
1© R. Guerraoui

The Limitations
of Registers

R. Guerraoui
Distributed Programming Laboratory

2

Registers

• Question 1: what objects can we implement
with registers? Counters and snapshots
(previous lecture)

• Question 2: what objects we cannot
implement? (this lecture)

3

Shared memory model

Registers

P2

P3P1

4

Shared memory model

Registers

P2

P3P1
Counters

Snapshots

5

Shared memory model

Registers

P2

P3P1
Counters

Snapshots

6

Queue

 The queue is an object container with two
operations: enq() and deq()

 Can we implement a (atomic wait-free) queue?

7

The consensus object

 One operation propose() which returns a value.
When a propose() operation returns, we say that
the process decides

 No two processes decide differently

 Every decided value is a proposed value

8

The consensus object

 Proposition:
 Consensus can be implemented among two

processes with queues and registers

 Proof (algorithm): consider two processes p0 and
p1, two registers R0 and R1 and a queue Q.

9

2-Consensus with queues
Uses two registers R0 and R1, and a queue Q
Q is initialized to {winner, loser}

Process pI:

propose(vI)
RI.write(vI)
item := Q.dequeue()
if item = winner return(vI)
return(R{1-I}.read())

10

P0
W(0) Deq() -> winner Return(0)

R0 Q

P1
W(1) Deq() -> loser Return(0)

R1 Q

11

Correctness

Proof (algorithm):
 (wait-freedom) by the assumption of a wait-free register

and a wait-free queue plus the fact that the algorithm
does not contain any wait statement

 (validity) If pI dequeues winner, it decides on its own
proposed value. If pI dequeues loser, then the other
process pJ dequeued winner before. By the algorithm, pJ
has previously written its input value in RJ. Thus, pI
decides on pJ’s proposed value;

 (agreement) if the two processes decide, they decide on
the value written in the same register.

12

Shared memory model

Registers

P2

P3P1
Counters

Snapshots

Queue

Test&Set

C&S

13

2-Consensus with Fetch&Inc
 Uses two registers R0 and R1, and a Fetch&Inc object C

(with one fetch&inc() operation that returns its value)
 (NB. The value in C is initialized to 0)

 Process pI:

 propose(vI)
 RI.write(vI)
 val := C.fetch&inc()
 if(val = 1) then
 return(vI)

– else return(R{1-I}.read())

14

More consensus implementations

 A Test&Set object maintains binary values x and y, init to
0; it provides one operation: test&set()
Sequential spec:
 test&set() {y := x; x: = 1; return(y);}

 A Compare&Swap object maintains a value x, init to ,
and provides one operation: compare&swap(v,w);
Sequential spec:

 c&s(old,new) {temp = x; if x = old then x := new;
return(temp)}

15

2-Consensus with Test&Set
 Uses two registers R0 and R1, and a Test&Set object T

 Process pI:

 propose(vI)
 RI.write(vI)
 val := T.test&set()
 if(val = 0) then

 return(vI)
else return(R{1-I}.read())

16

N-Consensus with C&S
 Uses a C&S object C

 Process pI:

 propose(vI)
 val := C.c&s(,vI)
 if(val =) then

 return(vI)
– else return(val)

17

Impossibility [FLP85,LA87]

 Proposition: there is no algorithm that
implements consensus among two processes
using only registers

 Corollary: there is no algorithm that implements
a queue (Fetch&Inc, Test&Set or C&S) among
two processes using only registers

18

Registers

• Question 1: what objects can we implement
with registers? Counters and snapshots
(previous lecture)

• Question 2: what objects we cannot
implement? All objects that (together with
registers) can implement consensus (this
lecture)

19

Impossibility (Proof)

 Proposition: there is no algorithm that
implements consensus among two
processes using only registers

 Proof (by contradiction): consider two
processes p0 and p1 and any number of
registers, R1..Rk..
Assume that a consensus algorithm A for p0
and p1 exists.

20

Elements of the model

 A configuration is a global state of the
distributed system

 A new configuration is obtained by executing
a step on a previous configuration: the step is
the unit of execution

21

What is distributed computing?
A game

22

A game between an adversary and
a set of processes

23

The adversary decides which
process goes next

The processes take steps

24

Elements of the model

 The adversary decides which process
executes the next step and the algorithm
deterministically decides the next
configuration based on the current one

25

Elements of the model

 Schedule: a sequence of steps represented
by process ids

 The schedule is chosen by the system

 An asynchronous system is one with no
constraint on the schedules: any sequence of
process ids is a schedule

26

Consensus

 The algorithm must ensure that agreement
and validity are satisfied in every schedule

 Every process that executes an infinite
number of steps eventually decides

27

Impossibility (elements)

 (1) a (initial) configuration C is a set of (initial)
values of p0 and p1 together with the values of
the registers: R1..Rk,..;

 (2) a step is an elementary action executed by
some process pI: it consists in reading or writing
a value in a register and changing pI’s state
according to the algorithm A;

 (3) a schedule S is a sequence of steps; S(C)
denotes the configuration that results from
applying S to C.

28

Impossibility (elements)

 Consider u to be 0 or 1; a configuration C is u-
valent if, starting from C, no matter how the
processes behave, no decision other than u is
possible

 We say that the configuration is univalent.
Otherwise, the configuration is called bivalent

29

P0(0)
Return(0)

P1(0)
Return(0)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)

30

P0(1)
Return(1)

P1(1)
Return(1)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)

31

P0(1)
Return(1/0)

P1(0)
Return(1/0)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)

32

Impossibility (structure)

 Lemma 1: there is at least one initial bivalent
configuration

 Lemma 2: given any bivalent configuration C,
there is an arbitrarily long schedule S(C) that
leads to another bivalent configuration

33

The conclusion

 Lemmas 1 and 2 imply that there is a
configuration C and an infinite schedule S such
that, for any prefix S’ of S, S’(C) is bivalent.

 In infinite schedule S, at least one process
executes an infinite number of steps and does
not decide

 A contradiction with the assumption that A
implements consensus.

34

Lemma 1

The initial configuration C(0,1) is bivalent

Proof: consider C(0,0) and p1 not taking any step: p0
decides 0; p0 cannot distinguish C(0,0) from C(0,1)
and can hence decide 0 starting from C(0,1); similarly,
if we consider C(1,1) and p0 not taking any step, p1
eventually decides 1; p1 cannot distinguish C(1,1)
from C(0,1) and can hence decide 1 starting from
C(0,1). Hence the bivalency.

35

Lemma 2

Lemma 2: Given any bivalent configuration C,
there is an arbitrarily long schedule S such that
S(C) is bivalent

Proof (by contradiction): let S be the schedule with
the maximal length such as D= S(C) is bivalent;
p0(D) and p1(D) are both univalent: one of them
is 0-valent (say p0(D)) and the other is 1-valent
(say p1(D))

36

Lemma 2

 Proof (cont’d): To go from D to p0(D) (vs p1(D))
p0 (vs p1) accesses a register; the register must
be the same in both cases; otherwise p1(p0(D))
is the same as p0(p1(D)): in contradiction with the
very fact that p0(D) is 0-valent whereas p1(D) is
1-valent

37

Lemma 2

 Proof (cont’d): To go from D to p0(D), p0 cannot read R;
otherwise R has the same state in D and in p0(D) ; in this
case, the registers and p1 have the same state in
p1(p0(D)) and p1(D); if p1 is the only one executing steps,
then p1 eventually decides 1 in both cases: a
contradiction with the fact that p0(D) is 0-valent; the same
argument applies to show that p1 cannot read R to go
from D to p1(D)

Thus both p0 and p1 write in R to go from D to p0(D)
(resp., p1(D)). But then p0(p1(D))= p0(D) (resp.
p1(p0(D))= p1(D)) --- a contradiction.

38

The conclusion (bis)

Lemmas 1 and 2 imply that there is a configuration
C and an infinite schedule S such that, for any
prefix S’ of S, S’(C) is bivalent.

In infinite schedule S, at least one process executes
an infinite number of steps and does not decide

A contradiction with the assumption that A
implements consensus.

