Randomized Distributed Algorithms

The story so far_

e Agreement is sometimes
impossible

e Sharing is hard

Good news today:

Randomization can help!

Randomization

* Processes are now allowed to flip coins

 Their actions (reads, writes) may depend on
the outcome of the random coin flips

A real-life(?) example

Register 1

e Two people in a narrow
hallway

| want to

e One of them has to change
direction, if they are to
proceed!

, | Register 2
e Let’s allow them to

communicate (registers)

| want to

move!

— They will have to solve
consensus for 2 processes!

A real-life(?) example
Register 1

[FLP] : there exists an execution
in which processes

get stuck forever, or they

run into each other!

| want to

Does this happen in real life?!
| Register 2

It is unlikely that two people
will continue choosing exactly
the same thing!

| want to

move!

What does unlikely mean?

Slightly modified example

Register 1
Two people in a narrow hallway

| want to

In each “round”, each one chooses an
option (go forward or move)

with probability 1 / 2, and writes it to
the register

go forward!

|
|
If they chose different options, they :

. . . . Register 2
finish, otherwise they continue

(Assume they progress in lock step) | want to
Pr[finishinround1]=1/2 MOVE:
|
|

Pr[continue after round r] = (1 / 2)"

&

For example,
Pr[continue for > 10 rounds] < 0.001

Status

They will definitely finish in less than 100
rounds!

Does there still exist an execution in which
they do not finish?

— Do we contradict FLP?

Yes, the infinite execution is still there
— We do not contradict FLP!

What is the probability of that infinite
execution? (1 j"

lim| — | =
I’—>00\2

The problem has changed!

@ @ @ @

z—-fé N Y T W ¢
-)u Y EY Y Y

* By allowing processes to use random coin
flips, we give probability to executions

e Bad executions (like FLP) should happen with
extremely low probability (in this case, 0)

 We ensure safety in all executions, but
termination is ensured with probability 1

Example: Consensus

Validity: if all processes propose the same value
v, then every correct process decides v.

Integrity: every correct process decides at most
one value, and if it decides some value v, then v
must have been proposed by some process.

Agreement: if a correct process decides v, then
every correct process decides v.

Termination: every correct process decides some
value.

Randomized Consensus

Validity: if all processes propose the same value
v, then every correct process decides v.

Integrity: every correct process decides at most
one value, and if it decides some value v, then v
must have been proposed by some process.

Agreement: if a correct process decides v, then
every correct process decides v.

(Probabilistic) Termination: with probability 1,
every correct process decides some value.

The plan for today

Intro

— Motivation

Some Basic Probability

A Randomized Test-and-Set algorithm
— From 2 to N processes

Randomized Consensus

— Shared Coins

Randomized Renaming

Some Basic Probability

Fix a space Q of all possible e Two consecutive independent
events tosses of a fair coin:
To each event Evin Q, we Q={HH,HT, TH, TT }
associate a probability in [0, 1] ||* Pr[Ev]=1/4,forall Evin Q
Two events A, B are e Pr[first coin H, second coin T]
independent iff = Pr[first coin H] Pr[second T]
Pr[AandB]=Pr[A]Pr[B] =1/4
Random variable f = function e f=number of heads in two
from Q to real numbers consecutive tosses
Expectation e Expected nr. of heads:
E[f]=) x-Pr[f =x] E[f]=0-1/4+1-1/2+2-1/4=1
XeR

Test-and-set specification

Sequential specification:

Shared: V, a binary MWMR
atomic register, initially O

procedure Test-and-Set()
ifV=0thenV & 1
return winner
else return loser

T&S

Linearization:

1

I_.'__'_;';i The winner
| always returns
Test-and-set() Test-and-set() first!

2-process test-and-set

Based on the previous “hallway” example
Two SWMR registers Ry, R,

— Each owned by a process

A register R. can have one of 4 possible values:
— NULL, Mine, His, Choosing

Processes express their choices through
registers

Algorithm by Tromp and Vitanyi

The main idea

//general structure:

Registers R1, R2

procedure test-and-set() //at process i
R, = present
while(true)

value = flip local coin

if both present AND flipped the same
continue

else
one of them wins

15

2-process test-and-set

Shared: Registers R1, R2, initially NULL If the other guy
procedure test-and-set,() //at process i OWNS the object,
1. if(R, = His) a4 return O

2. return O
3. R, = Mine (Both o
4 while(Ri =R, _,) —— oth participate ~
5. R. = Choosing AN Flip a local coin to
- o - decide who gets
3. if(R;{_i——NI:IS) //if the other guy gave up the object. If both
8. i _t' ‘e / flip Heads, then
: continue "
it’s a draw and we
9. if (R,_, = Choosing AND CoinFlip() = Heads) ‘\\ repeat
10. R, = Mine J
11. else R, = His r
12. //loop finished — Eventually (with prob. 1)
13. if (R, = Mine) return 1 L processes return from
14. else return 0 the loop

16

Correctness (rough sketch)

 Uniqueness: Assume for contradiction that the two processes
both return 1 (winner). Then both processes had R, = Mine at
line 13. It is easy to check that this is impossible, by case
analysis.

 Termination: Notice that, every time processes execute the
coin flip in line 9, the probability that the while loop
terminates in the next iteration is %.
Hence, the probability that the algorithm executes more than
r coin flips is (1/2)". Therefore, the probability that the
algorithm goes on forever is

lim i =0

F— o0 2

r

Performance

e What is the expected number of steps that a
process performs in an execution?

 The probability that they finish in an iteration
isl/2
e The expected number of iterations is 2!

— Try it at home!
— Geometric distribution

From 2 to N processes

C;x &u_j
e We know how to decide a “match” between’ ‘S‘FF

any two processes

)|

81

e How do we get a single winner out of a set of
N processes?

B e
loser

19

T&S

T&S

T&S

T&S

The tournament

T&S

winner

20

Question

o

s U

winnher

-

-
}
-

-
-

-
-
-

-
-

>

&

&

f -

i] L. S

.
£ .

.
-
-
-
&

] .
- - - -

-

o
-
-
-
=

-

w#w#w#
-
-
-

=

-

5
-
-

-

"

-

e
-
-
=

=

.
-
. e
- 1

-

5
-
-

-

-

.

-

a5
-
-

-

“

.

—
o
=
-

=
=
.

i
i
=
=

i
=
.
i

-
-

-
.
-

-
-
-

\ S
\ - =

.

.

.
.

|
A
-
.

&
&
g
¢
-
N

)
)

-

L

— T~
Emmmaay

o,

-
o
-

-

-
-
.
i
.
-
.

o
L

““““ S———
T
-

.
-
.
o
-

-
-
-
-

-
;-
.

r
-]

-
e
-
.
-
=

e
.
.
.
.

(g
Q.
S
(0
2
o

L
95
>
S
@)
L
o

=
-
o

N

+
@)

S

.
-
-

-
-

it
.
e

.

-
o
-

-
-
-

N
oy
y 1
yF J

-
-
-

-
.
.

.

¥ s
T
2 »”

R, S

P S,
- .
- -
SRS,

-

t-free, the

ill win!

]

Since each T&S is wa

le guy w

sing

S TN
ey
S i
= -
- -
-
.

- |
.
o
'y
3 |
]

-

.

-

i

e

S

21

What is the height of the
tree?

Code: Variant #1

_ Start at the leaf
e procedure test-and-set() // at process i corresponding to
— current = leaf-test-and-set[i] your D1

— while (true) As long as you
e result = current.test-and-set () keep winning, you
\ 8goup the tree!

e if (result == winner)
if (current == root) return winner

else current = current.parent()

e else return loser
If you lose a test-
and-set, you have
to leave

22

Correctness

 Unique winner: Suppose there are two winners.
Then both would have to win the root test-and-set,
contradiction

e Termination (with probability 1!):
Follows from the termination of 2-process test-and-
set

 Winner: Either there exists a process that returns
winner, or there is at least a failure

Is this it?

23

How about this property?

Linearization:

N NI

>4 -
T&S = h
inner
T&S

24

How about this?

‘ 1

Test-and-set()

Linearization:

Test-and-set()

3\ R

T&S

winner
‘ Loser

Loser 25

Winner

T&S

Homework

@

* Fix the N-process test-and-set implementation
so that it is linearizable

Wrap up

We have a test-and-set algorithm for N
processes

Always safe

Terminates with probability 1

Worst-case local cost O(log N) per process
Expected total cost O(N)

The plan for today

e Randomized Consensus

— Shared Coins

e Randomized Renaming

Randomized consensus

e Algorithms based on a Shared Coin

e A Shared coin with parameter p, SC(p) is an
algorithm without inputs, which has probability p

that all outputs are 0, and probability p that all
outputs are 1.

e Example:

— Every process flips a local coin, and returns 1 for
Heads, O for Tails

— p=Pr[all outputsare 1] =
Pr[all outputsare 0] = (1/2)N

— Usually, we look for higher output parameters
The higher the parameter, the faster the algorithm

Shared Coin -> Binary Consensus

 The algorithm will progress in rounds

* Processes share a doubly-indexed vectors
Proposed|r][i], Check]r]]i]
(r = round number, i = process id)

 Proposed|][] stores values, Check|[][] indicates
whether a process finished

* At each round r >0, process p; places its vote
(O or 1) in Proposed|[r][i]

Shared Coin->Binary Consensus

Shared: Matrices Proposed|r][i]; Check'[r][i] In each round r, the)
procedm.‘e propose(v) //at processi orocess writes its value
1. decide="false,r=0 . :
. , in Proposed|r][i]
2. While(decide == false)
3 r=r+1
4 Proposed[r][i] = v It then checks to see if)
5. view = Collect(Proposed|r] [...]) there is disagreement,
6. if (both 0 and 1 appearinview) — —— and marks it to
7 Check[r][i] = disagree \\ Check[r][i])
8. else Check]r][i] = agree
9. check-view = Collect(Check[r] [...]) / If there is)
10. if(disagree appears in check-view) __— - disagreement, then
11. coin = SharedCoin(r) processes flip a shared
12. if (for some j, check-view[j] = agree) coin to agree, and post
13. v = Proposed]r][j] the results Y,
14. else v = coin
15. else decide = true = ——=— r
16. return v If no-one disagrees,
1 then return!
31

Correctness

Shared: Matrices Proposed|r][i]; Check]r][i] o Va|idity; |f everyone
procedure propose(v) //atprocessi

1. decide="false,r=0 pProposes the same v,

2. While(decide == false) then Check=agree, so

3 r=r+l they decide onv

4 Proposed[r][i] = v

5. view = Collect(Proposed|[r] [...]) * Agreement: If process p
6. if (both 0 and 1 appear in view) decides v, then either all
7. Check[r][i] = disagree

8 else Check]r][i] = agree processes wrote v, 9[‘

9. check-view = Collect(Check]r] [...]) slower processes will

10. if(disagree appears in check-view) adoptvinline 13

11. coin = SharedCoin(r) . .

12. if (for some j, check-view[j] = agree) * Termination?

13. v = Proposed]r][j]

14, else v = coin

15. else decide = true

16. returnv

Termination

e |f everyone proposes the same thing, then
we’re done within a round

e Otherwise, processes have probability at least
p of flipping the same value at every round r

 What is the probability that they go on
forever?

1-p)-A=-p)-Q-p)-A-p)-A-p)-.=
iml-p) =0

F— o

Homework 2: Performance @

e What is the expected number of rounds that

the algorithm runs for, if the Shared coin has
parameter p?

e |n particular, what is the expected running
time for the example shared coin, having

p=(1/2)"

The plan for today

e Randomized Renaming

The Renaming Problem

Renaming

N processes, t < N might fail by crashing
 Huge initial ID’s (think IP Addresses)

* Need to get new unique ID’s from a small
namespace (e.g., from1to N)

How can randomization help?

It will allow us to get a tight namespace
(of N names), even in an asynchronous system

It will give us better performance

ldea: derive adaptive tight renaming from
test-and-set

We now know how to implement test-and-set
in an asynchronous system

What’s the catch?

Adaptive Tight Renaming from
Test-and-Set

Shared: V, an infinite vector of
randomized test-and-set

objects % Name =3
procedure getName(i) <
j< 1 N
while(true) #1 #2 #3 #4 #5

res < V[j].Test-and-set, ()

if res = winner then
return j

elsej&<j+1

Performance

Shared: V, an infinite vector of e What is the worst-case
test-and-set objects local complexity?
procedure getName(i) ¢ O(N)
j<1
while(true)
res < V[j].Test-and-set, ()
if res = winner then e What is the worst-case
return j total complexity?
elsej&j+1 e O(N?)

Where is the

#1 #2 #3 #4 #5 #N

randomization?

Can we do better using
randomization?

Randomized Tight Renaming

Shared: V, an infinite vector of
test-and-set objects

procedure getName(i) & Name =3
while(true) \)

j = Random(1, N)

res < V[j].Test-and-set, ()

if res = winner then
return j

#1 #2 #3 #4 #5

Randomized Tight Renaming

Shared: V, an infinite vector of
test-and-set objects

procedure getName(i)

while(true)
j = Random(1, N)
res < V[j].Test-and-set, ()
if res = winner then
return j

#1 #2 #3 #4 #5

#N

Claim: The expected total
number of tries is
O(N log N)!

Sketch of Proof (not for the
exam).

A process will win at most
one test-and-set

Hence it is enough to
count the time until each
test-and-set is accessed at
least once!

N items, we access one at
random every time; how
many accesses until we
cover all N of them?

Coupon collector: we need
< 2N log N total accesses,
with probability 1 —1 / N3

Wrap-up

 \We get adaptive tight renaming in
asynchronous shared memory

 Termination ensured with probability 1

* Total complexity:
O(N log N) total operations in expectation

Conclusion

e Randomization “avoids” the deterministic
impossibility results (FLP, HS)
— The results still hold, the bad executions still exist

— We give bad executions vanishing probability,
ensuring termination with probability 1

 The algorithms always preserve safety

e Usually we can get better performance by
using randomization

References (use Google Scholar)

e For test-and-set:

— “Randomized two-process wait-free test-and-set” by
John Tromp and Paul Vitanyi

— “Wait-free test-and-set” by Afek et al.

e For randomized consensus:

— http://pine.cs.yale.edu/pinewiki/RandomizedConsensus
— You can use the same wiki for other topics as well

* For renaming:

— “Fast Randomized Test-and-Set and Renaming” by
Alistarh, Guerraoui et al.

