
Renaming

Dan Alistarh
EPFL LPD

• N processes, t < N might fail by crashing
• Huge initial ID’s (think IP Addresses)
• Need to get new unique ID’s from a small

namespace (e.g., from 1 to N)

The Renaming Problem

Renaming
128.178.80.4

128.178.23.17

128.178.0.1 128.178.5.1

128.178.7.2

128.178.0.4

128.178.0.1128.178.0.1

128.178.0.1

7
1 2

3
5

9 10
4 11

2

How about Shared Memory?

Example: UNIX process ID’s
• Are given sequentially from 1 to MAX_PID

(default 32768)
• They wrap around, and are designed to be

unpredictable
• Commonly, shared-memory processes get

random id’s from 1 to 32767
• …so renaming is also relevant in

shared memory
3

Why is this useful?

• Getting a small unique name is important
– Smaller reads and writes/messages
– Overall performance
– Names are a natural prerequisite

• Renaming is related to:
– Mutual exclusion
– Test-and-set
– Counting
– Resource allocation

Renaming

3378

4

4

Two versions
• “Standard” renaming [Attiya et al.]

– N = max. number of processes that may
participate concurrently

– N is known in advance
– Target namespace of size f(N)

• Adaptive renaming [Moir et al.]
– k is the number of processes that actually

participate (contention)
– k is unknown
– Namespace size and performance should be f(k)

5

Renaming specification
• N processes start with unique identifiers from 1 to Y
• t < N processes may fail by crashing
• Read-write shared memory (MWMR atomic)
Properties
1. Termination: Every non-faulty process returns an

integer yi

2. Uniqueness: for all processes pi and pj, yi ≠ yj

3. Namespace: the minimal M such that all outputs yi
are in [1, 2,…,M] in all executions.
Objective: we want to minimize the size of the
resulting namespace. 6

Some notation

• Tight renaming:
– Renaming into a namespace of size exactly N (or k)

• X-renaming:
– Renaming into a namespace of size X

7

The plan for today

• Renaming definition
• Renaming algorithms

– (2n – 1)-renaming algorithm
– Can we do better?
– Adaptive O(k2)-renaming algorithm

• Renaming versus test-and-set
– Consensus number

8

Uniqueness

• Assume processes p and q get the same name s
• Let {<x1, s1>, …, <xn, sn>} be the result of the

snapshot of p when deciding s
• Let {<x’1, s’1>, …, <x’n, s’n>} be the result of the

snapshot of q when deciding s
• Assume that p called snap before q
• Then q’s snapshot includes <xp, s>, hence q cannot

propose s as a name, contradiction
• Same if q called snap before p Useful tip:

Of any two linearized
snapshot() operations, one’s
results are “included” in the

other’s results.
9

(2n-1)-renaming

Shared: array of registers R[1…Y]
each register in R has two components <x, s>
procedure getName (x)

s ← 1 // suggested name
while(true)

R[x] ← <x, s>
(<x1, s1>, … ,<xn, sn>) ← R.snap()
if s = sj for some xj ≠ x //there is a name clash

r ← rank of x in { xi | xi ≠ empty }
s ← rth positive integer not in

{ si | i ≠ x xi ≠ empty }
else //no clash

return s

//general structure:
while(true)

try name s
if (clash) s ← new proposal
else return s

10

Namespace size

Shared: array of registers R[1…Y]
each register in R has two components <x, s>
procedure getName (x)

s ← 1 // suggested name
while(true)

R[x] ← <x, s>
(<x1, s1>, … ,<xn, sn>) ← R.snap()
if s = sj for some xj ≠ x //there is a name clash

r ← rank of x in { xi | xi ≠ empty }
s ← rth positive integer not in

{ si | i ≠ x, xi ≠ empty }
else //no clash

return s

• Claim: y < 2n in all
executions

• Step 1: Notice that
r ≤ n

• Step 2: Notice that
s ≤ r + # proposals made
in this “round” – 1 < 2n

• q.e.d.

11

Termination
• Main idea of the proof (full proof is homework!)
• By contradiction: assume exists p that takes ∞ steps in an execution
• Fix an execution prefix E in which every process has executed

“R[x] ← <x, s>” at least once or crashed.
Let F = {z1, z2, …} be the names that are still free after E

• Let q be the process with smallest initial name x, that hasn’t decided or
crashed so far

Claim: q decides within a finite number of steps, or crashes
• Step 1: Let r be the rank of q’s initial value xq among all initial values.

Eventually, no process other than q proposes names in {z1, …, zr} (prove it!)
• Step 2: Process q eventually suggests name zr or crashes. (prove it!)
• Step 3: 1 + 2 implies q is eventually successful in getting name zr

12

Wrap-up

• We have an algorithm that returns names from 1 to
2n – 1 in an asynchronous system

• Can we do better?

• Both Shared-Memory and Message-Passing
• Uses Algebraic Topology!
• Gödel Prize 2004

Theorem [HS, RC] In an asynchronous system with
t < N crashes, Deterministic Renaming is impossible

in N + t - 1 or less names.

13

There’s a problem

• In the previous algorithm, the size of the
proposal array R[] is Θ(Y)!
– Huge memory cost
– Huge complexity for the snap() operation

• We need to make the size of the array depend
on k = the number of participating processes

• An application of adaptive renaming

14

An adaptive renaming algorithm

• Each process starts with a unique initial name
from 1 to Y

• Will return an integer y from 1 to k2

• k is the contention in the current execution,
i.e. the number of active processes in the
execution

15

The splitter

[Moir & Anderson, 1995]

Solo-winner:
A process stops if it is alone in the splitter.

stop

left

right

k processes

≤ k-1 processes

≤ k-1 processes

≤ 1 process

16

Splitter Implementation
[Moir & Anderson, 1995][Lamport, 1986]

1. X = idi // write your identifier
2. if Y then return(right)
3. Y = true
4. if (X == idi) // check identifier

then return(stop)
5.else return(left)

17

Splitters -> Renaming

• A triangular matrix of
splitters

• Traverse matrix,
starting top left,
according to the values
returned by splitters

• Until process stops in
some splitter.

right

left

18

Putting Splitters Together:
k2 -Renaming

Diagonal association of
names with splitters.

Take a name ≤ k2 .

1 2

3

4 7 11

5 8 12

6 9 13

10 14

15

19

Correctness

Termination: Every process stops after O(k) read and
write steps.
– Follows from the solo-winner splitter property

Uniqueness: No two processes return the same name.
– Since no two processes win the same splitter

Namespace size: Every process returns a name
between 1 and k2 / 2.
– Follows since no process makes more than k steps.

20

How does this help?

• Adaptive Snapshot
• Each name awards

a slot in the vector
• So now the memory

used is O(k2)
• The snap() operation

complexity also
becomes f(k) (how?)

1 2

3

4 7 11

5 8 12

6 9 13

10 14

15

#1 #2 #3 #4 …

21

The plan for today

• Renaming definition
• Renaming algorithms

– (2n – 1)-renaming algorithm
– Can we do better?
– Adaptive O(k2)-renaming algorithm

• Renaming versus test-and-set
– Consensus number

22

Test-and-set

Shared: V, a binary MWMR
atomic register, initially 0

procedure Test-and-Set()
if V = 0 then V ← 1

return winner
else return loser

128.178.5.1
T&S

winner

loser

23

Test-and-Set from Adaptive Tight
Renaming

Shared: AdRen, an adaptive tight
renaming object

procedure Test-and-Seti()
name ← AdRen.getName(i)
if name = 1 then

return winner
else return loser

• Adaptive tight renaming returns names from 1 to k
when k processes are active
• What goes wrong when renaming is not tight?
What if it’s not adaptive?

Exactly one process
gets name 1
(or crashes)

24

Shared: V, an infinite vector of
test-and-set objects

procedure getName(i)
j ← 1
while(true)

res ← V[j].Test-and-seti ()
if res = winner then

return j
else j ← j + 1

Adaptive Tight Renaming from
Test-and-Set

#1 #2 #3 #4 #5 …

Name = 3

25

Tight adaptive renaming

• Using read-write registers, tight adaptive
renaming is impossible

• By Herlihy-Shavit [HS], we can’t even get close
to k names!

• It all changes when adding test-and-set
• How many operations per process does the

algorithm have?
– We can get O(log k) operations per process using

randomization
26

Consensus number?

• Consider adaptive tight renaming
• Three steps

1. We can implement it with test-and-set + registers
2. We can implement test-and-set from it
3. Test-and-set has consensus number 2

• Adaptive tight renaming has consensus
number 2!

• Weaker variants (“standard”) have consensus
number ≤ 2

27

References (use Google Scholar)

• For definitions + “standard” renaming algorithm
– Hagit Attiya, Jennifer Welch: “Distributed Computing”,

pages 356-359
• For topology [HS], see here

http://www.cs.brown.edu/~mph/topology.html
• For adaptive renaming

– Deterministic – Mark Moir: “Fast, Long-Lived Renaming
Improved and Simplified”

– Randomized -- Dan Alistarh, Hagit Attiya, Seth Gilbert,
Andrei Giurgiu, and Rachid Guerraoui: “Fast Randomized
Test-and-Set and Renaming”

28

	Renaming
	The Renaming Problem
	How about Shared Memory?
	Why is this useful?
	Two versions
	Renaming specification
	Some notation
	The plan for today
	Uniqueness
	(2n-1)-renaming
	Namespace size
	Termination
	Wrap-up
	There’s a problem
	An adaptive renaming algorithm
	The splitter
	Splitter Implementation
	Splitters -> Renaming
	Putting Splitters Together:�k2 -Renaming
	Correctness
	How does this help?
	The plan for today
	Test-and-set
	Test-and-Set from Adaptive Tight Renaming
	Adaptive Tight Renaming from Test-and-Set
	Tight adaptive renaming
	Consensus number?
	References (use Google Scholar)

