in S performed by

pi.
There can be at most n−1 processes that may prevent pi from “winning” consensus objects and, thus,

pi may perform at most n−1 iterations in lines 19-25. As each iteration consists of O(n) shared-memory

steps, we get O(n2) step complexity for individual operations. ✷Theorem 26

10.2.3. Non-deterministic objects

The universal construction in Figure 10.2 assumes the object type is deterministic, where for each state

and each operation there exists exactly one resulting state and response pair. Thus, given a sequence of

request, there is exactly one corresponding sequence of responses and state transitions.

A “dumb” way to use our universal construction is to consider any deterministic restriction of the

given object type. But this may not be desirable if we expect the shared object to behave probabilisti-

cally (e.g., in randomized algorithms). A “fair” non-deterministic universal construction can be derived

from the algorithm in Figure 10.3 as follows. Instead of only proposing a sequence of requests in line 22,

process pi (using a local random number generator) proposes a sequence of responses and state transi-

tions corresponding to a sequence of operations requests applied to the last state in linearized i. One of

the proposed sequences of responses and state transitions will “win” the consensus instance and will be

used to compute the new object state.

10.3. Bibliographic notes

The “Byzantine generals” problem, consisting in reaching agreement in a synchronous system of pro-

cesses subject to Byzantine (arbitrary) failures, was introduced by Lamport, Shostak and Pease [84, 71].

Fisher, Lynch, and Paterson considered the problem of reaching agreement in asynchronous crash-prone

systems and introduced the notion of consensus.

Universality of consensus is inspired by the replicated state machine approach proposed by Lam-

port [69] and elaborated by Schneider [88]. The consensus-based universal construction that gives a

wait-free implementation of any (total) sequential type was proposed by Herlihy [48]. Hadzilacos and

Toueg defined a closely related abstraction of total-order broadcast and showed that it is equivalent to

consensus (assuming reliable communication media) [45].

Exercises

1. Show that the two definitions of consensus given in Section are equivalent: a wait-free linearizable

consensus object (Figure 10.1) satisfies the properties of Agreement, Validity and Termination

and, vice versa, any algorithm using atomic base objects satisfying these three properties is a

wait-free linearizable consensus implementation.

119

2. Find an algorithm solving the relaxation of consensus in which only two out of the three properties

are satisfied.

3. Show that the algorithm described in Figure 10.2 is not bounded wait-free.

120

11. Consensus number and the consensus

hierarchy

In the previous chapter, we introduced a notion of a universal object type. Using read-write registers and

objects of a universal type and, one can implement an object of any total type in the wait-free manner.

As we have shown, one example of a universal type is consensus. Therefore, the power of an object type

can be measured by the ability of its objects to implement consensus.

We show in this section that atomic registers cannot implement a consensus object shared by two

processes, thus, the register type is not universal even in a system of two processes. If, however, in

addition to registers, we may use queue objects, then we can implement 2-processe consensus, but not

3-process consensus.

More generally, we introduce the notion of consensus number of an object type T , the largest number

of processes for which T is universal. Consensus numbers are fundamental in capturing the relative

power of object types, and we show how to evaluate the consensus power of various object types.

11.1. Consensus number

The consensus number of an object type T , denoted by cons(T), is the highest number n such that it

is possible to wait-free implement a consensus object from atomic registers and objects of type T , in a

system of n processes. If there is no such largest n, i.e., consensus can be implemented in a system of

arbitrary number of processes, the consensus number of T is said to be infinite.

Note that if there exists a wait-free implementation of an object in a system of n process implies a

wait-free implementation in a system of any n′ < n processes. Thus, the notion of consensus number is

well-defined. By the definition, if cons(T) < cons(T ′), then there is no wait-free implementation of an

object of type T ′ from objects of type T and registers in a system of cons(T) + 1 or more processes.

If atomic registers are strong enough to wait-free implement consensus for any number of processes,

i.e., cons(regiter) = ∞, then all object types would have the same consensus number, and the very

notion of consensus number would be useless. We show below that this is not the case. Moreover, we

show that for each n, there exists object types T , such that cons(T) = n, i.e., the consensus hierarchy

is populated for each level n.

11.2. Preliminary definitions

In this section, we introduce some machinery that is going to be used to compute consensus numbers

of object types. Let us consider an algorithm A that implements a wait-free consensus object assuming

that processes only propose values 0 and 1, we call it a binary consensus object.

11.2.1. Schedule, configuration and valence

We consider a system in which n sequential processes communicate by invoking operations on “base”

atomic (linearizable) objects of types T1, . . . , Tx. As the base objects are atomic, an execution in this

system can be modeled by a sequential history that (1) includes all the operations on base objects issued

121

by the processes (except possibly the last operation of a process if that process crashes), (2) is legal with

respect to the type of each base object, and (3) respects the real time occurrence order on the operations.

Recall that this sequential history is called a linearization.

Schedules and configurations A schedule is a sequence of base-object operations. In the follow-

ing, we assume that the base object types are deterministic and the processes are running deterministic

wait-free consensus algorithms. Thus, we can represent an operation in a schedule only by the identifier

of the process that issues that operation.

A configuration C is a global state of the system execution at a given point in time. It includes the state

of each base object plus the local state of each process. The configuration p(C) denotes the configuration

obtained from C by applying an operation issued by the process p. More generally, given a schedule

S and a configuration C , S(C) denotes the configuration obtained by applying to C the sequence of

operations defining S.

In an input configuration of algorithm A, base objects and processes are in their initial states. In

particular, for binary consensus, the initial state of a process can be 0 or 1, depending on the value the

process is about to propose.

Valence The notion of valence is fundamental in proving consensus impossibility results. Let C be a

configuration resulting after a finite execution of algorithm A.

We say that configuration C is v-valent if every schedule applied to C leads to v as the decided value.

We say that v is the valence of that configuration C . A 0-valent or 1-valent configuration is said to be

monovalent. A configuration that is not monovalent is said to be bivalent.

By the definition, every descendant S(C) of a monovalent configuration C must be monovalent.

Similarly, if a configuration C has a bivalent descendant S(C), then C is bivalent.

Lemma 19 Every configuration of a wait-free consensus implementation A is monovalent or bivalent.

Proof Let S(C) a configuration of A reachable from an initial configuration C by a finite schedule S.

Since the algorithm is wait-free, for any sufficiently long S′, some process must decide in S′(S(C)).
Since only 0 and 1 can be proposed and, thus, decided, the set of values that can be decided in extensions

of S(C) is a non-empty subset of {0, 1}. ✷Lemma 19

Lemma 20 A configuration in which a process decides is monovalent.

Proof By Lemma 19, if a configuration Suppose, by contradiction, that a process p decides v ∈ {0, 1}
in a bivalent configuration S(C). Since C is bivalent, there exists a schedule S′(S(C)) in which value

1− v is decided, contradicting the agreement property of consensus. ✷Lemma 20

The corollary of Lemmas 19 and 20 is that no process can decide in a bivalent configuration.

11.2.2. Bivalent initial configuration

Our next observation is that any wait-free consensus algorithm must have a bilent initial configuration

C . In other words, for some distribution of input values, the decided value may depend on the schedule:

in some S(C), 0 is decided and in some S′(C), 1 is decided.

Lemma 21 Any wait-free consensus implementation for 2 or more processes has a bivalent initial con-

figuration.

122

Proof Let C0 be the initial configuration in which all the processes propose 0, and Ci, 1 ≤ i ≤ n,

the initial configuration in which the processes from p1 to pi propose the value 1, while all the other

processes propose 0. So, all the processes propose 1 in Cn. Thus, any two adjacent configurations Ci−1

and Ci, 1 ≤ i ≤ n, differ only in pi’s proposed value: pi proposes 0 in Ci−1 and 1 in Ci. Moreover, it

follows from the validity property of consensus and Lemma 19, that C0 is 0-valent and Cn is 1-valent.

Let us assume that all configurations C0, . . . , Cn are monovalent. As n ≥ 2, there are two consecutive

configurations Ci−1 and Ci, such that Ci−1 is 0-valent and Ci is 1-valent.

Since the algorithm is wait-free, for any sufficiently long schedule S, some process pj decides in

S(Ci−1), and, since Ci−1 is 0-valent, the decided value must be 0. Let us suppose that pi takes no steps

in S.

But as every process besides pi has the same inputs in Ci−1 and Ci and the states of base objects in

the two initial configurations are identical, no process besides pi can distinguish S(Ci−1) and S(Ci).
Thus, pj must also decide 0 in S(Ci), contradicting the assumption that Ci is 1-valent. ✷Lemma 21

Note that the proof above would work even if we assume that at most one process may initially

crash. In particular, if pi crashes before taking any step, then no other process can distinguish an

execution starting from Ci−1 from an execution starting from Ci.

11.2.3. Critical configurations

We now show that every wait-free consensus algorithm for two or more processes has a critical config-

uration D with the following properties:

• D is bivalent;

• for every process pi, pi(D) is monovalent;

• there exists an object X, such that every process pi is about to access X in its next step in D.

In other words, one step of any given process applied to a critical configuration determines the decision

value.

Lemma 22 Any wait-free consensus implementation A for 2 or more processes has a critical configu-

ration.

Proof By Lemma 21, A has a bivalent initial configuration C . We are going to prove that C has a

critical descendant S(C).

Suppose not, i.e., for every schedule S, there exists pi such that pi(S(C)) is bivalent. Therefore,

starting from C , we inductively construct an infinite schedule S̃ that, when applied to C , only goes

through bivalent configurations: for every its prefix S, S(C) is bivalent. Indeed, let q1 be any process

such that q1(C) is bivalent, q2 be any process such that q2(q1(C)), etc. Then, by Lemma 20, starting

from C , the resulting infinite schedule S̃ = q1, q2, . . . can never reach a configuration in which a process

decides—a contradiction with the assumption that A is a wait-free consensus algorithm.

Thus, C has a bivalent descendant configuration D such that for every pi, pi(D) is monovalent.

Now suppose, by contradiction, that there exist two processes p and q that access different objects in

their next steps enabled in D. We can safely assume that p(D) is 0-valent and q(D) is 1-valent. We

encourage the reader to see why this is the case.

123

Bivalent configuration D

X .OP1() by p

0-valent configuration p(D) 1-valent configuration q(D)

X .OP1() by p

Y .OP2() by q

Y .OP2() by q

q(p(D)) ≡ p(q(D))

Figure 11.1.: Operations issued on distinct objects

Then the steps of p and q applied to D commute, i.e., q(p(D)) and p(q(D)) are identical: in the two

configurations, base-objects states and process states are the same (Figure 11.1).

Since p(D) is 0-valent, q(p(D)) is 0-valent, and since q(D) is 1-valent, p(q(D)) is 1-valent—a con-

tradiction.

Thus, D is indeed a critical configuration of algorithm A. ✷Lemma 22

Note that Lemma 22 holds for any wait-free consensus algorithm. By analyzing steps that pro-

cesses can apply to a critical configuration and using the number of available processes, we can

deduce the consensus number of any given object type.

11.3. Consensus number of atomic registers

Atomic registers are fundamental objects in concurrent shared-memory systems. In this section, we

show that they are however too weak to solve wait-free consensus even for two processes. Put differently,

the consensus number of object type atomic register is 1.

Theorem 27 There does not exist a wait-free consensus implementation for two processes from atomic

registers.

Proof By contradiction, suppose that there exists a wait-free consensus algorithm A for two processes,

p and q, using atomic registers. By Lemma 22, A has a critical configuration D, i.e., D is bivalent, p(D)
and q(D) are monovalent, and the two processes are about to access the same register R in their next

steps enabled in D. Since p(D) and q(D) are the only two one-step descendants of D, it must hold that

p(D) and q(D) have different valences. Without loss of generality, assume that p(D) is 0-valent and

q(D) is 1-valent.

Let OP1 and OP2 be base-object operations performed by, respectively, processes p and q in their next

steps enabled in configuration D.

The following cases are then possible:

• OP1 and OP2 are read operations

As a read operation on an atomic register does not modify its value, this case is the same as the

previous one where p and q access distinct registers.

124

• One of the two operations OP1 and OP2 is a write. Without loss of generality, suppose that q is

about to write in R in D (Figure 11.2).

Consider configurations q(p(D) and q(D). Since p accessed R in OP1 and q writes in R in OP2,

the state of D is the same in the two configurations. Thus, the only difference between the two is

the local state of p: p took one more step after D in q(p(D), but not in q(D).

Schedule S ′ (only by q)

D

W riteq(D) (1-valent)Readp(D) (0-valent)

Writeq(Read
p
(D))

Schedule S ′

q decides

q decides

Figure 11.2.: Read and write issued on the same register

Recall that q(p(D) is 0-valent and q(D) is 1-valent. Take any sufficiently long schedule S only

containing steps of q, such that some process q decides in S(q(p(D))). Since q cannot distinguish

S(q(p(D))) from S(q(D)), it should decide the same value in S(q(D)).

But q(p(D)) is 0-valent and p(D) is 1-valent—a contradiction.

The case when p writes in its next step in D is symmetric.

✷Theorem 27

As solving consensus for one process is trivial, the following result is immediate from Theorem 27.

Corollary 5 cons(atomic-register) = 1

11.4. Objects with consensus numbers 2

In this section, we show that the hierarchy of object types based on consensus numbers is “populated”:

for ever n, there exists an object type T , such that cons(T) = n. We begin with showing that objects

types test&set and queue have consensus number 2.

11.4.1. Consensus from test&set objects

A test&set object stores a binary value, initially 0, and exports a single (atomic) test&set operation that

writes 1 to it and returns the old value. Its sequential specification is defined as follows:

operation X.test&set ():
loc := X;

X := 1;

return (prev).

125

Thus, the first process to access a (non-initialized) test&set object hets 0 (we call it a winner) and all

subsequent processes get 1.

The consensus algorithm described in Figure 11.3 uses one test&set object TS and two 1W1R atomic

registers REG [0] and REG [1].
When the process pi (for convenience, we assume that i ∈ {0, 1}) invokes propose(v) on the consen-

sus object, it “publishers” its input value v in REG [i] (line 1).

Then pi accesses TS (line 2). If it wins, it decides its own input value (line 3). Otherwise, it decides

the value proposed by the other process p1−i (line 4). Intuitively, as exactly one process wins TS, only

the value proposed by the winner can be decided.

operation propose(v) issued by pi:
(1) REG [i] := v;

(2) aux := TS .test&set ();
(3) if (aux = 0) then return (v)
(4) (aux = 1) else return (REG[1− i])

Figure 11.3.: From test&set to consensus

Theorem 28 The algorithm in Figure 11.3 is a wait-free consensus implementation for two processes

using test&set objects and atomic registers.

Proof As every process performs at most three shared-memory steps before deciding, the algorithm is

clearly wait-free.

Let pi be the process that, in a given execution of the algorithm, accesses TS first and decides its

own input value v. By the algorithm, pi previously wrote v in atomic register REG [i]. Thus, p1−i that

accesses TS after pi, will after that find v in REG [i] and return it.

Thus, the two processes can only return that inout value of the winner, and the agreement and validity

properties of consensus are satisfied.. ✷Theorem 28

11.4.2. Consensus from queue objects

Recall that a queue object exports two operations enqueue and dequeue , where enqueue(v) adds

element v to the end of the queue and dequeue() removes the element at the head of the queue and

returns it; if the queue is empty, the default value ⊥ is returned.

A wait-free consensus algorithm for two processes that uses two registers and a queue is presented in

Figure 11.4. The algorithm assume that the queue is initialized with the sequence of items < w, ℓ >.

The first process first to perform a dequeue operation on this queue gets w and considers itself a winner.

As in the previous algorithm, the value proposed by the winner will be decided.

operation propose(v) issued by pi:
(1) REG[i] := v;

(2) aux := Q.dequeue();
(3) if (aux = w) then return (REG [i])
(4) (aux = ℓ) else return (REG [1− i])

Figure 11.4.: From queue to consensus

Using the arguments of the proof of Theorem 28, we obtain:

126

Theorem 29 The algorithm in Figure 11.4 is a wait-free consensus implementation for two processes

using queue objects and atomic registers.

11.4.3. Consensus numbers of test&set and queue

As we have shown, test&set and queue objects , combined with atomic registers, can be used to wait-

free implement consensus in a system of two processes. We show below that the objects have consensus

number 2, i.e., they cannot be used to solve consensus for three or more processes.

Theorem 30 There does not exist a wait-free consensus implementation for three processes from objects

of types in {test&set,queue,atomic-registers}.

Proof By contradiction, suppose that there exists a wait-free consensus algorithm A for two processes,

p, q, and r using atomic registers, test&set objects and queues.

By Lemma 22, A has a critical configuration D, i.e., D is bivalent, p(D), q(D), and r(D) are mono-

valent, and all the three processes are about to access the same object X. Without loss of generality,

assume that p(D) is 0-valent, while q(D) and r(D) are 1-valent.

It is immediate from the proof of Theorem 27 that X must be a test&set object or a queue.

1. X is a test&set object.

The two test&set operations on X performed by p and q result in two configurations q(p(D))
and p(q(D)) that only p and q can distinguish: the state of r and the states of all objects (including

X) are identical in the two configurations.

Consider a schedule S in which r runs solo (neither p nor q appear in S) starting from q(p(D)) and

r decides in S(q(p(D))). Since p(D) is 0-valent, r must decide 0 in S(q(p(D))). But S(q(p(D))
is indistinguishable to r from S(p(q(D)))—a contradiction with the assumption that q(D) is 1-

valent.

2. X is a queue.

Let OPp the operation issued by p that leads from D to p(D), OPq the operation issued by q that

leads from D to q(D), and OPr the operation issued by r that leads from D to r(D).

Here we consider the following possible subcases:

• OPp and OPq are dequeue operations.

Then, regardless of the state of X in D, q(p(D)) and p(q(D)) are identical, except for the

local states of P and q. Thus, in a solo schedule, r can never distinguish two configurations

of opposite valences—a contradiction.

• OPp is an enqueue operation and OPq is a dequeue operation.

If, in configuration D, X is empty, then q(p(D)) and q(D) only differ in the local states of

p and q, and X is left empty in both configurations.

If X is non-empty in D, then q(p(D)) and p(q(D)) are identical.

In both cases, in solo extensions, r cannot distinguish two configurations of opposite valences—

a contradiction.

• Now we are left with the most interesting case: OPp and OPq are enqueue operations, let a
and b be, respectively, the arguments of the two operations.

127

Bivalent configuration D

0-valent configuration p(D) 1-valent configuration q(D)

Q.enqueue(a) by p Q.enqueue(b) by q

Figure 11.5.: enqueue() operations by p and q

Configurations q(p(D)) and p(q(D)) differ only in the state of X: in q(p(D)), the element

enqueued by p precedes the element enqueued by q, and in q(p(D))—vice versa.

Consider a solo schedule of p applied to q(p(D)). To decide, p must be able to distinguish

the run from a run starting applied q(p(D)), p should eventually access X.

Let Sp be the solo schedule of p such that in Sp(q(p(D))), p is about to dequeue element a
it previously enqueued (in operation OPp).

Note that in Sp(q(p(D))) and Sp(p(q(D))) differ only in the state of X and, thus, to decide

in a solo schedule applied to Sp(q(p(D))), q must eventually access X to dequeue its own

element in X enqueued by operation OPq.

Similarly, Let Sq be the solo schedule of p such that in Sq(Sp(q(p(D)))), q is about to

dequeue element b it previously enqueued (in operation OPp).

Finally, we observe that Sq(Sp(q(p(D)))) and Sq(Sp(p(q(D)))) still differ only in the state

of X (Figure 11.5): in the first configuration, X begins with a; b and in the second configuration—

with a; b. Thus, by the dequeue operations of p and q in reversed orders, we obtain two

identical configurations, q(p(Sq(Sp(q(p(D)))))) and p(q(Sq(Sp(p(q(D)))))), of opposite

valences—a contradiction.

k ≥ 0 items

enqueue() side dequeue() sideb a

Figure 11.6.: State of the queue object Q in configuration q(p(D))

✷Theorem ??

Theorems 28, 29, and 30 imply

Corollary 6 cons(test&set) = cons(queue) = 2.

11.5. Objects of n-consensus type

In this section, we show that for each n ∈ N, there exists object types T , such that cons(T) = n, i.e.,

the hierarchy of object types implied by their consensus numbers is populated for each level n.

The sequential specification of the n-consensus object type is given in Figure 11.7. The state of an

n-consensus object is defined by two variables: x (initially ⊥)—the value to be decided and ℓ (initially

0)—the number of propose operations perfomed on the object so far. As with the consensus type,

128

operation propose(v):
ℓ := ℓ+ 1
if (x = ⊥) then x := v
if (ℓ ≤ n) then

return (x);
else

return (⊥);

Figure 11.7.: Consensus specification: sequential execution of popose(v)

the argument of the first propose operation fixes x. However, only first n propose operation return a

decided value. All subsequent operations return ⊥.

We suggest the reader to compute the consensus number of the type, following the lines of the proofs

above:

Theorem 31 For all n ∈ N, cons(n-consensus) = n.

11.6. Objects whose consensus number is +∞

We now complete the picture by showing that some object types have an infinite consensus number:

atomic objects of these types, combined with atomic registers can be used to solve consensus among

any number of processes. We discuss two such object types: compare&swap objects and augmented

queue.

11.6.1. Consensus from compare&swap objects

A compare&swap object that stores a value x exports a single compare&swap() operation that takes

two values as arguments, old and new , with the following sequential specification:

operation compare&swap(old ,new):
prev := x;

if (x = old) then x := new;

return (prev)

From compare&swap objects to consensus Implementing consensus from a single compare&swap

object in a system of any number n of processes is straightforward (Figure 11.8) The base compare&swap

object CS is initialized to ⊥, a default value that cannot be proposed to the consensus object. When a

process proposes a value v, it invokes CS .compare&swap(⊥, v) (line 1). If ⊥ is returned, the process

decides its value (line 2). Otherwise, it decides the value returned by the compare&swap object (line

3).

Theorem 32 cons(compare&swap) =∞.

Proof The algorithm in Figure 11.8 is clearly wait-free. Let pi be the first process to execute CS .compare&swap ()
operation in a given execution. (Recall that “the first” is defined based on the linearization order on op-

erations on CS .) Clearly, any subsequent call of CS.compare&swap () returns the input value of pi
and, thus, only this value can be decided. ✷Theorem 32

129

operation propose(v) issued by pi:
(1) aux := CS .compare&swap(⊥, v);
(2) if aux = ⊥ then return(v)
(3) else return(aux)

Figure 11.8.: From compare&swap to consensus

11.6.2. Consensus from augmented queue objects

An augmented-queue object is a previously considered queue with an additional peek() operation

that returns the first item of the queue without removing it. Intuitively, the object type has infinite

consensus power, as the first element to be enqueued can then be “peeked” and returned as a decision

value (assuming that the queue is initially empty).

operation propose(v) issued by pi:
Q.enqueue(v);
return(Q.peek())

Figure 11.9.: From an augmented queue to consensus

Figure 11.9 gives a simple wait-free implementation of a consensus object from an augmented queue.

The construction is pretty simple. The augmented queue Q is initially empty. A process first enqueues

its input value and then invokes the peek() operation to obtain the first value that has been enqueued.

It is easy to see that the construction works for any number of processes, and we have the following

theorem:

Theorem 33 cons(augmented-queue) =∞.

11.7. Consensus hierarchy

Consensus numbers establish a hierarchy on the power of object types to wait-free implement a con-

sensus object, i.e., to wait-free implement any object defined by a sequential specification on total op-

erations. As we have shown, the lowest level object types (of consensus number 1) include atomic-

registers, the second weakest class of object types (of consensus number 2) includes test&set and

queue, and the strongest class (of consensus number ∞) includes compare&swap and augmented-

queue. We also showed that for all n ∈ N, there are object types, e.g., n-consensus, that have

consensus number exactly n, i.e., every level in the hierarchy is “populated.”

Consensus numbers also allow ranking the power of classical synchronization primitives (provided

by shared memory parallel machines) in presence of process crashes: compare&swap is stronger than

test&set that is, in turn, stronger than atomic read/write operations. Interestingly, they also show that

classical objects encountered in sequential computing such as stacks and queues are as powerful as

the test&set or fetch&add synchronization primitives when one is interested in providing upper layer

application processes with wait-free objects.

Fault-tolerance can be impossible to achieve when the designer is not provided with powerful enough

atomic synchronization operations. As an example, a FIFO queue that has to tolerate the crash of a single

process, cannot be built from atomic registers. This follows from the fact that the consensus number of

a queue is 2, while the he consensus number of atomic registers is 1.

130

Bibliographic notes

The hierarchy of object types based on consensus numbers was originally introduced by Herlihy [48].

The article also contains multiple examples of how the consensus number of an object type can be

computed. Jayanti observed that the consensus hierarchy, as defined originally by Herlihy, is not robust:

there are combinations of lower level types that turn out to be stronger than a higher level type [59]. To

fix this, Jayanti proposes a refined definition that has been used since then. The question of robustness

of the resulting consensus hierarchy remains however open. Lo and Hadzilacos [75] give examples of

non-deterministic types that give a higher level type under composition, but it remains unclear whether

deterministic types are robust.

The impossibility of implementing wait-free consensus for two processes using atomic registers pre-

sented in this chapter involves elements (valence and critical configurations) of the original proof by

Fisher, Lynch and Paterson [34] who showed that even 1-resilient (i.e., tolerating the failure of a sin-

gle process) consensus is impossible to solve in an asynchronous message-passing system. Loui and

Abu-Amara extended the proof to read-write shared-memory systems [77].

In this book, we get the 1-resilient consensus impossibility (Chapter 13) by a simulation-based reduc-

tion to the wait-free impossibility.

Exercises

1. Complete the proof of Lemma 22 by confirming that if a configuration D satisfies the first two

properties of a critical configuration, but not the third one, then there exist descendants p(D) and

q(D) such that p(D) is 0-valent and q(D) is 1-valent.

2. Prove Corollary 6.

131

Part V.

Schedulers

133

12. Failure detectors

As we have seen, only a small set of problems can be solved in an asynchronous fault-prone system. This

chapter focuses on failure detectors, a popular abstraction proposed to overcome these impossibilities.

Informally, a failure detector is a distributed oracle that provides processes with hints about fail-

ures [20]. The notion of a weakest failure detector [19] captures the exact amount of information about

failures needed to solve a given problem: D is the weakest failure detector for solving M if (1) D is

sufficient to solveM, i.e., there exists an algorithm that solvesM using D, and (2) any failure detector

D′ that is sufficient to solveM provides at least as much information about failures asD does, i.e., there

exists a reduction algorithm that extract the output of D using the failure information provided by D′.

One of the most important results in distributed computing was showing that the “eventual leader”

failure detector Ω is necessary and sufficient to solve consensus. The failure detector Ω outputs, when

queried, a process identifier, such that, eventually, the same correct process identifier is output at all

correct processes.

We consider a system of n crash-prone processes that communicate using atomic reads and writes in

shared memory. Recall that in the (binary) consensus problem [34], every process starts with a binary

input and every correct (never-failing) process is supposed to output one of the inputs such that no two

processes output different values. As we know by now, consensus is impossible to solve using reads and

writes in the asynchronous system of two or more processes, as long as at least one process may fail by

crashing. In particular, it is not possible to solve 2-process in the wait-free manner.

12.1. Solving problems with failure detectors

Until now, we assumed that processes are restricted to apply operations on shared objects. In this chapter,

they can also query a failure-detector oracle. But how exactly is this done? An how can we compare

failure detectors based on the amount of information about failures they provide?

We first define formally the failure-detector abstraction as a map from a failure pattern (describing the

failures that actually took place) to failure-detector histories (describing the hints about failures provided

by the failure detector). We then discuss how to solve problems using failure detectors and introduce a

partial order on failure detectors that will allow us to define the notion of a weakest failure detector for

a given problem.

12.1.1. Failure patterns and failure detectors

We assume the existence of a discrete time range T = {0} ∪ N. Each event in an execution is supposed

to take place in a distinct moment of time. Without loss of generality, and with a little abuse of intuition,

we assume that all events in an execution are totally ordered according to the times they occurred.

A failure pattern F is a function from the time range T = {0} ∪ N to 2Π, where F (t) denotes

the set of processes that have crashed by time t. Once a process crashes, it does not recover, i.e.,

∀t : F (t) ⊆ F (t+1). The set of faulty processes in F , ∪t∈TF (t), is denoted by faulty(F). Respectively,

correct(F) = Π − faulty(F). A process p ∈ F (t) is said to be crashed at time t. An environment is a

set of failure patterns. For example, a t-resilient environments consists of all failure patterns in which at

135

most t processes are faulty. Without loss of generality, we assume environments that consists of failure

patterns in which at least one process is correct.

A failure detector history H with rangeR is a function from Π×T toR. Here H(pi, t) is interpreted

as the value output by the failure detector module of process pi at time t.
Finally, a failure detector D with range RD is a function that maps each failure pattern to a (non-

empty) set of failure detector histories with range RD. D(F) denotes the set of possible failure detec-

tor histories permitted by D for failure pattern F .

For example, consider the following failure detectors:

• The perfect failure detector P outputs a set of suspected processes at each process. P ensures

strong completeness: every crashed process is eventually suspected by every correct process, and

strong accuracy: no process is suspected before it crashes.

Formally, for each failure pattern F , and each history H ∈ P(F) ⇔

(

∃t ∈ T ∀p ∈ faulty(F) ∀q ∈ correct(F) ∀t′ ≥ t : p ∈ H(q, t′)
)

∧
(

∀t ∈ T ∀p, q ∈ Π− F (t) : p /∈ H(q, t)
)

• The eventually perfect failure detector ✸P [20] also outputs a set of suspected processes at each

process. But the guarantees provided by ✸P are weaker than those of P. There is a time after

which ✸P outputs the set of all faulty processes at every non-faulty process. More precisely, ✸P
satisfies strong completeness and eventual strong accuracy: there is a time after which no correct

process is ever suspected.

Formally, for each failure pattern F , and each history H ∈ ✸P(F) ⇔

∃t ∈ T ∀p ∈ correct(F) ∀t′ ≥ t : H(p, t′) = faulty(F)

• The leader failure detector Ω [19] outputs the id of a process at each process. There is a time after

which it outputs the id of the same non-faulty process at all non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Ω(F) ⇔

∃t ∈ T ∃q ∈ correct (F) ∀p ∈ correct (F) ∀t′ ≥ t : H(p, t′) = q

• The quorum failure detector Σ [27] outputs a set of processes at each process. Any two sets

(output at any times and at any processes) intersect, and eventually every set consists of only

non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Σ(F) ⇔

(

∀p, p′ ∈ Π ∀t, t′ ∈ TH(p, t) ∩H(p′, t′) 6= ∅
)

∧
(

∀p ∈ correct(F) ∃t ∈ T ∀t′ ≥ t H(p, t′) ⊆ correct(F)
)

.

12.1.2. Algorithms using failure detectors

We now define the notion of an algorithm in systems with failure detectors. Formally, an algorithm A
using a failure detector D is a collection of deterministic automata, one for each process in the system.

LetAi denote the automaton on which process pi runs the algorithmA. Computation proceeds in atomic

steps of A. In each step of A, process pi

136

(i) invokes an atomic operation (read or write) on a shared object and receives a response or queries

its failure detector module Di and receives a value from D, and

(ii) applies its current state, the response received from the shared object or the value output by D to

the automaton Ai to obtain a new state.

A step of A is thus identified by a tuple (pi, d), where d is the failure detector value output at pi during

that step if D was queried, and ⊥ otherwise.

If the state transitions of the automata Ai do not depend on the failure detector values, the algorithm

A is called asynchronous. Thus, for an asynchronous algorithm, a step is uniquely identified by the

process id.

12.1.3. Runs

A state of algorithm A defines the state of each process and each object in the system. An initial state I
of A specifies an initial state for every automaton Ai and every shared object.

A run of algorithm A using a failure detector D in an environment E is a tuple R = 〈F,H, I, S, T 〉
where F ∈ E is a failure pattern, H ∈ D(F) is a failure detector history, I is an initial state of A, S is

an infinite sequence of steps of A respecting the automata A and the sequential specification of shared

objects, and T is an infinite list of increasing time values indicating when each step of S has occurred,

such that for all k ∈ N, if S[k] = (pi, d) with d 6= ⊥, then pi /∈ F (T [k]) and d = H(pi, T [k]).

A run 〈F,H, I, S, T 〉 is fair if every process in correct(F) takes infinitely many steps in S, and k-

resilient if at least n − k processes appear in S infinitely often. A partial run of an algorithm A is a

finite prefix of a run of A.

For two steps s and s′ of processes pi and pj , respectively, in a (partial) run R of an algorithm A, we

say that s causally precedes s′ if in R, and we write s → s′, if (1) pi = pj , and s occurs before s′ in R,

or (2) s is a write step, s′ is a read step, and s occurs before s′ in R, or (3) there exists s′′ in R, such that

s→ s′′ and s′′ → s′.

12.1.4. Consensus

Recall that in the binary consensus problem, every process starts the computation with an input value in

{0, 1} (we say the process proposes the value), and eventually reaches a distinct state associated with

an output value in {0, 1} (we say the process decides the value). An algorithm A solves consensus in

an environment E if in every fair run of A in E , (i) every correct process eventually decides, (ii) every

decided value was previously proposed, and (iii) no two processes decide different values.

Given a an algorithm that solves consensus, it is straightforward to implement an abstraction cons that

can be accessed with an operation propose(v) (v ∈ {0, 1}) returning a value in {0, 1}, and guarantees

that every propose operation invoked by a correct process eventually returns, every returned value was

previously proposed, and no two different values are ever returned.

12.1.5. Implementing and comparing failure detectors

The failure detector abstraction intends to capture the minimal information about failures that suffices

to solve a given problem. But what does “minimal” actually mean? Intuitively, it should mean that any

failure detector that enables solutions to the problem provides at least as much information about fail-

ures. But given that failure detectors can give their hints about failures in arbitrary formats, it becomes

necessary to introduce a way to compare different failure detectors. Here we define a notion of reduction

137

between failure detectors in the algorithmic sense: a failure detector D provides as much information

about failures as failure detector D′ if there is an algorithm that uses D to implements D′.

More precisely, an implementation of a failure detector D in an environment E provides a query

operation to every process that, when invoked, returns a value in RD. It is required that in every run

of the implementation with a failure pattern F ∈ E , there exists a history H ∈ D(F) such that, for all

times t1, t2 ∈ N, if process pi queries D at time t1 and the query returns response d at time t2, then

d = H(pi, t) for some t ∈ [t1, t2].

If, for failure detectors D and D′ and an environment E , there is an implementation of D using D′ in

E , then we say that D is weaker than D′ in E .

12.1.6. Weakest failure detector

Finally, we are ready to define the notion of a weakest failure detector for solving a given problem (in

this section this problem is going to be consensus).

D is a weakest failure detector to solve a problem M (e.g., consensus) in E if there is an algorithm

that solvesM using D in E and D is weaker than any failure detector that can be used to solveM in E .

12.2. Extracting Ω

Let A be an algorithm that solves consensus using a failure detector D. The goal is to construct an

algorithm that emulates Ω using A and D. Recall that to emulate Ω means to output, at each time and at

each process, a process identifiers such that, eventually, the same correct process is always output.

12.2.1. Overview of the Reduction Algorithm

Our reduction algorithm uses the given failure detector D to construct an ever-growing directed acyclic

graph (DAG) that contains a sample of the values output by D in the current run and captures some

temporal relations between them. This DAG can be used by an asynchronous algorithm A′ to simulate

a (possibly finite and “unfair”) run of A. In particular, since the original algorithm A solves consensus,

no two processes can decide differently in a run of A′.

Recall that, using BG-simulation, 2 processes can simulate a 1-resilient run of A′. The fact that wait-

free 2-process consensus is impossible implies that the simulation, when used for all possible inputs

provided to the two simulatore, must produce at least one ”non-deciding” 1-resilient run of A′, i.e., in at

least one simulated 1-resilient run of A′ some process takes infinitely many steps without deciding.

In the reduction algorithm, every correct process locally simulates all executions of BG-simulation

on two processes q1 and q2 that simulate a 1-resilient run of A′ of the whole system Π. Eventually,

every correct process locates a never-deciding run of A′ and uses the run to extract the output of Ω:

it is sufficient to output the process that takes the least number of steps in the “smallest” non-deciding

simulated run of A′. Indeed, exactly one correct process takes finitely many steps in the non-deciding

1-resilient run of A′: otherwise, the run would simulate a fair and thus deciding run of A.

The reduction algorithm extracting Ω from A and D consists of two components that are running in

parallel: the communication component and the computation component. In the communication com-

ponent, every process pi maintains the ever-growing directed acyclic graph (DAG) Gi by periodically

querying its failure detector module and exchanging the results with the others through the shared mem-

ory. In the computation component, every process simulates a set of runs of A using the DAGs and

maintains the extracted output of Ω.

138

Shared variables:

for all pi ∈ Π: Gi, initially empty graph

28 ki := 0
29 while true do

30 for all pj ∈ Π do Gi ← Gi ∪Gj

31 di := query failure detector D
32 ki := ki + 1
33 add [pi, di, ki] and edges from all other vertices

of Gi to [pi, di, ki], to Gi

Figure 12.1.: Building a DAG: the code for each process pi

12.2.2. DAGs

The communication component is presented in Figure 12.1. This task maintains an ever-growing DAG

that contains a finite sample of the current failure detector history. The DAG is stored in a register Gi

which can be updated by pi and read by all processes.

DAG Gi has some special properties which follow from its construction [19]. Let F be the current

failure pattern, and H ∈ D(F) be the current failure detector history. Then a fair run of the algorithm in

Figure 12.1 guarantees that there exists a map τ : Π×RD×N 7→ T, such that, for every correct process

pi and every time t (x(t) denotes here the value of variable x at time t):

(1) The vertices of Gi(t) are of the form [pj , d, ℓ] where pj ∈ Π, d ∈ RD and ℓ ∈ N.

(a) For each vertex v = [pj , d, ℓ], pj /∈ F (τ(v)) and d = H(pj, τ(v)). That is, d is the value

output by pj’s failure detector module at time τ(v).

(b) For each edge (v, v′), τ(v) < τ(v′). That is, any edge in Gi reflects the temporal order in

which the failure detector values are output.

(2) If v = [pj , d, ℓ] and v′ = [pj, d
′, ℓ′] are vertices of Gi(t) and ℓ < ℓ′ then (v, v′) is an edge of

Gi(t).

(3) Gi(t) is transitively closed: if (v, v′) and (v′, v′′) are edges of Gi(t), then (v, v′′) is also an edge

of Gi(t).

(4) For all correct processes pj , there is a time t′ ≥ t, a d ∈ RD and a ℓ ∈ N such that, for every

vertex v of Gi(t), (v, [pj , d, ℓ]) is an edge of Gi(t
′).

(5) For all correct processes pj , there is a time t′ ≥ t such that Gi(t) is a subgraph of Gj(t
′).

The properties imply that ever-growing DAGs at correct processes tend to the same infinite DAG G:

limt→∞Gi(t) = G. In a fair run of the algorithm in Figure 12.1, the set of processes that obtain

infinitely many vertices in G is the set of correct processes [19].

12.2.3. Asynchronous simulation

It is shown below that any infinite DAG G constructed as shown in Figure 12.1 can be used to simulate

partial runs of A in the asynchronous manner: instead of querying D, the simulation algorithm A′ uses

the samples of the failure detector output captured in the DAG. The pseudo-code of this simulation is

139

Shared variables:

V1, . . . , Vn := ⊥, . . . ,⊥,

{for each pj , Vj is the vertex of G
corresponding to the latest simulated step of pj}

Shared variables of A

34 initialize the simulated state of pi in A, based on I ′

35 ℓ := 0
36 while true do

{Simulating the next pi’s step of A}
37 U := [V1, . . . , Vn]
38 repeat

39 ℓ := ℓ+ 1
40 wait until G includes [pi, d, ℓ] for some d
41 until ∀j, U [j] 6= ⊥: (U [j], [pi, d, ℓ]) ∈ G
42 Vi := [pi, d, ℓ]
43 take the next pi’s step ofA using d as the output of D

Figure 12.2.: DAG-based asynchronous algorithmA′: code for each pi

presented in Figure 12.2. The algorithm is hypothetical in the sense that it uses an infinite input, but this

requirement is relaxed later.

In the algorithm, each process pi is initially associated with an initial state of A and performs a

sequence of simulated steps of A. Every process pi maintains a shared register Vi that stores the vertex

of G used for the most recent step of A simulated by pi. Each time pi is about to perform a step of A it

first reads registers V1, . . . , Vn to obtain the vertexes of G used by processes p1, . . . , pn for simulating

the most recent causally preceding steps ofA (line 37 in Figure 12.2). Then pi selects the next vertex of

G that succeeds all vertices (lines 82-91). If no such vertex is found, pi blocks forever (line 40).

Note that a correct process pi may block forever if G contains only finitely many vertices of pi. As a

result an infinite run of A′ may simulate an unfair run of A: a run in which some correct process takes

only finitely many steps. But every finite run simulated by A′ is a partial run of A.

Theorem 34 Let G be the DAG produced in a fair run R = 〈F,H, I, S, T 〉 of the communication

component in Figure 12.1. Let R′ = 〈F ′,H ′, I ′, S′, T ′〉 be any fair run of A′ using G. Then the

sequence of steps simulated by A′ in R′ belongs to a (possibly unfair) run of A, RA, with input vector

of I ′ and failure pattern F . Moreover, the set of processes that take infinitely many steps in RA is

correct(F) ∩ correct (F ′), and if correct(F) ⊆ correct (F ′), then RA is fair.

Proof Recall that a step of a process pi can be either a memory step in which pi accesses shared

memory or a query step in which pi queries the failure detector. Since memory steps simulated inA′ are

performed as in A, to show that algorithm A′ indeed simulates a run of A with failure pattern F , it is

enough to make sure that the sequence of simulated query steps in the simulated run (using vertices of

G) could have been observed in a run RA of A with failure pattern F and the input vector based on I ′.
Let τ be a map associated with G that carries each vertex of G to an element in T such that (a) for

any vertex v = [p, d, ℓ] of G, p /∈ F (τ(v)) and d = H(pj, τ(v)), and (b) for every edge (v, v′) of G,

τ(v) < τ(v′) (the existence of τ is established by property (5) of DAGs in Section 12.2.2). For each step

s simulated by A′ in R′, let τ ′(s) denote time when step s occurred inR′, i.e., when the corresponding

line 43 in Figure 12.2 was executed, and v(s) be the vertex of G used for simulating s, i.e., the value of

Vi when pi simulates s in line 43 of Figure 12.2.

140

Consider query steps si and sj simulated by processes pi and pj , respectively. Let v(si) = [pi, di, ℓ]
and v(sj) = [pj , dj ,m]. WLOG, suppose that τ([pi, di, ℓ]) < τ([pj , dj ,m]), i.e., D outputs di at pi
before outputting dj at pj .

If τ ′(si) < τ ′(sj), i.e., si is simulated by pi before sj is simulated by pj , then the order in which si
and sj see value di and dj is the run produced by A′ is consistent with the output of D, i.e., the values

di and dj indeed could have been observed in that order.

Suppose now that τ ′(si) > τ ′(sj). If si and sj are not causally related in the simulated run, then R′

is indistinguishable from a run in which si is simulated by pi before sj is simulated by pj . Thus, si and

sj can still be observed in a run of A.

Now suppose, by contradiction that τ ′(si) > τ ′(sj) and sj causally precedes si in the simulated run,

i.e., pj simulated at least one write step s′j after sj , and pi simulated at least one read step s′i before si,
such that s′j took place before s′i in R′. Since before performing the memory access of s′j , pj updated

Vj with a vertex v(s′j) that succeeds v(sj) in G (line 42), and s′i occurs in R′ after s′j , pi must have

found v(s′j) or a later vertex of pj in Vj before simulating step si (line 37) and, thus, the vertex of

G used for simulating si must be a descendant of [pj , dj ,m], and, by properties (1) and (3) of DAGs

(Section 12.2.2), τ([pi, di, ℓ]) > τ([pj , dj ,m]) — a contradiction. Hence, the sequence of steps of A
simulated in R′ could have been observed in a run RA of A with failure pattern F .

Since in A′, a process simulates only its own steps of A, every process that appears infinitely often

in RA is in correct (F ′). Also, since each faulty in F process contains only finitely many vertices in

G, eventually, each process in correct(F ′) − correct(F) is blocked in line 40 in Figure 12.2, and,

thus, every process that appears infinitely often in RA is also in correct (F). Now consider a process

pi ∈ correct (F ′) ∩ correct (F). Property (4) of DAGs implies that for every set V of vertices of G,

there exists a vertex of pi in G such that for all v′ ∈ V , (v′, v) is an edge in G. Thus, the wait statement

in line 40 cannot block pi forever, and pi takes infinitely many steps in RA.

Hence, the set of processes that appear infinitely often in RA is exactly correct (F ′) ∩ correct(F).
Specifically, if correct (F) ⊆ correct(F ′), then the set of processes that appear infinitely often in RA is

correct(F), and the run is fair. ✷Theorem 34

Note that in a fair run, the properties of the algorithm in Figure 12.2 remain the same if the infinite

DAG G is replaced with a finite ever-growing DAG Ḡ constructed in parallel (Figure 12.1) such that

limt→∞ Ḡ = G. This is because such a replacement only affects the wait statement in line 40 which

blocks pi until the first vertex of pi that causally succeeds every simulated step recently ”witnessed”

by pi is found in G, but this cannot take forever if pi is correct (properties (4) and (5) of DAGs in

Section 12.2.2). The wait blocks forever if the vertex is absent in G, which may happen only if pi is

faulty.

12.2.4. BG-simulation

Borowsky and Gafni proposed in [13, 15], a simulation technique by which k+1 simulators q1, . . . , qk+1

can wait-free simulate a k-resilient execution of any asynchronous n-process protocol. Informally, the

simulation works as follows. Every process qi tries to simulate steps of all n processes p1, . . . , pn in a

round-robin fashion. Simulators run an agreement protocol to make sure that every step is simulated at

most once. Simulating a step of a given process may block forever if and only if some simulator has

crashed in the middle of the corresponding agreement protocol. Thus, even if k out of k + 1 simulators

crash, at least n− k simulated processes can still make progress. The simulation thus guarantees at least

n− k processes in {p1, . . . , pn} accept infinitely many simulated steps.

In the computational component of the reduction algorithm, the BG-simulation technique is used as

follows. Let BG(A′) denote the simulation protocol for 2 processes q1 and q2 which allows them to

141

r := 0
repeat

r := r + 1
if G contains [pi, d, ℓ] for some d then u := 1
else u := 0
v := consi,ℓr .propose(u)

until v = 1

Figure 12.3.: Expanded line 40 of Figure 12.2: waiting until G includes a vertex [pi, d, ℓ] for some d. Here G is

any DAG generated by the algorithm in Figure 12.1.

simulate, in a wait-free manner, a 1-resilient execution of algorithm A′ for n processes p1, . . . , pn. The

complete reduction algorithm thus employs a triple simulation: every process pi simulates multiple

runs of two processes q1 and q2 that use BG-simulation to produce a 1-resilient run of A′ on processes

p′1, . . . , p
′
n in which steps of the original algorithm A are periodically simulated using (ever-growing)

DAGs G1, ..., Gn. (To avoid confusion, we use p′j to denote the process that models pj in a run of A′

simulated by a “real” process pi.)

We are going to use the following property which is trivially satified by BG-simulation:

(BG0) A run of BG-simulation in which every simulator take infinitely many steps simulates a run in

which every simulated process takes infinitely many steps.

12.2.5. Using consensus

The triple simulation we are going to employ faces one complication though. The simulated runs of

the asynchronous algorithm A′ may vary depending on which process the simulation is running. This

is because G1, ..., Gn are maintained by a parallel computation component (Figure 12.1), and a process

simulating a step ofA′ may perform a different number of cycles reading the current version of its DAG

before a vertex with desired properties is located (line 40 in Figure 12.2). Thus, the same sequence of

steps of q1 and q2 simulated at different processes may result in different 1-resilient runs of A′: waiting

until a vertex [pi, d, ℓ] appears in Gj at process pj may take different number of local steps checking Gj ,

depending on the time when pj executes the wait statement in line 40 of Figure 12.2.

To resolve this issue, the wait statement is implemented using a series of consensus instances cons
i,ℓ
1 ,

cons
i,ℓ
2 , . . . (Figure 12.3). If pi is correct, then eventually each correct process will have a vertex [pi, d, ℓ]

in its DAG and, thus, the code in Figure 12.3 is non-blocking, and Theorem 34 still holds. Furthermore,

the use of consensus ensures that if a process, while simulating a step of A′ at process pi, went through

r steps before reaching line 91 in Figure 12.2, then every process simulating this very step does the

same. Thus, a given sequence of steps of q1 and q2 will result in the same simulated 1-resilient run of

A′, regardless of when and where the simulation is taking place.

12.2.6. Extracting Ω

The computational component of the reduction algorithm is presented in Figure 12.4. In the component,

every process pi locally simulates multiple runs of a system of 2 processes q1 and q2 that run algorithm

BG(A′), to produce a 1-resilient run of A′ (Figures 12.2 and 12.3). Recall that A′, in its turn, simulates

a run of the original algorithm A, using, instead of D, the values provided by an ever-growing DAG

G. In simulating the part of A′ of process p′i presented in Figure 12.3, q1 and q2 count each access of a

142

44 for all binary 2-vectors J0 do

{ For all possible consensus inputs for q1 and q2 }
45 σ0 := the empty string

46 explore(J0, σ0)

47 function explore(J, σ)
48 for all qj = q1, q2 do

49 ρ := empty string

50 repeat

51 ρ := ρ · qj
52 let p′ℓ be the process that appears the least in SCHA′(J, σ · ρ)
53 Ω−output := pℓ
54 until STA(J, σ · ρ) is decided

55 explore(J, σ · q1)
56 explore(J, σ · q2)

Figure 12.4.: Computational component of the reduction algorithm: code for each process pi. Here STA(J, σ)
denotes the state ofA reached by the partial run ofA′ simulated in the partial run of BG(A′) with

schedule σ and input state J , and SCHA′(J, σ) denotes the corresponding schedule of A′.

consensus instance cons
i,ℓ
r as one local step of p′i that need to be simulated. Also, in BG(A′), when qj

is about to simulate the first step of p′i, qj uses its own input value as an input value of p′i.
For each simulated state S of BG(A′), pi periodically checks whether the state ofA in S is deciding,

i.e., whether some process has decided in the state of A in S. As we show, eventually, the same infinite

non-deciding 1-resilient run of A′ will be simulated by all processes, which allows for extracting the

output of Ω.

The algorithm in Figure 12.4 explores solo extensions of q1 and q2 starting from growing prefixes.

Since, by property (BG0) of BG-simulation (Section 12.2.4), a run of BG(A′) in which both q1 and q2
participate infinitely often simulates a run of A′ in which every pj ∈ {p

′
1, . . . , p

′
n participates infinitely

often, and, by Theorem 34, such a run will produce a fair and thus deciding run of A. Thus, if there is

an infinite non-deciding run simulated by the algorithm in Figure 12.2, it must be a run produced by a

solo extension of q1 or q2 starting from some finite prefix.

Lemma 23 The algorithm in Figure 12.4 eventually forever executes lines 50–54.

Proof Consider any run of the algorithm in Figures 12.1, 12.3 and 12.4. Let F be the failure pattern of

that run. Let G be the infinite limit DAG approximated by the algorithm in Figure 12.1. By contradiction,

suppose that lines 50–54 in Figure 12.4 never block pi.
Suppose that for some initial J0, the call of explore(J0 , σ0) performed by pi in line 46 never returns.

Since the cycle in lines 50–54 in Figure 12.4 always terminates, there is an infinite sequence of recursive

calls explore(J0 , σ0), explore(J0, σ1), explore(J0 , σ2), . . ., where each σℓ is a one-step extension of

σℓ−1. Thus, there exists an infinite never deciding schedule σ̃ such that the run of BG(A′) based on σ̃
and J0 produces a never-deciding run ofA′. Suppose that both q1 and q2 appear in σ̃ infinitely often. By

property (BG0) of BG-simulation (Section 12.2.4), a run of BG(A′) in which both q1 and q2 participate

infinitely often simulates a run ofA′ in which every pj ∈ {p
′
1, . . . , p

′
n} participates infinitely often, and,

by Theorem 34, such a run will produce a fair and thus deciding run of A— a contradiction.

Thus, if there is an infinite non-deciding run simulated by the algorithm in Figure 12.2, it must be a

run produced by a solo extension of q1 or q2 starting from some finite prefix. Let σ̄ be the first such prefix

in the order defined by the algorithm in Figure 12.2 and qℓ be the first process whose solo extension of

143

σ is never deciding. Since the cycle in lines 50–54 always terminates, the recursive exploration of finite

prefixes σ in lines 55 and 56 eventually reaches σ̄, the algorithm reaches line 49 with σ = σ̄ and qj = qℓ.
Then the succeeding cycle in lines 50–54 never terminates — a contradiction.

Thus, for all inputs J0, the call of explore(J0 , σ0) performed by pi in line 46 returns. Hence, for every

finite prefix σ, any solo extension of σ produces a finite deciding run ofA. We establish a contradiction,

by deriving a wait-free algorithm that solves consensus among q1 and q2.

Let G̃ be the infinite limit DAG constructed in Figure 12.1. Let β be a map from vertices of G̃ to N
defined as follows: for each vertex [pi, d, ℓ] in G, β([pi, d, ℓ]) is the value of variable r at the moment

when any run of A′ (produced by the algorithm in Figure 12.2) exits the cycle in Figure 12.3, while

waiting until [pi, d, ℓ] appears in G. If there is no such run, β([pi, d, ℓ]) is set to 0. Note that the use

of consensus implies that if in any simulated run of A′, [pi, d, ℓ] has been found after r iterations, then

β([pi, d, ℓ]) = r, i.e., β is well-defined.

Now we consider an asynchronous read-write algorithm A′
β that is defined exactly likeA′, but instead

of going through the consensus invocations in Figure 12.3, A′
β performs β([pi, d, ℓ]) local steps. Now

consider the algorithm BG(A′
β) that is defined exactly as BG(A′) except that in BG(A′

β), q1 and q2
BG-simulate runs of A′

β. For every sequence σ of steps of q1 and q2, the runs of BG(A′) and BG(A′
β)

agree on the sequence of steps of p′1, . . . , p
′
n in the corresponding runs of A′ and A′

β , respectively.

Moreover, they agree on the runs of A resulting from these runs of A′ and A′
β . This is because the

difference between A′ and A′
β consist only in the local steps and does not affect the simulated state of

A.

We say that a sequence σ of steps of q1 and q2 is deciding with J0, if, when started with J0, the run of

BG(A′
β) produces a deciding run ofA. By our hypothesis, every eventually solo schedule σ is deciding

for each input J0. As we showed above, every schedule in which both q1 and q2 appear sufficiently often

is deciding by property (BG0) of BG-simulation. Thus, every schedule of BG(A′
β) is deciding for all

inputs.

Consider the trees of all deciding schedules of BG(A′
β) for all possible inputs J0. All these trees

have finite branching (each vertex has at most 2 descendants) and finite paths. By König’s lemma, the

trees are finite. Thus, the set of vertices of G̃ used by the runs of A′ simulated by deciding schedules of

BG(A′
β) is also finite. Let Ḡ be a finite subgraph of G̃ that includes all vertices of G̃ used by these runs.

Finally, we obtain a wait-free consensus algorithm for q1 and q2 that works as follows. Each qj runs

BG(A′
β) (using a finite graph Ḡ) until a decision is obtained in the simulated run of A. At this point, qj

returns the decided value. But BG(A′
β) produces only deciding runs of A, and each deciding run of A

solves consensus for inputs provided by q1 and q2 — a contradiction. ✷Lemma 23

Theorem 35 In all environments E , if a failure detector D can be used to solve consensus in E , then Ω
is weaker than D in E .

Proof Consider any run of the algorithm in Figures 12.1, 12.3 and 12.4 with failure pattern F .

By Lemma 23, at some point, every correct process pi gets stuck in lines 50–54 simulating longer

and longer qj-solo extension of some finite schedule σ with input J0. Since, processes p1, . . . , pn use

a series of consensus instances to simulate runs of A′ in exactly the same way, the correct processes

eventually agree on σ and qj .
Let e be the sequence of process identifiers in the 1-resilient execution of A′ simulated by q1 and q2

in schedule σ · (qj) with input J0. Since a 2-process BG-simulation produces a 1-resilient run of A′, at

least n− 1 simulated processes in p′1, . . . , p
′
n appear in e infinitely often. Let U (|U | ≥ n− 1) be the set

of such processes.

Now we show that exactly one correct (in F) process appears in e only finitely often. Suppose not,

i.e., correct(F) ⊆ U . By Theorem 34, the run of A′ simulated a far run of A, and, thus, the run must

144

be deciding — a contradiction. Since |U | ≥ n − 1, exactly one process appears in the run of A′ only

finitely often. Moreover, the process is correct.

Thus, eventually, the correct processes in F stabilize at simulating longer and longer prefixes of

the same infinite non-deciding 1-resilient run of A′. Eventually, the same correct process will be ob-

served to take the least number of steps in the run and output in line 53 — the output of Ω is extracted.

✷Theorem 35

12.3. Implementing Ω in an eventually synchronous shared

memory system

12.3.1. Introduction

This chapter presents a simple algorithm that constructs an omega object in a system of n asynchronous

processes that cooperate by reading and writing 1WMR regular registers.

An impossibility Let us first observe that, differently from the alpha objects, an omega object cannot

be implemented from atomic registers in a pure asynchronous system.

Theorem 36 There is no algorithm that constructs an omega object in a system of n asynchronous

processes that communicate by reading and writing atomic registers.

Proof The proof is by contradiction. Let us assume that there is an algorithm A that implements omega

in a system of n asynchronous processes that communicate by reading and writing atomic registers. We

have seen in the previous chapter that regular registers allows constructing an alpha object. As atomic

registers are stronger than regular registers, it follows that atomic registers allows building an alpha

object. Moreover, the algorithm presented in chapter ??(9) constructs a consensus object for any number

n of processes from an alpha object and an omega object. It follows that a n process consensus object

can be built from atomic registers. This contradicts the fact that atomic registers have consensus number

1. ✷Theorem 36

An additional assumption The previous theorem indicates that additional assumptions on the sys-

tem are necessary in order to build an omega object. This chapter considers the following assumption

and shows that it is sufficient to build omega from 1WMR regular registers.

[Eventually synchronous shared memory system] There is a time after which there are

a positive lower bound and an upper bound for a process to execute a local step, a read or a

write of a shared register.

It is important to notice that the values of the lower and upper bounds, and the time after which these

values become the actual lower and upper bounds are not known. The (finite but unknown) time after

which the previous property is satisfied is called global stabilization time (GST).

12.3.2. An omega construction

Underlying principle. The algorithm that, based on the previous assumption on the system behav-

ior, build an eventual leader oracle is described in Figure 12.5. Its underlying design principles is the

following: each process pi strives to elect as the leader the process with the smallest identity that it

145

considers as being alive. As a process pi never considers itself as crashed, at any time, the process it

elects as its current leader has necessarily an identity j such that j ≤ i. The identity of the process that

pi considers leader is stored in a local variable leaderi.

when leader() is invoked by pi: return (leaderi)

Background task T :

(1) while (true) do

(2) if (leaderi = i) then PROGRESS[i]← PROGRESS[i] + 1;

(3) l clocki ← l clocki + 1;

(4) if (l clocki = next checki) then

(5) then has ldi ← false;

(6) for j from 1 to (i− 1) do

(7) if (PROGRESS[j] > lasti[j]) then

(8) lasti[j]← PROGRESS[j];
(9) if (leaderi 6= j) then delayi ← 2× delayi;
(10) next checki ← next checki + delayi;
(11) leaderi ← j;

(12) has ldi ← true ;

(13) exit for loop

(14) if (¬has ldi) then leaderi ← i;

Figure 12.5.: Implementing Ω in an eventually synchronous shared memory system

Shared memory. The shared memory is composed of an array of n reliable 1WMR regular reg-

isters containing integer values. This array, denoted PROGRESS[1..n], is initialized to [0, . . . , 0].
Only pi can write PROGRESS[i]. Any process can read any register PROGRESS[j]. The register

PROGRESS[i] is used by pi to inform the other processes about its status.

Process behavior. First, when a process pi considers it is leader, it repeatedly increments its register

PROGRESS[i] in order to let the other processes know that it has not crashed (while loop and line 2).

Whether it is or not a leader, a process pi increments a local variable l clocki (initialized to 0) at each

step of the infinite while loop (line 3). This variable can be seen as a local clock that pi uses to measure

its local progress.

It is possible that pi be very rapid and increments very often l clocki, while its current leader pj
is slow and two of its consecutive increments of PROGRESS[j] are separated by a long period of

time. This can direct pi to suspect pj to have crashed, and consequently to select another leader with

a possibly greater id. To prevent such a bad scenario from occurring, each process pi handles another

local variable denoted next checki (initialized to an arbitrary positive value, e.g., 1). This variable is

used by pi to compensate the possible drift between l clocki and PROGRESS[j]. More precisely, pi
tests if its leader has changed only when l clocki = next checki. Moreover, pi increases the duration

(denoted delayi and initialized to any positive value) between two consecutive checks (lines 9) when it

discovers that its leader has changed. In all cases, it schedules the the logical date next checki at which

it will check again for leadership (line 10).

So, the core of its algorithm (lines 6-??), that consists for pi in checking if its leader has changed and a

new leader has to be defined, is executed only when l clocki = next checki. For doing this check, each

pi maintains a local array lasti[1..(i − 1)] such that lasti[j] stores the last value of PROGRESS[j] it

has previously read (line 8). Moreover, when it tries to define its leader, pi checks the processes always

146

starting from p1 until pi−1 (line 6). It stops at the first process pj that did some progress since the last

time pi read PROGRESS[j] (line 7). If there is such a process pj , pi considers it as its (possibly)

new leader (line 11). If pj was not its previous leader, pi considers that it previously did a mistake

and consequently increases the delay separating two checks for leadership (line 9). In all cases, it then

updates the logical date at which it will test again for leadership (increase of next checki at line 10). If,

pi sees no progress from any pj such that j < i, it considers itself as the leader (line 14).

A property. This algorithm enjoys a very nice property: it is timer-free. No process is required to

use a physical local clock. This means that, while the correctness of the algorithm rests on a behavioral

property of the underlying shared memory system (eventual synchrony), benefiting from that property

does not require a special equipment (such as local physical clocks).

12.3.3. Proof of correctness

The validity and termination properties defining the eventual leader service are easy and left to the reader.

We focus here only on the proof of the eventual leadership property.

Theorem 37 Let us assume that there is a time after which there are a lower bound and an upper bound

for any process to execute a local step, a read or a write of a shared register. The algorithm described

in Figure 12.5 eventually elects a single leader that is a correct process.

Proof Let t1 be the time after with there are a lower bound and an upper bound on the time it take

for a process to execute a local step, a read or a write of a shared register (global stabilization time).

Moreover, let t2 be the time after which no more process crashes. Finally let t = max(t1, t2), and pℓ
be the correct process with the smallest id. We show that, from some time after t, pℓ is elected by any

process pi.

Let us first observe that there is a time t′ > t after which no process pk, such that k < ℓ, competes

with the other processes to be elected as a leader. This follows from the following observations:

- After t, pk has crashed and consequently PROGRESS[k] is no longer increased.

- After t, for each process pi, there is a time after which the predicate lasti[k] = PROGRESS[k] re-

mains permanently satisfied, and consequently, pi never executes the lines 8-13 with j = k, from which

we conclude that pk can no longer be elected as a leader by any process pi.

It follows that after some time t′ > t, as no process pk (k < ℓ) increases its clock PROGRESS[k],
pℓ always exits the for loop (lines 6-??) with has ldℓ = false , and considers itself as the permanent and

definitive leader (line 14). Consequently, from t′, pℓ increases PROGRESS[ℓ] each time it executes

the while loop (lines 1-??).

We claim that there is a time after which, each time a process pi executes the for loop (lines 6-??),

we have PROGRESS[ℓ] > lasti[ℓ] (i.e., pi does not miss increases of PROGRESS[ℓ]). It directly

follows from this claim, line 11 (where leaderi is now always set to ℓ), and the fact that all processes pk
such that k < ℓ have crashed, that pi always considers pℓ as its leader, which proves the theorem.

Proof of the claim. To prove the claim, let us define two critical values. Both definitions consider

durations after t′, i.e., after the global stabilization time (so, both values are bounded).

• Let ∆w(ℓ) be the longest duration, after t′, separating two increases of PROGRESS [ℓ].

• Let ∆r(i, ℓ) be the shortest duration, after t′, separating two consecutive reading by pi of PROGRESS [ℓ].

147

We have to show that, after some time and for any pi, ∆r(i, ℓ) > ∆w(ℓ) remains permanently true, i.e.,

we have to show that after some time the predicate lasti[ℓ] < PROGRESS[ℓ] is true each time it is

evaluated by pi.
Let us first observe that, as pℓ continuously increases PROGRESS[ℓ], the locally evaluated pred-

icate lasti[ℓ] < PROGRESS[ℓ] is true infinitely often. If lasti[ℓ] < PROGRESS[ℓ] is true while

leaderi 6= ℓ, pi doubles the duration delayi (line 9) before which it will again check for a leader (line

4). This ensures that eventually we will have a time after which ∆r(i, ℓ) > ∆w(ℓ) remains true forever.

End of the proof of the claim. ✷Theorem 37

12.3.4. Discussion

Write optimality. In addition to its design simplicity, and its timer-free property, the proposed algo-

rithm has another noteworthy property related to efficiency, namely, it is write-optimal. This means that

there is a finite time after which only one process keeps on writing the shared memory. Let us observe

that this is the best that can be done as at least one process has to write forever the shared memory (if

after some time no process writes the shared memory, there is no way for the processes to know whether

the current leader has crashed or is still alive).

Theorem 38 The algorithm described in Figure 12.5 is write-optimal.

Proof During the “anarchy” period before the global stabilization time, it is possible that different

processes have different leaders, and that each process has different leaders at different times. Theorem

37 has shown that such an anarchy period always terminates when the underlying shared memory system

satisfies the “eventually synchronous” property.

To show that the algorithm is write-optimal, let us first observe that, each time a process pj considers

it is a leader, it increments its global clock PROGRESS[j]. It follows that when several processes

consider they are leaders, several shared registers PROGRESS[−] are increased. Interestingly, after

the common correct leader has been elected, a single 1WMR register keeps on being increased. This

means that a single shared register keeps growing, while the (n−1) other shared registers stop growing.

Consequently, the algorithm is communication-efficient. It follows that it is optimal with respect to this

criterion (as at least one process has to continuously inform the others that it is alive). ✷Theorem 38

Another synchrony assumption. The reader can also check that the “eventual synchrony” as-

sumption can be replaced by the following assumption: there is a time after which there is an upper

bound τ on the ratio of the relative speed of any two non-crashed processes. Such a bound-based as-

sumption can be seen as another way to place a limitation on the uncertainty created by the combined

effect of asynchrony and failures that allows building an omega object.

12.4. Bibliographic Notes

Chandra et al. derived the first “weakest failure detector” result by showing that Ω is necessary to

solve consensus in the message-passing model in their fundamental paper [19]. The result was later

generalized to the read-write shared memory model [76, 43].

The proof technique in [19] establishes a framework for determining the weakest failure detector for

any problem. The reduction algorithm of [19] works as follows. LetD be any failure detector that can be

used to solve consensus. Processes periodically query their modules of D, exchange the values returned

by D, and arrange the accumulated output of the failure detector in the form of ever-growing directed

148

acyclic graphs (DAGs). Every process periodically uses its DAG as a stimulus for simulating multiple

runs of the given consensus algorithm. It is shown in [19] that, eventually, the collection of simulated

runs will include a critical run in which a single process p “hides” the decided value, and, thus, no

extension of the run can reach a decision without cooperation of p. As long as a process performing

the simulation observes a run that the process suspects to remain critical, it outputs the “hiding” process

identifier of the “first” such run as the extracted output of Ω. The existence of a critical run and the fact

that the correct processes agree on ever-growing prefixes of simulated runs imply that, eventually, the

correct processes will always output the identifier of the same correct process.

Crucially, the existence of a critical run is established in [19] using the notion of valence [34]: a

simulated finite run is called v-valent (v ∈ {0, 1}) if all simulated extensions of it decide v. If both

decisions 0 and 1 are “reachable” from the finite run, then the run is called bivalent. Recall that in [34],

the notion of valence is used to derive a critical run, and then it is shown that such a run cannot exist in

an asynchronous system, implying the impossibility of consensus. In [19], a similar argument is used to

extract the output of Ω in a partially synchronous system that allows for solving consensus. Thus, in a

sense, the technique of [19] rehashes arguments of [34]. In contrast, in this chapter we derive Ω based

on the very fact that 2-process wait-free consensus is impossible.

The technique presented in this chapter builds atop two fundamental results. The first is the celebrated

BG-simulation [13, 15] that allows k + 1 processes simulate, in a wait-free manner, a k-resilient run of

any n-process asynchronous algorithm. The second is a brilliant observation made by Zieliński [103]

that any run of an algorithm A using a failure detector D induces an asynchronous algorithm that simu-

lates (possibly unfair) runs ofA. The recursive structure of the algorithm in Figure 12.4 is also borrowed

from [103]. Unlike [102], however, the reduction algorithm of this chapter assumes the conventional

read-write memory model without using immediate snapshots [14]. Also, instead of growing ”prece-

dence” and ”detector” maps of [103], this chapter uses directed acyclic graphs á la [19].

A related problem is determining the weakest failure detector for a generalization of consensus, (n, k)-
set agreement, in which n processes have to decide on at most k distinct proposed values. The weakest

failure detector for (n, 1)-set agreement (consensus) is Ω. For (n, n − 1)-set agreement (sometimes

called simply set agreement in the literature), it is anti-Ω, a failure detector that outputs, when queried,

a process identifier, so that some correct process identifier is output only finitely many times [103].

Finally, the general case of (n, k)-set agreement was resolved by Gafni and Kuznetsov [40] using an

elaborated and extended version of the technique proposed in this chapter.

A survey on the literature on failure detectors is presented in [35].

message-passing impl of omega

Guerraoui-Raynal 2005.

149

13. Resilience

In Chapter 10, we introduced the notion of consensus and showed that consensus is a universal object.

In Chapter ?? we convinced oursleves that there is no wait-free implementation of consensus using

basic reads and writes. One way to circumvent this impossibility is to relax either safety property

(atomicity) or liveness property (wait-freedom) of consensus.

In this chapter we introduce two such relaxations. The Commit-Adopt abstraction that may produce

different outputs at different processes under some circumstances and, thus, relaxes safety of consensus.

In contrast, the Safe Agreement abstraction permits cases when a process takes infinitely many steps

without an output and, thus, violates liveness of consensus.

We then show how these two abstractions can be used for building more sophisticated abstractions.

First, Commit-Adopt, combined with randomization or eventual leader oracle, can be used for solving

consensus. Second, we show that safe agreement enables simulations: it allows a set of k+1 simulators

“mimic” a k-resilient execution of an arbitrary algorithm running on m > k processes.

13.1. Pre-agreement with Commit-Adopt

The commit-adopt abstraction (CA), like consensus, exports one operation propose(v) that, unlike in

consensus, returns (commit , v′) or (adopt , v′), for v′ and v are in a (possibly unbounded) set of values

V . If propose(v) invoked by a process pi returns (adopt , v ′), we say that pi adopts v′. If the operation

returns (commit , v ′), we say that pi commits on v′. Intuitively, a process commits on v′, when it is sure

that no other process can decide on a value different from v′. A process adopts v′ when it suspects that

another process might have committed v′. Formally, CA guarantees the following properties:

(a) every returned value is a proposed value,

(b) if all processes propose the same value then no process adopts,

(c) if a process commits on a value v, then every process that returns adopts v or commits v, and

(d) every correct process returns.

13.1.1. Wait-free commit adopt implementation

The commit-adopt abstraction can be implemented using two (wait-free) store-collect objects, A and B,

as follows. Every process pi first stores its input v in A and then collects A. If no value other than v was

found in A, pi stores (true, v) in B. Otherwise, pi stores (false, v) in B. If all values collected from

B are of the form (true, ∗), then pi commits on its own input value. Otherwise, if at least one of the

collected values is (true, v ′), then pi adopts v′. Intuitively, going first through A guarantees that there

is at most one such value v′. Otherwise, if pi cannot commit or adopt a value from another process, it

simply adopts its own input value.

151

Shared objects:

A, B, store-collect objects, initially⊥

propose(v)
57 est := v
58 A.store(est)
59 V := A.collect()
60 if all values in V are est then

61 B.store((true, est))
62 then

63 B.store((false, est))
64 V := B.collect()
65 if all values in V are (true, ∗) then

66 (return(commit , est)
67 else if V contains (true, v ′) then

68 est := v′

69 (return(adopt , est)

Figure 13.1.: A commit-adopt algorithm

Correctness. Now we prove that the algorithm in Figure 13.1 satisfies properties (a)-(d) of commit-

adopt.

Property (a) follows trivially from the algorithm and the Validity property of store-collect (see Sec-

tion 8.1.1): every returned value was previously proposed by some process. If all processes propose the

same value, then the conditions in the clauses in lines 60 and 65 hold true, and thus, every process that

returns must commit—property (b) is satisfied. Property (d) is implied by the fact that the algorithm

contains only finitely many steps and every store-collect object is wait-free.

To prove (c), suppose, by contradiction, that two processes, pi and pj , store two different values, v′

and v′′, respectively, equipped with flag true in B (line 61). Thus, the collect operation performed by

pi in line 59 returns only values v. By the up-to-dateness property of store-collect and the algorithm , pi
has previously stored v′ in A (line 58). Similarly, pj has stored v′′ in A.

Again, by the up-to-dateness property of store-collect, the A.store(v′′) operation performed by pj
does not precede the A.collect() operation performed by pi. (Otherwise pi would find v′′ in A.) Thus,

inv [A.collect()] by pi precedes resp[A.store(v′′)] by pj in the current execution. But, by the algorithm

resp[A.store(v′)] precedes inv [A.collect()] at pi and, resp[A.store(v′′)] precedes inv [A.collect ()] at

pj . Hence, resp[A.store(v′)] by pi precedes inv [A.collect()] by pj and, by up-to-dateness of store-

collect, pj should have found v′ is A—a contradiction.

Thus, no two different values can be written to B with flag true . Now suppose that a process pi
commits on v. If every process that returns either commits or adopts a value in line 68, then property

(c) follows from the fact that no two different values with flag true can be found in B. Suppose, by

contradiction that some process pj does not find any value with flag true in B (65) and adopts its own

value. By the algorithm, pj has previously stored (false , v′′) in line 63. But, again, B.store((true , v′))
performed by pi does not precede B.collect() performed by pj and, thus, B.store((false , v′′)) per-

formed by pj precedes B.collect() performed by pi. Thus, pi should have found (false, v′′) in B—a

contradiction. Thus, if a process commits on v′, no other process can commit on or adopt a different

value—property (c) holds.

13.1.2. Using commit-adopt

Commit-adopt can be viewed as a way to establish safety in shared-memory computations.

152

For example, consider a protocol where every processes goes through a series of instances of commit-

adopt protocols, CA1, CA2, . . ., one by one, where each instance receives a value adopted in the pre-

vious instance as an input (the initial input value for CA1). One can easily see that once a value v is

committed in some CA instance, no value other than v can ever be committed (properties (a) and (c)

above). One the other hand, if at most one value is proposed to some CA instance, then this value must

be committed by every process that takes enough steps (property (b) above).

This algorithm can be viewed as a safe version of consensus: every committed value is a proposed

value and no two processes commit on different values (properties (a), (b) and (c) above). Given that

every correct process goes from one CA instance to the other as long as it does not commit (property (d)

above), we can boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithm per se guarantees termination in every obstruction-free execution, i.e., assuming

that eventually at most one process is taking steps. Moreover, we can build a consensus algorithm that

terminates almost always if we allow processes to toss coins when choosing an input value for the next

CA instance [10]. Also, if we allow a process to access an oracle (e.g., the Ω failure detector of [19])

that eventually elects a correct leader process, we get a live consensus algorithm.

13.2. Safe Agreement and the power of simulation

The interface of the safe agreement (SA) abstraction is identical to that of consensus: processes propose

values and agree one of the proposed values at the end. Indeed, the BG-agreement protocol ensures

the agreement and validity properties of consensus (Section ??)—every decided value was previously

proposed, and no two different values are decided— but not termination. The SA-termination property

only guarantees that every correct process returns if every participant every takes enough sharedmemory

steps. Here a process is called a participant if it takes at least one step, and “enough” is typically O(n),
where n is the number of processes.

13.2.1. Solving safe agreement

A safe agreement algorithm using two atomic snapshot objects A and B is given Figure 13.2. In the

algorithm, a process inserts its input in the first snapshot object (line 71) and takes a scan of the inputs

of other processes (line 72) . Then the process inserts the result of the scan in the second snapshot

object (line 73) and waits until every participating process finishes the protocol (the repeat-until clause

in lines 74- 76). Finally, the process returns the smallest value (we assume that the value set is ordered) in

the smallest-size non-⊥ snapshot found in B (containing the smallest number of non-⊥ values). (Recall

that for every two results of scan operation, U and U ′, we have U ≤ U ′ or U ′ ≤ U . Thus, there indeed

exists the smallest such snapshot.)

Correctness. SA-termination follows immediately from the algorithm: if every process that exe-

cuted line 71 also executes line 73, then the exit condition of the repeat-until clause in line 76 eventually

holds and every correct participant terminates. If snapshot object A is implemented from atomic reg-

isters (8), then it is sufficient for every participant to take O(n) read-write steps to ensure that every

correct participant terminates.

The validity property of consensus is also immediate: only a previously proposed value can be found

in a snapshot object.

To prove the agreement property of consensus, consider the process pt that wrote the smallest snapshot

Ut to B in line 73. First we observe that Ut[t] 6= ⊥, i.e., pt found its own input value in the snapshot

taken in line 72. Moreover, every other snapshot taken in A is a superset of Ut. Thus, every other process

153

Shared objects:

A, B, snapshot objects, initially ⊥

propose(v)
70 est := v
71 A.update(est)
72 U := A.scan()
73 B.update(U)
74 repeat

75 V := B.scan()
76 until for all j: (U [j] = ⊥) ∨ (V [j] 6= ⊥)
77 S := argminj{|V [j]|; V [j] 6= ⊥}
78 (return min(S)

Figure 13.2.: Safe agreement

waits until pt writes Ut in line 73 before terminating. Hence, every terminated process evaluates Ut to

be the smallest snapshot in line 77 and decides on the same (smallest) value found in Ut.

13.2.2. BG-simulation

BG-simulation (BG for Elizabeth Borowsky and Eli Gafni) is a technique by which k + 1 processes

s1, . . . , sk+1, called simulators, can wait-free simulate a k-resilient execution of any algorithm Alg on n
processes p1, . . . , pn (n > k). The simulation guarantees that each simulated step of every process pj is

either agreed upon by all simulators using SA, or one less simulator participates further in the simulation

for each step which is not agreed on.

If one of the simulators slows down while executing SA, the protocol’s execution at other correct

simulators may “block” until the slow simulator finishes the protocol. If the slow simulator is faulty, no

other simulator is guaranteed to decide.

Suppose the simulation tries to trigger read-write steps of a given algorithm A for n simulated pro-

cesses in a fair (e.g., round-robin) way. Therefore, as long there is a live simulator, at least m − k
simulated processes performs infinitely many steps of Alg in the simulated execution, i.e., the resulting

simulated execution is k-resilient.

PK: define simulation here

Thus:

Theorem 39 Let A be any algorithm for n processes. Then BG-simulation allows k + 1 simulators

(k < n) to trigger a k-resilient execution of A.

Theorem ?? implies that, for a large class of colorless tasks, finding a k-resilient solution for n processes

is equivalent to finding a wait-free solution for k + 1 ≤ n processes Informally, in a solution of a

colorless task, a process is free to adopt the input or output value of any other participating process.

Thus, a colorless tasks can be defined as a relation between the sets of inputs and the sets of outputs.

PK: do we need to talk about tasks? Or set agreement would be enough?

Thus:

Corollary 7 Let T be any colorless task. Then T can be solved by n processes k-resiliently (k < n) if

and only if T can be solved by k + 1 processes wait-free.

154

13.3. Bibliographic notes

Gafni 1998

Borowsy-Gafni 1993, BGLR01

155

14. Adversaries

Until now assumed that failures are “uniform”: processes are equally probable to fail and a failure of

one process does not affect reliability of the others. In real systems, however, processes may not be

equally reliable. Moreover, failures may be correlated because of software or hardware features shared

by subsets of processes. In this chapter, we survey recent results addressing the question of what can

and what cannot be computed in systems with non-identical and non-independent failures.

14.1. Non-uniform failure models

A failure model describes the assumptions on where and when failures might occur in a distributed

system. The classical “uniform” failure model assumes that processes fail with equal probabilities,

independently of each other. This enables reasoning about the maximal number of processes that may,

with a non-negligible probability, fail in any given execution of the system. It is natural to ask questions

of the kind: what problems can be solved t-resiliently, i.e., assuming that at most t processes may fail.

In particular, the wait-free ((n − 1)-resilient, where n is the number of processes) model assumes that

any subset of processes may fail.

However, in real systems, processes do not always fail in the uniform manner. Processes may be

unequally reliable and prone to correlated failures. A software bug makes all processes using the same

build vulnerable, a router’s failure may makes all processes behind it unavailable, a successful malicious

attack on a given process increases the chances to compromise processes running the same software, etc.

Thus, understanding how to deal with non-uniform failures is crucial.

Adversaries. Consider a system of three processes, p, q, and r. Suppose that p is very unlikely to

fail, and otherwise, all failure patterns are allowed. Since we only exclude executions in which p fails,

the set of correct processes in any given execution must belong to {p, pq, pr, pqr}1.

Now we give an example of correlated failures. Suppose that p and q share a software component

x, p and r share a software component y, and q and r are built atop the same hardware platform z
(Figure 14.1). Further, let x, y, and z be prone to failures, but suppose that it is very unlikely that two

failures occur in the same execution. Hence, the possible sets of correct processes in our system are

{pqr, p, q, r}.
The notion of a generic adversary introduced by Delporte et al. [28] intends to model such scenarios.

An adversary A is defined as a set of possible correct process subsets. E.g., the t-resilient adversary

At-res in a system of n processes consists of all sets of n− t or more processes. We say that an execution

isA-compliant if the set of processes that are correct in that execution belongs toA. Thus, an adversary

A describes a model consisting of A-compliant executions.

The formalism of adversaries [28] assumes that processes fail only by crashing, and adversaries only

specify the sets of processes that may be correct in an execution, regardless of the timing of failures. Of

course, this sorts out many kinds of possible adversarial behavior, such as malicious attacks or timing

failures. However, it is probably the simplest model that still captures important features of non-uniform

failures.

1For brevity, we simply write pqr when referring to the set {p, q, r}.

157

q

p r

x

y

z

Figure 14.1.: A system modeled by the adversary {pqr, p, q, r}: p and q share component x, p and r
share component y, and q and r run atop the same hardware platform z.

Distributed tasks. In this chapter, we focus on a class of distributed-computing problems called

tasks. A task can be seen as a distributed variant of a function from classical (centralized) computing:

given a distributed input (an input vector, specifying one input value for every process) the processes

are required to produce a distributed output (an output vector, specifying one output value for every

process), such that the input and output vectors satisfy the given task specification.

The classical theory of computational complexity theory categorizes functions based on their inherent

difficulty (e.g., with respect to solving them on a Turing machine). In the distributed setting, the difficulty

in solving a task also depends on the adversary we are willing to consider. There are tasks that can be

trivially solved on a Turing machine, but are not solvable in the presence of some distributed adversaries.

For example, the fundamental task of consensus, in which the processes must agree on one of the input

values, cannot be solved assuming the 1-resilient adversary A1-res [34, 77]. More generally, the task of

k-set consensus [21], where every correct process is required to output an input value so that at most k
different values are output, cannot be solved in the presence of Ak-res [52, 87, 13].

Most of this chapter deals with colorless tasks (also called convergence tasks [15]). Informally, col-

orless tasks allow every process to adopt an input or output value from any other participating process.

Colorless tasks include consensus [34], k-set consensus [21] and simplex agreement [53].

The relative power of an adversary. This chapter primarily addresses the following question.

Given a task T and an adversary A, is T solvable in the presence of A?

Intuitively, the more sets an adversary comprises, the more executions our system may expose, and,

thus, the more powerful is the adversary in “disorienting” the processes. In this sense, the wait-free

adversary Awf = An−1-res is the most powerful adversary, since it describes the set of all possible

executions.

In contrast, a “singleton” adversary A = {S} that consists of only one set S ⊆ P is very weak. For

example, we can use any process in S as the “leader” that never fail. This allows us to solve consensus

or implement any sequential data type [48].

But in general, there are exponentially many adversaries defined for n processes that are not related

by containment. Therefore, it is difficult to say a priori which of two given adversaries is stronger.

Superset-closed adversaries. We start with recalling the model of dependent failures proposed

by Junqueira and Marzullo [62], defined in terms of cores and survivor sets. In brief, a survivor set is a

minimal subset of processes that can be the set of correct processes in some execution, and a core is a

minimal set of processes that do not all fail in any execution.

We show that, in fact, the formalism of [62] describes a special class of superset-closed adversaries:

every superset of an element of such an adversary A is also an element of A. The minimal elements of

158

A (no subset of which are in A) are the survivor sets of the resulting model.

It turns out that the power of a superset-closed adversary A in solving colorless tasks is precisely

characterized by the size of its minimal core, i.e., the minimal-cardinality set of processes that cannot

all fail in any A-compliant execution. A superset-closed adversary with minimal core size c allows for

solving a colorless task T if and only if T can be solved (c − 1)-resiliently. In particular, if c = 1,

then any task can be solved in the presence of A, and if c = n, then A only allows for solving wait-

free solvable tasks. Thus, all superset-closed adversaries can be categorized in n classes, based on their

minimal core sizes.

We present two ways of deriving this result: first, using the elements of modern topology (proposed

by Herlihy and Rajsbaum [51]) and second, through shared-memory simulations (proposed by Gafni

and Kuznetsov [40]).

Characterizing generic adversaries. The dependent-failure formalism of [62] is however not

expressive enough to capture the task solvability in generic non-uniform failure models. It is easy to

construct an adversary that has the minimal core size n but allows for solving tasks that can cannot be

wait-free solved. One example is the “bimodal” adversary {pqr, p, q, r} (Figure 14.1) that allows for

solving 2-set consensus.

Therefore, to characterize the power of a generic adversary, we need a more sophisticated criterion

than the minimal core size. Surprisingly, such a criterion, that we call set consensus power, is not

difficult to find. Suppose that we can partition an adversary A into k sub-adversaries, each powerful

enough to solve consensus. We conclude that A allows for solving k-set consensus: simply run k
consensus algorithms in parallel, each assuming a distinct sub-adversary. Moreover, we show that the set

consensus power of A, defined as the minimal such number of sub-adversaries, precisely characterizes

the power of A in solving colorless tasks.

Therefore, generic adversaries defined on n processes can still be split into n equivalence classes.

Each class j consists of adversaries of set consensus power j that agree on the set of colorless tasks they

allow for solving: namely, tasks that can be solved (j− 1)-resiliently and not j-resiliently. In particular,

class n contains adversaries that only allow for solving tasks that can be solved wait-free, and class 1
allows for solving consensus and, thus, any task.

In this chapter, we discuss several approaches to model non-uniform failures: dependent failure model

of Junqueira and Marzullo [62], adversaries of Delporte et alii [28], and asymmetric progress conditions

by Imbs et alii [58].

Then we present a complete characterization of superset-closed adversaries. The result is first shown

using elements of combinatorial topology [51] and then through simple shared-memory simulations [40].

We then characterize generic (not necessarily superset-closed) adversaries using the notion of set

consensus power and relate it with the disagreement power proposed by Delporte et alii [28].

We conclude with a brief overview of open questions, primarily related to solving generic (not neces-

sarily colorless) tasks in the presence of generic (not necessarily superset-closed) adversaries.

14.2. Background

In this section, we briefly state our system model and recall the notion of a distributed task and two

important constructs used in this chapter: Commit-Adopt and BG-simulation.

14.2.1. Model

We consider a system Π of n processes, p1, . . . , pn, that communicate via reading and writing in the

shared memory. We assume that the system is asynchronous, i.e., relative speeds of the processes are

159

unbounded. Without loss of generality, we assume that processes share an atomic snapshot memory [1],

where every process may update its dedicated element and take atomic snapshot of the whole memory.

A process may only fail by crashing, and otherwise it must respect the algorithm it is given. A correct

process never crashes.

14.2.2. Tasks

In this chapter, we focus on a specific class of distributed computing problems, called tasks [53]. In a

distributed task [53], every participating process starts with a unique input value and, after the computa-

tion, is expected to return a unique output value, so that the inputs and the outputs across the processes

satisfy certain properties. More precisely, a task is defined through a set I of input vectors (one input

value for each process), a setO of output vectors (one output value for each process), and a total relation

∆ : I 7→ 2O that associates each input vector with a set of possible output vectors. An input ⊥ denotes

a not participating process and an output value ⊥ denotes an undecided process.

For example, in the task of k-set consensus, input values are in {⊥, 0, . . . , k}, output values are in

{⊥, 0, . . . , k}, and for each input vector I and output vector O, (I,O) ∈ ∆ if the set of non-⊥ values in

O is a subset of values in I of size at most k. The special case of 1-set consensus is called consensus [34].

We assume that every process runs a full-information protocol: initially it writes its input value and

then alternates between taking snapshots of the memory and writing back the result of its latest snap-

shots. After a certain number of such asynchronous rounds, a process may gather enough state to decide,

i.e., i.e., to produce an irrevocable non-⊥ output value.

In colorless task (also called convergence tasks [15]) processes are free to use each others’ input and

output values, so the task can be defined in terms of input and output sets instead of vectors.2 The k-set

consensus task is colorless.

Note that to solve a colorless task, it is sufficient to find a protocol (a decision function) that allows

just one process to decide. Indeed, if such a protocol exists, we can simply convert it into a protocol

that allows every correct process to decide: every process simply applies the decision function to the

observed state of any other process and adopts the decision.

14.2.3. The Commit-Adopt protocol

One tool extensively used in this chapter is the commit-adopt abstraction (CA) [36]. CA exports one

operation propose(v) that returns (commit , v′) or (adopt , v′), for v′, v ∈ V , and guarantees that

(a) every returned value is a proposed value,

(b) if only one value is proposed then this value must be committed,

(c) if a process commits on a value v, then every process that returns adopts v or commits v, and

(d) every correct process returns.

The CA abstraction can be implemented wait-free [36]. Moreover, CA can be viewed as a way to

establish safety in shared-memory computations.

For example, consider a protocol where every processes goes through a series of instances of commit-

adopt protocols, CA1, CA2, . . ., one by one, where each instance receives a value adopted in the pre-

vious instance as an input (the initial input value for CA1). One can easily see that once a value v is

2Formally, let val(U) denote the set of non-⊥ values in a vector U . In a colorless task, for all input vectors I and I ′ and

all output vectors O and O′, such that (I,O) ∈ ∆, val(I) ⊆ val(I ′), val(O′) ⊆ val(O), we have (I ′, O) ∈ ∆ and

(I,O′) ∈ ∆.

160

committed in some CA instance, no value other than v can ever be committed (properties (a) and (c)

above). One the other hand, if at most one value is proposed to some CA instance, then this value must

be committed by every process that takes enough steps (property (b) above).

This algorithm can be viewed as a safe version of consensus: every committed value is a proposed

value and no two processes commit on different values (properties (a), (b) and (c) above). Given that

every correct process goes from one CA instance to the other as long as it does not commit (property (d)

above), we can boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithm per se guarantees termination in every obstruction-free execution, i.e., assuming

that eventually at most one process is taking steps. Moreover, we can build a consensus algorithm that

terminates almost always if we allow processes to toss coins when choosing an input value for the next

CA instance [10]. Also, if we allow a process to access an oracle (e.g., the Ω failure detector of [19])

that eventually elects a correct leader process, we get a live consensus algorithm.

14.2.4. The BG-simulation technique.

Another important tool used in this chapter is BG-simulation [13, 15]. BG-simulation is a technique

by which k + 1 processes s1, . . . , sk+1, called simulators, can wait-free simulate a k-resilient (Ak-res-

compliant) execution of any protocol Alg on m processes p1, . . . , pm (m > k). The simulation guar-

antees that each simulated step of every process pj is either agreed upon by all simulators, or one less

simulator participates further in the simulation for each step which is not agreed on.

The central building block of the simulation is the BG-agreement protocol. BG-agreement reminds

consensus: processes propose values and agree one of the proposed values at the end. Indeed, the BG-

agreement protocol ensures safety of consensus—every decided value was previously proposed, and no

two different values are decided— but not liveness. If one of the simulators slows down while executing

BG-agreement, the protocol’s execution at other correct simulators may “block” until the slow simulator

finishes the protocol. If the slow simulator is faulty, no other simulator is guaranteed to decide.

Suppose the simulation tries to promote m > k simulated processes in a fair (e.g., round-robin) way.

As long there is a live simulator, at least m − k simulated processes performs infinitely many steps of

Alg in the simulated execution.

Recently the technique of BG-simulation was extended to show that any colorless task that can be

solved assuming the (k − 1)-resilient adversary can also be solved using read-write registers and k-set

consensus objects [37].

14.3. Non-uniform failures in shared-memory systems

In this section, we overview several approaches to model non-uniform failures: dependent failure model

of Junqueira and Marzullo [62], adversaries of Delporte et alii [28], and asymmetric progress conditions

by Imbs et alii [58] and Taubenfeld [91].

14.3.1. Survivor sets and cores

Junqueira and Marzullo [63, 62] proposed to model non-uniform failures using the language of survivor

sets and cores. A survivor set S ⊆ Π if a set of processes such that:

(a) in some execution, S is the set of correct processes, and

(b) S is minimal: for every proper subset S′ of S, there is no execution in which S′ is the set of correct

processes.

161

A collection S of survivor sets describes a system such that the set of correct processes in every execution

contains a set in S .

Respectively, a core C is a set of processes such that:

(a) in every execution, some process in C is correct, and

(b) C is minimal: for every proper subset C ′ of C , there is an execution in which every process in C ′

fails.

Thus, a core is a minimal set of processes that cannot be all faulty in any execution of our system. Note

that the set of cores is unambiguously determined by the set of survivor sets.

A core is actually a minimal hitting set of the set system built of survivor sets, and a core of smallest

size is a corresponding minimum hitting set. Determining minimum hitting set of a set system is known

to be NP-complete [64].

The language of cores [63, 62] proved to be convenient in understanding the ability of a system with

non-uniform failures to solve consensus or build a fault-tolerant replicated storage.

14.3.2. Adversaries

A more general way to model non-uniform failures was proposed by Delporte et al. [28]. Formally, an

adversary defined for a set of processes Π is a non-empty set of process subsets A ⊆ 2Π . We say

that an execution is A-compliant if the correct set, i.e., the set of correct processes, in that execution

belongs to A. Thus, assuming an adversary A, we only consider the set of A-compliant executions.
3 By convention, we assume that in every execution, at least one process is correct, i.e., no adversary

contains ∅.
Given a task T and an adversary A, we say that T is A-resiliently solvable if there is a protocol such

that in every execution, the outputs match the inputs with respect to the specification of T , and in every

A-compliant execution, each correct process eventually produces an output.

It is easy to see that the language of survivor sets of [62] describes a special class of superset-closed

adversaries. Formally, the set SC of superset-closed adversaries consists of allA such that for all S ∈ A
and S ⊆ S′ ⊆ Π, we have S′ ∈ A.

For example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥ n − t}. By definition,

At-res ∈ SC. The survivor sets of At-res are all sets of n − t processes, and the cores are all sets of

t + 1 processes. The (n − 1)-resilient adversary AWF = An−1-res is also called wait-free. An AWF -

resilient task solution must ensure that every process obtains an output in a finite number of its own

steps, regardless of the behavior of the rest of the system.

Another example ALp = {S ⊆ Π|p ∈ S} ∈ SC describing a system in which p never fails. ALp

has one survivor set {p} and one core {p}. Intuitively, p may then act as a correct leader in a consensus

protocol. Thus, every task can be solved in the presence of ALp [48].

The k-obstruction-free adversary Ak-OF is defined as {S ⊆ Π | 1 ≤ |S| ≤ k}. In particular,

AOF = A1-OF allows for solving consensus [33]. Clearly, Ak-OF for 1 ≤ k < n is not in SC.

The “bimodal” adversary {pqr, p, q, r} (Figure 14.1) is not in SC either: it contains the singleton p
but not its supersets pq and pr.

14.3.3. Failure patterns and environments

An adversary is in fact a special case of a failure environment introduced by Chandra et alii [19]. An

environment E is a set of failure patterns. For a given run, a failure pattern F is a map that associates

3Note that in the original definition [28], an adversary is defined as a collection of faulty sets, i.e., the sets of processes that

can fail in an execution. For convenience, we chose here an equivalent definition based on correct sets.

162

each time value t ∈ T with a set of processes crashed by time t. The set of correct processes, denoted

correct(F) is thus defined as Π− ∪t∈TF (t).

Since an adversaryA only defines sets of correct processes and does not specify the timing of failures,

it can be viewed as a specific environment EA that is closed under changing the timing of failures. More

precisely, EA = {F | correct(F) ∈ A}. Clearly, if F ∈ EA and correct(F) = correct (F ′), then

F ′ ∈ EA.

Thus, we can rephrase the statement “task T can be solved A-resiliently” as “task T can be solved in

environment EA”. It is shown in [39] that, with respect to colorless tasks, all environments can be split

into n equivalence classes, and each class j agrees on the set of tasks it can solve: namely, tasks that can

be solved (j − 1)-resiliently and not j-resiliently. Therefore, by applying [39], we conclude that each

adversary belongs to one of such equivalence class. However, this characterization does not give us an

explicit algorithm to compute the class to which a given adversary belongs.

14.3.4. Asymmetric progress conditions

Imbs et alii [58] introduced asymmetric progress conditions that allow us to specify different progress

guarantees for different processes. Informally, for sets of processes X and Y , X ⊆ Y ⊆ Π, (X,Y)-
liveness guarantees that every process in X makes progress regardless of other processes (wait-freedom

for processes in X) and every process in Y − X makes progress if it is eventually the only process in

Y −X taking steps (obstruction-freedom for processes in Y −X).

With respect to solving colorless tasks, it is easy to represent (X,Y)-liveness using the formalism of

adversaries. The equivalent adversary AX,Y consists of all subsets of Π that intersect with X and all

sets {pi} ∪S such that pi ∈ Y −X and S ⊆ Π−Y . It is easy to see that a colorless task is (read-write)

solvable assuming (X,Y)-liveness if and only if it is solvable in the presence of AX,Y .

Taubenfeld [91] introduced a refined condition that associates each process pi with a set Pi of process

subsets (each containing pi). Then pi is expected to make progress (e.g., output a value in a task solution)

only if the current set of correct processes is in Pi. Similarly, with respect to the question of solvability

of colorless tasks, every such progress condition can be modeled as an adversary, defined simply as the

union ∪iPi.

14.4. Characterizing superset-closed adversaries

Intuitively, the size of a smallest-cardinality core of an adversary A, denoted csize(A), is related to its

ability to “confuse” the processes (preventing them from agreement). Indeed, since in every execution,

at least one process in a minimal core C is correct, we can treat C as a collection of leaders. But for

a superset-closed adversary, every non-empty subset of C can be the set of correct processes in C in

some execution. Therefore, intuitively, the system behaves like a wait-free system on c = |C| processes,

where c quantifies the “degree of disagreement” that we can observe among all the processes in the

system.

In this section, we show that csize(A) precisely captures the power of A with respect to colorless

tasks. We overview two approaches to address this question, each interesting in its own right: using

combinatorial topology and using shared-memory simulations.

14.4.1. A topological approach

Herlihy and Rajsbaum [51] derived a characterization of superset-closed adversaries using the Nerve

Theorem of modern combinatorial topology [11]. A set of finite executions is modeled as a simplicial

complex, a geometric (or combinatorial) structure where each simplex models a set of local states (views)

163

of the processes resulting after some execution. This allows for reasoning about the power of a model

using topological properties (e.g., connectivity) of simplicial complexes it generates.4

The model of [51] is based on iterated computations: each process pi proceeds in (asynchronous)

rounds, where every round r is associated with a shared array of registers M [r, 1], . . . ,M [r, n]. When

pi reaches round r, it updates M [r, i] with its current view and takes an atomic snapshot of M [r, .]. In

the presence of a superset-closed adversary A, the set of processes appearing in a snapshot should be an

element of A. We call the resulting set of executions the A-compliant iterated model.

Naturally, given an adversary A, it is easy to implement an iterated model with desired properties in

the classical (non-iterated) shared memory model. To implement a round of the iterated model, every

process writes its value in the memory and takes atomic snapshots until all processes in some survivor

set (minimal element in A) are observed to have written their values. The result of this snapshot is then

returned. In an A-compliant execution, this allows for simulating infinitely many iterated rounds.

Surprisingly, we can also use the A-compliant iterated model to simulate an A-compliant execution

in the read-write model where some participating set of processes in A takes infinitely many steps

(please check the wonderful simulation algorithm proposed recently by Gafni and Rajsbaum [41]). In

particular, for the wait-free adversary AWF , the simulation is non-blocking: at least one participating

process accepts infinitely many steps in the simulated execution.

Note that if the simulated A-compliant execution is used for an A-resilient protocol solving a given

task, then we are guaranteed that at least one process obtains an output. But to solve a colorless task

it is sufficient to produce an output for one participating process (all other participants may adopt this

output). Thus:

Theorem 40 [41] Let A be a superset-closed adversary. A colorless task can be solved in the A-

compliant iterated model if and only if it can be solved in the A-compliant model.

This result allows us to apply the topological formalism as follows. The set of r-round executions

of the A-compliant iterated model applied to an initial simplex σ generates a protocol complex Kr(σ).
By a careful reduction to the Nerve Theorem [11], Kr(σ) can be shown to be (c − 2)-connected, i.e.,

Kr(σ) contains no “holes” in dimensions c − 2 or less (any (c − 2)-dimensional sphere can be contin-

uously contracted to a point). The Nerve theorem establishes the connectivity of a complex from the

connectivity of its components.

Roughly, the argument of [51] is built by induction on n, the number of processes. For a given

adversary A on n processes with the minimal core size c, the A-compliant protocol complex Kr(σ) can

be represented as a union of protocol complexes, each corresponding to a sub-adversary of A on n − 1
processes with core size c− 1. By induction, each of these sub-adversaries is at least (c− 3)-connected.

Applying the Nerve theorem, we derive that Kr(σ) is (c−2)-connected. The base case n = 1 and c = 1
is trivial, since every non-empty complex is, by definition, (−1)-connected.

Thus,Kr(σ) is (c−2)-connected. Hence, no task that cannot be solved (c−1)-resiliently, in particular

(c− 1)-set consensus, allows for an A-resilient solution [53].

Using the characterization of [53], we can reduce the question ofA-resilient solvability of a colorless

task T = (I,O,∆) to the existence of a continuous map f from |skelc−1(I)|, the Euclidean embedding

of the (c− 1)-skeleton (the complex of all simplexes of dimension c− 1 and less) of the input complex

I , to |O|, the Euclidean embedding of the output complex O, such that f is carried by ∆, i.e., f(σ) ⊆
∆(σ). Indeed, the fact that of Kr(σ) is (c− 2)-connected (and thus d-connected for all 0 ≤ d ≤ c− 2)

implies that every continuous map from d-sphere ofKr(σ) extends to the (d+1)-disk, for 0 ≤ d ≤ c−2.

4For more information on the applications of algebraic and combinatorial topology in distributed computing, check Maurice

Herlihy’s lectures at Technion [49].

164

Intuitively, we can thus inductively construct a continuous map from |skelc−1(I)| to |O|, starting from

any map sending a vertex of I to a vertex of O (for d = 0).

On the other hand, it is straightforward to construct anA-resilient protocol solving a colorless task T ,

given a continuous map from the (c − 1)-skeleton of the input complex of T to the output complex of

T . Thus:

Theorem 41 [51] An adversary A ∈ SC with the minimal core size c allows for solving a colorless task

T = (I,O,∆) if and only if there is a continuous map from |skelc−1(I)| to |O| carried by ∆.

Therefore, two adversaries in A,B ∈ SC with the same minimal core size c agree on the set of tasks

they allow for solving, which is exactly the set of tasks that can be solved (c − 1)-resiliently (since

csize(A(c−1)-res) = c).

14.4.2. A simulation-based approach

It is comparatively straightforward to characterize superset-closed adversaries using classical BG-simulation [13,

15], and we present a complete proof below.

Theorem 42 [38] Let A be a superset-closed adversary. A colorless task T is A-resiliently solvable if

and only if T is (c− 1)-resiliently solvable, where c is the minimal core size of A.

Proof Let a colorless task T be (c− 1)-resiliently solvable, and let Pc be the corresponding algorithm.

Let C = {q1, . . . , qc} be a minimal-cardinality core of A (|C| = c).

Let the processes in C BG-simulate the algorithm Pc running on all processes in Π. Here each

simulator qi tries to use its input value of task T as an input value of every simulated process [13, 15].

Since C is a core of A, in every A-compliant execution, at most c − 1 simulators may fail. Since a

faulty simulator results in at most one faulty simulated process, the produced simulated execution is

(c − 1)-resilient. Since Pc gives a (c − 1)-resilient solution of T , at least one simulated process must

eventually decide in the simulated execution. The output value is then adopted by every correct process.

Moreover, the decided value is based on the “real” inputs of some processes. Since T is colorless, the

decided values are correct with respect to the input values and, thus, we obtain an A-resilient protocol

to solve T .

For the other direction, suppose, by contradiction that there exists an A-resilient protocol PA to solve

a colorless task T , but T is not possible to solve (c− 1)-resiliently.

We claim thatA(c−1)-res ⊆ A, i.e., each (c−1)-resilient execution isA-compliant. Suppose otherwise,

i.e., some set S of n − c + 1 processes is not in A. Since A is superset-closed, no subset of S is in A
(otherwise, S would be in A). No process in S belongs to any set in A, thus, the smallest core of A
must be a subset of Π− S. But |Π− S| = c− 1—a contradiction with the assumption that the size of a

minimal cardinality core of A is c.

Thus, every (c−1)-resilient execution is alsoA-compliant, which implies that PA is in fact a (c−1)-
resilient solution to T—a contradiction with the assumption that T is not (c − 1)-resiliently solvable.

✷Theorem 42

Theorem ?? implies that adversaries in SC can be categorized into n equivalence classes, SC1, . . ., SCn,

where class SCk corresponds to cores of size k. Two adversaries that belong to the same class SCk agree

on the set of colorless tasks they are able to solve, and it is exactly the set of all colorless task that can

be solved (k − 1)-resiliently.

165

14.5. Measuring the Power of Generic Adversaries

Let us come back to the “bimodal” adversary ABM = {pqr, p, q, r} (Figure 14.1). Its only core is

{p, q, r}. Does it mean that ABM only allows for solving trivial (wait-free solvable) tasks? Not really:

by splitting ABM in two sub-adversaries AFF = {pqr} and AOF = {p, q, r} and running two consen-

sus algorithms in parallel, one assuming no failures (AFF) and one assuming that exactly one process

is correct (AOF), gives us a solution to 2-set consensus.

14.5.1. Solving consensus with ABM

But can we solve more in the presence of ABM? E.g., is there a protocol Alg that solves consensus

ABM -resiliently? We derive that the answer is no by showing how processes, s0 and s1, can wait-free

solve consensus through simulating an ABM -compliant execution of Alg. Initially, the two processes

act as BG simulators [13, 15] trying to simulate an execution of Alg on all three processes p, q, and r.

When a simulator si (i = 0, 1) finds out that the simulation of some step is blocked (which means that

the other simulator s1−i started but has not yet completed the corresponding instance of BG-agreement),

si switches to simulating a solo execution of the next process (in the round-robin order) in {p, q, r}. If

the blocked simulation eventually resolves (s1−i finally completes the instance of BG-agreement), then

si switches back to simulating all p, q and r.

If no simulator blocks a simulated step forever, the simulated execution contains infinitely many steps

of every process, i.e., the set of correct processes in it is {p, q, r}. Otherwise, eventually some simulated

process forever runs in isolation and the set of correct processes in the simulated execution is {p}, {q},
or {r}. In both cases, the simulated execution of Alg is ABM -compliant, and the algorithm must output

a value, contradicting [34, 77]. This argument can be easily extended to show that ABM cannot allow

for solving any colorless task that cannot be solved 1-resiliently.

14.5.2. Disagreement power of an adversary

Thus, we need a more sophisticated criterion to evaluate the power of a generic adversary A. Delporte et

alii [28] proposed to evaluate the “disorienting strength” of an adversary A via its disagreement power.

Formally, the disagreement power of an adversary A is the largest k such that k-set consensus cannot

be solved in the presence of A.

It is shown in [28] that adversaries of the same disagreement power agree on the sets of colorless

task they allow for solving. The result is derived via a three-stage simulation. First, it is shown how an

adversary can simulate any dominating adversary, where the domination is defined through an involved

recursive inclusion property. Second, it is shown that every adversary A that does not dominate the

k-resilient adversary5 is strong enough to implement the anti-Ωk failure detector that, in turn, can be

used to solve k-set consensus [103]. Finally, it is shown that vector-Ωk (a failure detector equivalent to

anti-Ωk) can be used to solve any colorless task that can be solved k-resiliently. Thus, the largest k such

that k-set consensus cannot be solved A-resiliently indeed captures the power of A.

The characterization of adversaries proposed in [28] does not give a direct way of computing the

disagreement power of an adversary A and it does not provide a direct A-resilient algorithm to solve a

colorless task T , when T is A-resiliently solvable.

In the rest of this section, we give a simple algorithm to compute the disagreement power of an

adversary. For convenience, we introduce notion of set consensus power, i.e., the smallest k such that

k-set consensus can be solved in the presence of A. Clearly, the disagreement power of A is the set

consensus power of A minus 1.

5Recall that the k-resilient adversary consists of all subsets of Π of size at least n− k.

166

14.5.3. Defining setcon

Let A be an adversary and let S ⊆ P be any subset of processes. Then AS denotes the adversary

that consists of all elements of A that are subsets of S (including S itself if S ∈ A). E.g., for A =
{pq, qr, q, r} and S = qr, AS = {qr, q, r}. For S ∈ A and a ∈ S, let AS,a denote the adversary that

consists of all elements of AS that do not include a. E.g., for A = {pq, qr, q, r}, S = qr, and a = q,

AS,a = {r}.
Now we define a quantity denoted setcon(A), which we will show to be the set consensus power of

A. Intuitively, our goal is to split A into the minimal number k of sub-adversaries, such that every sub-

adversary allows for solving consensus. Then A allows for solving k-set consensus, but not (k − 1)-set

consensus (otherwise, k would not be minimal).

setcon(A) is defined as follows:

• If A = ∅, then setcon(A) = 0

• Otherwise, setcon(A) = maxS∈Amina∈S setcon(AS,a) + 1

Thus, setcon(A), for a non-empty adversary A, is determined as setcon(AS̄,ā) + 1 where S̄ is

an element of A and ā is a process in S̄ that “max-minimize” setcon(AS,a). Note that for A 6= ∅,
setcon(A) ≥ 1.

We say that S ∈ A is proper if it is not a subset of any other element in A. Let proper (A) de-

note the set of proper elements in A. Note that since for all S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤
mina∈S setcon(AS,a), we can replace S ∈ A with S ∈ proper (A) in Definition ??.

q r

rq

{pqr, pq, pr, p}

p q r

{q, r}

p

Figure 14.2.: Adversary A = {pqr, pq, pr, p, q, r} decomposed in two sub-adversaries, {pqr, pq, pr, p}
and {q, r}, each with setcon = 1.

14.5.4. Calculating setcon(A): examples

Consider an adversary A = {pqr, pq, pr, p, q, r}. It is easy to see that setcon(A) = 2: for S = pqr
and a = p, we have AS,p = {q, r} and setcon(AS,a) = 1. Thus, we decompose A into two sub-

adversaries {pqr, pq, pr, p} and {q, r}, each strong enough to solve consensus (Figure 14.2). Intuitively,

in an execution where the correct set belongs to A − AS,a = {pqr, pq, pr, p}, process p can act as a

leader for solving consensus. If the correct set belongs to AS,a = {q, r} (either q or r eventually runs

solo) then q and r can solve consensus using an obstruction-free algorithm. Running the two algorithms

in parallel, we obtain a solution to 2-set consensus. The reader can easily verify that any other choice of

a ∈ pqr results in three levels of decomposition.

As another example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥ n − t}. It is easy to

verify recursively that setcon(At-res) = t+1: at each level 1 ≤≤ t+1 of recursion we consider a set S

167

Shared variables:

D, initially⊥
R1, . . . , Rn, initially⊥

propose(v)
79 est := v
80 r := 0
81 S := P
82 repeat

83 r := r + 1
84 (flag, est) := CAr.propose(est)
85 if flag = commit then

86 D := est ; return(est) {Return the committed value}
87 Ri := (est , r)
88 wait until ∃S ∈ A, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D 6= ⊥

{Wait until a set in A moves}
89 if pr mod n+1 ∈ S then

90 est := vr mod n+1 {Adopt the estimate of the current leader}
91 until D 6= ⊥
92 return(D)

Figure 14.3.: Consensus with a “one-level” adversary A, setcon(A) = 1

of n− j+1 elements, pick up a process p ∈ S and delegate the set of n− j processes that do not include

p to level j + 1. At level t+ 1 we get one set of size n− t and stop. Thus, setcon(At-res) = t+ 1.

More generally, for any superset-closed adversary A (A ∈ SC), setcon(A) = csize(A), the size of

a smallest-cardinality core of A. To show this, we proceed by induction. The statement is trivially true

for an empty adversary A with csize(A) = setcon(A) = 0. Now suppose that for all 0 ≤ j < k and

all A′ ∈ SC with csize(A′) = j, we have setcon(A′) = j. Consider A ∈ SC such that csize(A) = k.

Note that the only proper element of A is the whole set of processes Π. Thus, setcon(A) = mina∈Π
setcon(AΠ,a) + 1. By the induction hypothesis and the fact that csize(A) = k, we have mina∈Π
setcon(AΠ,a) = k − 1. Thus, setcon(A) = k.

Thus, by Theorem ??, setcon() indeed characterizes the disorienting power of adversaries A ∈ SC:

a task is A-resiliently solvable if and only if it is (c − 1)-resiliently solvable, where c = setcon(A). In

the rest of this section, we extend this result from SC to the universe of all adversaries.

14.5.5. Solving consensus with setcon = 1

Before we characterize the ability of adversaries to solve colorless tasks, we consider the special case of

adversaries of setcon = 1.

Consider an adversary A and S ∈ A. Suppose csize(AS) = 1, and let {a} be a core of AS .

Obviously, AS,a = ∅. On the other hand, if AS,a = ∅, then {a} is a core of AS . Thus, setcon(A) = 1
if and only if ∀S ∈ A, csize(AS) = 1

Suppose setcon(A) = 1. If S is the only proper element of A, then we can easily solve consensus

(and, thus, any other task [48]), by deciding on the value proposed by the only member of a core of AS .

The process is guaranteed to be correct in every execution.

Now we extend this observation to the case whenA contains multiple proper elements. The consensus

algorithm, presented in Figure 14.3, is a “rotating coordinator” algorithm inspired by by Chandra and

Toueg [20].

The algorithm proceeds in rounds. In each round r, every process pi first tries to commit its current

decision estimate in a new instance of commit-adopt CAr. If pi succeeds in committing the estimate, the

168

committed value is written in the “decision” register D and returned. Otherwise, pi adopts the returned

value as its current estimate and writes it in Ri equipped with the current round number r. Then pi takes

snapshots of {R1, . . . , Rn} until either a set S ∈ A reaches round r or a decision value is written in D
(in which case the process returns the value found in D). If no decision is taken yet, then pi checks if the

coordinator of this round, pr mod n, is in S. If so, pi adopts the value written in Rr mod n and proceeds

to the next round.

The properties of commit-adopt imply that no two processes return different values. Indeed, the first

round in which some process commits on some value v (line 86) “locks” the value for all subsequent

rounds, and no other process can return a value different from v.

Suppose, by contradiction, that some correct process never returns in some A-compliant execution

e. Recall that A-compliant means that some set in A is exactly the set of correct processes in e. If a

process returns, then it has previously written the returned value in D. Since, in each round, a process

performs a bounded number of steps, by our assumption, no process ever writes a value in D and every

correct process goes through infinitely many rounds in e without returning.

Let S̄ ∈ A be the set of correct processes in e. After a round r′ when all processes outside S̄ have

failed, every element of A evaluated by a correct process in line 88 is a subset of S̄. Finally, since the

minimal core size of AS̄ is 1, all these elements of A overlap on some correct process pj .
Consider round r = mn+ j ≥ r′ − 1. In this round, pj not only belongs to all sets evaluated by the

correct processes, but it is also the coordinator (j = r mod n+ 1). Thus, the only value that a process

can propose to commit-adopt in round r + 1 is the value previously written by pj in Rj . Hence, every

process that returns from commit-adopt in round r+1 must commit and return—a contradiction. Thus:

Theorem 43 [38] If setcon(A) = 1, then consensus can be solved A-resiliently.

14.5.6. Adversarial partitions

One way to interpret Definition ?? is to say that setcon(A) captures the size of a minimal-cardinality

partitioning of A into sub-adversaries A1, . . . ,Ak, each of setcon = 1.

Indeed, for a proper set S ∈ A, selecting an element a ∈ S allows for splitting AS into two sub-

adversaries AS − AS,a and AS,a. AS − AS,a is the set of elements of AS that contain a and, thus,

setcon(AS−AS,a) = 1 (a can act as a leader). Moreover, selecting a so that setcon(AS,a) is minimized

makes sure that AS,a = setcon(AS)− 1.

Intuitively, A1, the first such sub-adversary, is the union of AS − AS,a, for all such proper S ∈ A
and a ∈ S. Adversaries A2, . . . ,Ak are obtained by a recursive partitioning of all A−A1. (A detailed

description of this partitioning can be found in [38].)

Thus, given an adversary A such that setcon(A) = k, we derive that A allows for solving k-set

consensus. Just take the described above partitioning of A in to k sub-adversaries, A1, . . . ,Ak such

that, for all j = 1, . . . , k, setcon(Aj) = 1. Then every process can run k parallel consensus algorithms,

one for each Aj , proposing its input value in each of these consensus instances (such algorithm exist by

Theorem 43). Since the set of correct processes in every A-compliant execution belongs to some Aj , at

least one consensus instance returns. The process decides on the first such returned value. Moreover, at

most k different values are decided and each returned value was previously proposed. Thus:

Theorem 44 [38] If setcon(A) = k, then A allows for solving k-set consensus.

14.5.7. Characterizing colorless tasks

But can we solve (k−1)-set consensus in the presence ofA such that setcon(A) = k? As shown in [38],

the answer is no: A does not allow for solving any colorless task that cannot be solved (k−1)-resiliently.

The result is derived by a simple application of BG simulation [13, 15].

169

The intuition here is the following. Suppose, by contradiction, that we are given an adversary A such

that setcon(A) = k and a colorless task T that is solvable A-resiliently but not (k − 1)-resiliently. Let

Alg be the corresponding A-resilient algorithm. Then we can construct a (k − 1)-resilient simulation of

anA-compliant execution of Alg. Roughly, we build upon BG-simulation, except that the order in which

steps of Alg are simulated is not fixed in advance to be round-robin. Instead, the order is determined

online, based on the currently observed set of participating processes.

We start with simulating steps of processes in S ∈ A such that setcon(AS) = k (by Definition ??,

such S exists). If the outcome of a simulated step of some process a cannot be resolved (the correspond-

ing BG-agreement is blocked), we proceed to simulating processes in an element S′ ∈ AS,a with the

largest setcon (if there is any). As soon as the blocked BG-agreement on the step of a resolves, the

simulation returns to simulating S. Since setcon(A) = k, we can obtain exactly k levels of simulation.

Therefore, in a (k − 1)-resilient execution, at most k − 1 simulated processes (each in a distinct sub-

adversary of A) can be blocked forever. Since A allows for k such sub-adversaries, at least one set in A
accepts infinitely many simulated steps. The resulting execution is thus A-compliant, and we obtain a

(k − 1)-resilient solution for T—a contradiction (detailed argument is given in [38]).

In fact, the set of colorless tasks that can be solved given an adversary A such that setcon(A) = k
is exactly the set of colorless tasks that can be solved (k − 1)-resiliently, but not k-resiliently. Indeed,

A allows for solving k-set consensus, and we can employ the generic algorithm of [37] that solves any

(k − 1)-resilient colorless task using the k-set consensus algorithm as a black box. Thus:

Theorem 45 [38] Let A be an adversary such that setcon(A) = k and T be a colorless task. Then A
solves T if and only if T is (k − 1)-resiliently solvable.

Recall that the set consensus power of an adversary A is the smallest k such that A can solve k-set

consensus. Theorem 45 implies:

Corollary 8 The set consensus power ofA is setcon(A), and the disagreement power ofA is setcon(A)−
1.

By Theorem ??, determining setcon(A) may boil down to determining the minimum hitting set size of

A, and thus, by [64]:

Corollary 9 Determining the set consensus power of an adversary is NP-complete.

14.6. Non-uniform adversaries and generic tasks

This chapter primarily talked about colorless tasks (consensus, set agreement, simplex agreement, et

cetera) in the read-write shared memory systems where processes may fail by crashing in a non-uniform

(non-identical and correlated) way. We modeled such non-uniform failures using the language of adver-

saries [28] and we derived a complete characterization of an adversary via its set consensus power [38]

(or, equivalently its disagreement power [28]).

The techniques discussed here can be extended to models where processes may also communicate

through stronger objects than just read-write registers (e.g., k-process consensus objects). In particular,

BG-simulation is used in [38] to capture the ability of leveled adversaries of [91] to prevent processes

from solving consensus among n processes using k-process consensus objects (k < n).

Combinatorial topology proved to be a powerful instrument in analyzing a special class of superset-

closed adversaries and colorless tasks, not only in read-write shared-memory models [51], but also in

a variety of other models, including message-passing models and iterated models with k-set consensus

objects.

170

However, the power of adversaries with respect to generic (not necessarily) colorless tasks is still

poorly understood. Consider, for example, a task Tpq which requires processes p and q (in a system of

three processes p, q, and r) to solve consensus and allows r to output any value. The task is obviously

not colorless: the output of r cannot always be adopted by p or q. The 2-obstruction-free adversary

A2-OF = {pq, pr, qr, p, q, r} does not allow for solving Tpq: otherwise, we would get a wait-free 2-

process consensus algorithm. On the other hand, Apq = {pqr, pq, p, r} (p is correct whenever q is

correct) allows for solving Tpq (just use p as a leader for p and q). But setcon(A2-OF) = setcon(Apq) =
2!

One may say that the task Tpq is “asymmetric”: it prioritizes outputs of some processes with respect

to the others. Maybe our result would extend to symmetric tasks whose specifications are invariant

under a permutation of process identifiers? Unfortunately, there are symmetric colored tasks that exhibit

similar properties [101]. So we need a more fine-grained criterion than set consensus power to capture

the power of adversaries with respect to colored tasks.

Finally, this chapter focuses on non-uniform crash faults in asynchronous shared-memory systems.

Non-uniform patterns of generic (Byzantine) types of faults are explored in the context of Byzantine

quorum systems [79] (see also a survey in [99]) and secure multi-party computations [57]. Both ap-

proaches assume that a faulty process can deviate from its expected behavior in an arbitrary (Byzantine)

manner. In particular, in [79], Malkhi and Reiter address the issues of non-uniform failures in the Byzan-

tine environment by introducing the notion of a fail-prone system (adversarial structure in [57]): a set B
of process subsets such that no element of B is contained in another, and in every execution some B ∈ B
contains all faulty processes. Determining the set of tasks solvable in the presence of a given generic

adversarial structure is an interesting open problem.

14.7. Bibliographic notes

Non-uniform failure models were described by Junqueira and Marzullo [63, 62] using the language of

cores and survivor sets. A more general approach was taken by Delporte-Gallet et al. [28] who defined

an adversary via live sets it allows and introduced the notion of disagreement power of an adversary

as the means of characterizing its power in solving k-set agreement. Herlihy and Rajsbaum [51] used

elements of modern topology to characterize the ability superset-closed adversaries (that can also be

described via survivor sets and cores) to solve colorless tasks. Gafni and Kuznetsov derived this result

using simulations and extended it to generic tasks [40] and generic adversaries [38]. In a similar vein,

Imbs et alii [58] and Taubenfeld [91] considered a related model of asymmetric progress conditions.

171

Bibliography

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared

memory. J. ACM, 40(4):873–890, 1993.

[2] Y. Afek, E. Weisberger, and H. Weisman. A completeness theorem for a class of synchronization

objects (extended abstract). In PODC, pages 159–170, 1993.

[3] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, Oct. 1985.

[4] G. Amdahl. Validity of the single processor approach to achieving large-scale computing capa-

bilities. In AFIPS Conference Proceedings, volume 30, page 483485, 1967.

[5] J. Aspnes and O. Waarts. Modular competitiveness for distributed algorithms. In Proceedings of

the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsyl-

vania, USA, May 22-24, 1996, pages 237–246, 1996.

[6] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. Achievable cases in an

asynchronous environment. In Proceedings of the 28th Symposium on Foundations of Computer

Science, pages 337–346. IEEE Computer Society Press, Oct. 1987.

[7] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with applications. Distributed

Computing, 15(2):87–96, 2002.

[8] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in the absence of

step contention. In Proceedings of the 19th International Conference on Distributed Computing,

DISC’05, pages 122–136, 2005.

[9] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced

Topics. John Wiley & Sons, 2004.

[10] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols

(extended abstract). In PODC ’83: Proceedings of the annual ACM symposium on Principles of

distributed computing, pages 27–30, 1983.

[11] A. Björner. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics

(Vol. 2), chapter Topological Methods, pages 1819–1872. 1995.

[12] B. Bloom. Constructing two-writer atomic registers. In Proceedings of the Sixth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’87, pages 249–259, 1987.

[13] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous

computations. In STOC, pages 91–100, May 1993.

[14] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages

41–51, 1993.

[15] E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm.

Distributed Computing, 14(3):127–146, 2001.

173

[16] H. P. Brinch, editor. The Origin of Concurrent Programming. Springer Verlag, 2002. 534 pages.

[17] J. E. Burns and G. L. Peterson. Constructing multi-reader atomic values from non-atomic values.

In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,

PODC ’87, pages 222–231, 1987.

[18] H. C.A.R. Monitors: an operating system structuring concept. Communications of the ACM,

17(10):549–557, 1974.

[19] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.

J. ACM, 43(4):685–722, July 1996.

[20] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM,

43(2):225–267, Mar. 1996.

[21] S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous

systems. Information and Computation, 105(1):132–158, 1993.

[22] S. Chaudhuri, M. Kosa, and J. Welch. One-write algorithms for multivalued regular and atomic

register. Acta Informatica, 37(161-192), 2000.

[23] S. Chaudhuri and J. L. Welch. Bounds on the costs of multivalued register implementations. SIAM

J. Comput., 23(2):335–354, 1994.

[24] O.-J. Dahl, E. Dijkstra, and H. C.A.R. Structured Programming. Academic Press, 1972. 220

pages.

[25] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and L. Lamport. Adaptive register allocation with

a linear number of registers. In International Symposium on Distributed Computing, DISC ’13,

pages 269–283, 2013.

[26] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and S. Rajsbaum. Linear space bootstrap communi-

cation schemes. Theoretical Computer Science, 561:122–133, 2015.

[27] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message passing. Tech-

nical Report 200377, EPFL Lausanne, 2003.

[28] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power of

an adversary. Distributed Computing, 24(3-4):137–147, 2011.

[29] E. Dijkstra. Solution of a problem in concurrent programming control. Communications of the

ACM, 8, 1965.

[30] D. Dolev and N. Shavit. Bounded concurrent time-stamping. SIAM Journal on Computing,

26(2):418–455, 1997.

[31] C. Dwork and O. Waarts. Simple and efficient bounded concurrent timestamping and the traceable

use abstraction. J. ACM, 46(5):633–666, Sept. 1999.

[32] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization. J.

ACM, 45(5):843–862, Sept. 1998.

[33] F. E. Fich, V. Luchangco, M. Moir, and N. Shavit. Obstruction-free algorithms can be practically

wait-free. In Proceedings of the International Symposium on Distributed Computing, pages 493–

494, 2005.

174

[34] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one

faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[35] F. C. Freiling, R. Guerraoui, and P. Kuznetsov. The failure detector abstraction. ACM Comput.

Surv., 2011.

[36] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and asyn-

chrony. In PODC, 1998.

[37] E. Gafni and R. Guerraoui. Generalized universality. In Proceedings of the 22nd interna-

tional conference on Concurrency theory, CONCUR’11, pages 17–27, Berlin, Heidelberg, 2011.

Springer-Verlag.

[38] E. Gafni and P. Kuznetsov. Turning adversaries into friends: Simplified, made constructive, and

extended. In OPODIS, pages 380–394, 2010.

[39] E. Gafni and P. Kuznetsov. On set consensus numbers. Distributed Computing, 24(3-4):149–163,

2011.

[40] E. Gafni and P. Kuznetsov. Relating L-Resilience and Wait-Freedom via Hitting Sets. In ICDCN,

pages 191–202, 2011.

[41] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In OPODIS, pages 205–218,

2010.

[42] R. Guerraoui, M. Kapaĺka, and P. Kouznetsov. The weakest failure detectors to boost obstruction-

freedom. In Proceedings of the 20th International Conference on Distributed Computing,

DISC’06, pages 399–412, 2006.

[43] R. Guerraoui and P. Kouznetsov. Failure detectors as type boosters. Distributed Computing,

20(5):343–358, 2008.

[44] R. Guerraoui and E. Ruppert. Linearizability is not always a safety property. In Networked

Systems - Second International Conference, NETYS 2014, pages 57–69, 2014.

[45] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related prob-

lems. Technical Report TR 94-1425, Department of Computer Science, Cornell University, May

1994.

[46] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multivalued atomic variables

from regular variables. J. ACM, 42(1):186–203, Jan. 1995.

[47] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan. 1991.

[48] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, 1991.

[49] M. Herlihy. Advanced topics in distributed algorithms. Technion Lecture, 2011.

http://video.technion.ac.il/Courses/Adv Topics in Dist Algorithms.html.

[50] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues

as an example. In ICDCS, pages 522–529, 2003.

[51] M. Herlihy and S. Rajsbaum. The topology of shared-memory adversaries. In Proceedings of

the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’10,

pages 105–113, 2010.

175

[52] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In

STOC, pages 111–120, May 1993.

[53] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM,

46(2):858–923, 1999.

[54] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2008.

[55] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, pages 313–328, 2011.

[56] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM

Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[57] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-party

computation (extended abstract). In Proceedings of the Sixteenth Annual ACM Symposium on

Principles of Distributed Computing, PODC ’97, pages 25–34, 1997.

[58] D. Imbs, M. Raynal, and G. Taubenfeld. On asymmetric progress conditions. In PODC, 2010.

[59] P. Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592–614, 1997.

[60] P. Jayanti, J. Burns, and G. Peterson. Almost optimal single reader single writer atomic register.

Journal of Parallel and Distributed Computing, 60:150–168, 2000.

[61] P. Jayanti, T. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects. Journal of the ACM,

45(3):451–500, 1998.

[62] F. Junqueira and K. Marzullo. A framework for the design of dependent-failure algorithms. Con-

currency and Computation: Practice and Experience, 19(17):2255–2269, 2007.

[63] F. P. Junqueira and K. Marzullo. Designing algorithms for dependent process failures. In Future

Directions in Distributed Computing, pages 24–28, 2003.

[64] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computations,

pages 85–103, 1972.

[65] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and Appli-

cations, 14(1):1–13, 2012.

[66] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811,

1977.

[67] L. Lamport. Proving the correctness of multiprocessor programs. Transactions on software engi-

neering, 3(2):125–143, Mar. 1977.

[68] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-

grams. IEEE Trans. Comput., C-28(9):690–691, Sept. 1979.

[69] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM Trans.

Prog. Lang. Syst., 6(2):254–280, Apr. 1984.

[70] L. Lamport. On interprocess communication; part I: Basic formalism; part II: Algorithms. Dis-

tributed Computing, 1(2):77–101, 1986.

176

[71] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Prog. Lang.

Syst., 4(3):382–401, July 1982.

[72] M. Li, J. Tromp, and P. Vityani. How to share concurrent wait-free variables. Journal of the ACM,

43(4):723–746, 1996.

[73] N. Linial. Doing the IIS. Unpublished manuscript, 2010.

[74] B. Liskov and S. Zilles. Specification techniques for data abstraction. IEEE Transactions on

Software Engineering, SE1:7–19, 1975.

[75] W. Lo and V. Hadzilacos. All of us are smarter than any of us: Nondeterministic wait-free

hierarchies are not robust. SIAM J. Comput., 30(3):689–728, 2000.

[76] W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asynchronous shared

memory systems. In WDAG, LNCS 857, pages 280–295, Sept. 1994.

[77] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-

chronous processes. Advances in Computing Research, 4:163–183, 1987.

[78] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[79] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11?(?):203–213,

1998.

[80] J. Misra. Axioms for memory access in asynchronous hardware systems. ACM Transactions on

Programming Languages and Systems, 8(1):143–153, 1986.

[81] S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach.

Communications of the ACM, 19(5):279–285, 1976.

[82] D. Parnas. On the criteria to be used in decomposing systems in to module. Communications of

the ACM, 15(2):1053–1058–336, 1972.

[83] D. Parnas. A technique for software modules with examples. Communications of the ACM,

15(2):330–336, 1972.

[84] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,

27(2):228–234, Apr. 1980.

[85] G. Peterson. Concurrent reading while writing. ACM Transactions on Programming Languages

and Systems, 5(1):46–55, 1983.

[86] M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986.

[87] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public

knowledge. In STOC, pages 101–110, May 1993.

[88] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tuto-

rial. ACM Computing Surveys, 22(4):299–319, Dec. 1990.

[89] A. K. Singh, J. Anderson, and M. Gouda. The elusive atomic register. Journal of the ACM,

41(2):331–334, 1994.

177

[90] G. Taubenfeld. Synchronization algorithms and concurrent programming. Pearson Prentice-Hall,

2006.

[91] G. Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

[92] J. Tromp. How to construct an atomic variable (extended abstract). In WDAG, pages 292–302,

1989.

[93] J. Tromp. Aspects of Algorithms and Complexity. PhD thesis, Universiteit van Amsterdam, 1993.

[94] K. Vidyasankar. Converting Lamport’s regular register to atomic register. Information Processing

Letters, 28(6):287–290, 1988.

[95] K. Vidyasankar. An elegant 1-writer multireader multivalued atomic register. Information Pro-

cessing Letters, 30(5):221–223, 1989.

[96] K. Vidyasankar. A very simple cosntruction of 1-writer multireader multivalued atomic variable.

Information Processing Letters, 37:323–326, 1991.

[97] P. M. B. Vitányi. Simple wait-free multireader registers. In Proceedings of the 16th International

Conference on Distributed Computing, DISC ’02, pages 118–132, 2002.

[98] P. M. B. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware.

In Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS ’86,

pages 233–243, 1986.

[99] M. Vucolić. The origin of quorum systems. Bulletin of EATCS, 101:125–147, June 2010.

[100] W. E. Weihl. Atomic data types. IEEE Database Eng. Bull., 8(2):26–33, 1985.

[101] P. Zieliński. Sub-consensus hierarchy is false (for symmetric, participation-aware tasks).

https://sites.google.com/site/piotrzielinski/home/symmetric.pdf.

[102] P. Zieliński. Anti-omega: the weakest failure detector for set agreement. In PODC, Aug. 2008.

[103] P. Zieliński. Anti-omega: the weakest failure detector for set agreement. Distributed Computing,

22(5-6):335–348, 2010.

178

