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Registers

• Question 1: what objects can we implement 
with registers? Counters and snapshots
(previous lecture)

• Question 2: what objects we cannot 
implement? (this lecture)
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Queue

 The queue is an object container with two 
operations: enq() and deq()

 Can we implement a (atomic wait-free) queue?
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The consensus object

 One operation propose() which returns a value.
When a propose() operation returns, we say that 
the process decides

 No two processes decide differently

 Every decided value is a proposed value
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The consensus object

 Proposition:
 Consensus can be implemented  among two 

processes with queues and registers

 Proof (algorithm): consider two processes p0 and 
p1, two registers R0 and R1 and a queue Q.
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2-Consensus with queues  
Uses two registers R0 and R1, and a queue Q  
Q is initialized to {winner, loser}

Process pI:

propose(vI)
RI.write(vI)
item := Q.dequeue()
if item = winner return(vI)
return(R{1-I}.read())
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P0
W(0) Deq() -> winner Return(0)

R0 Q

P1
W(1) Deq() -> loser Return(0)

R1 Q
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Correctness

Proof (algorithm):
 (wait-freedom) by the assumption of a wait-free register 

and a wait-free queue plus the fact that the algorithm 
does not contain any wait statement

 (validity) If pI dequeues winner, it decides on its own 
proposed value. If pI dequeues loser, then the other 
process pJ dequeued winner before. By the algorithm, pJ 
has previously written its input value in RJ. Thus, pI 
decides on pJ’s proposed value; 

 (agreement) if the two processes decide, they decide on 
the value written in the same register.
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2-Consensus with Fetch&Inc  
 Uses two registers R0 and R1, and a Fetch&Inc object C  

(with one fetch&inc() operation that returns its value)
 (NB. The value in C is initialized to 0)

 Process pI:

 propose(vI)
 RI.write(vI)
 val := C.fetch&inc()
 if(val = 1) then 
 return(vI)

– else return(R{1-I}.read())
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More consensus implementations

 A Test&Set object maintains binary values x and y, init to 
0; it provides one operation: test&set()
Sequential spec:   
 test&set() {y := x; x: = 1; return(y);}

 A Compare&Swap object maintains a value x, init to , 
and provides one operation: compare&swap(v,w); 
Sequential spec:   

 c&s(old,new) {temp = x; if x = old then x := new; 
return(temp)}
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2-Consensus with Test&Set  
 Uses two registers R0 and R1, and a Test&Set object T  


 Process pI:

 propose(vI)
 RI.write(vI)
 val := T.test&set()
 if(val = 0) then 

 return(vI)
else return(R{1-I}.read())
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N-Consensus with C&S  
 Uses a C&S object C  


 Process pI:

 propose(vI)
 val := C.c&s(,vI)
 if(val = ) then

 return(vI)
– else return(val)
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Impossibility [FLP85,LA87]

 Proposition: there is no algorithm that 
implements consensus among two processes 
using only registers

 Corollary: there is no algorithm that implements 
a queue (Fetch&Inc, Test&Set or C&S) among 
two processes using only  registers



18

Registers

• Question 1: what objects can we implement 
with registers? Counters and snapshots
(previous lecture)

• Question 2: what objects we cannot 
implement? All objects that (together with 
registers) can implement consensus (this 
lecture)
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Impossibility (Proof)

 Proposition: there is no algorithm that 
implements consensus among two 
processes using only registers

 Proof (by contradiction): consider two 
processes p0 and p1 and any number of 
registers, R1..Rk..
Assume that a consensus algorithm A for p0 
and p1 exists.
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Elements of the model

 A configuration is a global state of the 
distributed system

 A new configuration is obtained by executing 
a step on a previous configuration: the step is 
the unit of execution  
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What is distributed computing? 
A game
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A game between an adversary and 
a set of processes
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The adversary decides which 
process goes next

The processes take steps
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Elements of the model

 The adversary decides which process 
executes the next step and the algorithm 
deterministically decides the next 
configuration based on the current one
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Elements of the model

 Schedule:  a sequence of steps represented 
by process ids

 The schedule is chosen by the system

 An asynchronous system is one with no 
constraint on the schedules: any sequence of 
process ids is a schedule 
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Consensus

 The algorithm must ensure that agreement
and validity are satisfied in every schedule 

 Every process that executes an infinite 
number of steps eventually decides
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Impossibility (elements)

 (1) a (initial) configuration C is a set of (initial) 
values of p0 and p1 together with the values of 
the registers: R1..Rk,..; 

 (2) a step is an elementary action executed by 
some process pI: it consists in reading or writing 
a value in a register and changing pI’s state 
according to the algorithm A; 

 (3) a schedule S is a sequence of steps; S(C) 
denotes the configuration that results from 
applying S to C. 
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Impossibility (elements)

 Consider u to be 0 or 1; a configuration C is u-
valent if, starting from C, no matter how the 
processes behave, no decision other than u is 
possible

 We say that the configuration is univalent. 
Otherwise, the configuration is called bivalent
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P0(0)
Return(0)

P1(0)
Return(0)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)
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P0(1)
Return(1)

P1(1)
Return(1)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)
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P0(1)
Return(1/0)

P1(0)
Return(1/0)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)
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Impossibility (structure)

 Lemma 1: there is at least one initial bivalent
configuration

 Lemma 2: given any bivalent configuration C, 
there is an arbitrarily long schedule S(C) that 
leads to another bivalent configuration
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The conclusion

 Lemmas 1 and 2 imply that there is a 
configuration C and an infinite schedule S such 
that, for any prefix S’  of S,   S’(C) is bivalent. 

 In infinite schedule S, at least one process 
executes an infinite number of steps and does 
not decide  

 A contradiction with the assumption that A 
implements consensus. 
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Lemma 1

The initial configuration C(0,1) is bivalent

Proof: consider C(0,0) and p1 not taking any step: p0 
decides 0; p0 cannot distinguish C(0,0) from C(0,1) 
and can hence decide 0 starting from C(0,1); similarly, 
if we consider C(1,1) and p0 not taking any step, p1 
eventually decides 1; p1 cannot distinguish C(1,1) 
from C(0,1) and can hence decide 1 starting from 
C(0,1). Hence the bivalency.
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Lemma 2

Lemma 2: Given any bivalent configuration C, 
there is an arbitrarily long schedule S such that 
S(C) is bivalent

Proof (by contradiction): let S be the schedule with 
the maximal length such as D= S(C) is bivalent; 
p0(D) and p1(D) are both univalent: one of them 
is 0-valent (say p0(D)) and the other is 1-valent 
(say p1(D)) 
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Lemma 2

 Proof (cont’d): To go from D to p0(D) (vs p1(D)) 
p0 (vs p1) accesses a register; the register must 
be the same in both cases; otherwise p1(p0(D)) 
is the same as p0(p1(D)): in contradiction with the 
very fact that p0(D) is 0-valent whereas p1(D) is 
1-valent 
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Lemma 2

 Proof (cont’d): To go from D to p0(D), p0 cannot read R; 
otherwise R has the same state in D and in p0(D) ; in this 
case, the registers and p1 have the same state in 
p1(p0(D)) and p1(D); if p1 is the only one executing steps, 
then p1 eventually decides 1 in both cases: a 
contradiction with the fact that p0(D) is 0-valent; the same 
argument applies to show that p1 cannot read R to go 
from D to p1(D)

Thus both p0 and p1 write in R to go from D to p0(D) 
(resp., p1(D)). But then p0(p1(D))= p0(D) (resp. 
p1(p0(D))= p1(D)) --- a contradiction.  
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The conclusion (bis)

Lemmas 1 and 2 imply that there is a configuration 
C and an infinite schedule S such that, for any 
prefix S’  of S,   S’(C) is bivalent. 

In infinite schedule S, at least one process executes 
an infinite number of steps and does not decide  

A contradiction with the assumption that A 
implements consensus. 


