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Locking is ’’history’’ 

Lock-freedom is difficult 



        
Wanted 

A concurrency control abstraction 
that is simple, robust and efficient  



           Transactions 



Historical perspective  
!    Eswaran et al (CACM’76) Databases 
!    Papadimitriou (JACM’79) Theory 
!    Liskov/Sheifler (TOPLAS’82) Language  
!    Knight (ICFP’86) Architecture 
!    Herlihy/Moss (ISCA’93)  Hardware 
!    Shavit/Touitou (PODC’95) Software 
!    Herlihy et al (PODC’03) Software – Dynamic 



!   accessing object 1; 
!   accessing object 2; 

Back to the sequential level 



!   accessing object 1; 
!   accessing object 2; 

Back to the sequential level 

atomic { 

} 



             Semantics 

             !
Every transaction appears to execute 

at an indivisible point in time !



Double-ended queue 

Enqueue Dequeue 



!   class Queue { 
!     QNode head; 
!     QNode tail; 
!     public enq(Object x) { 
!       atomic { 
!         QNode q = new QNode(x); 
!         q.next = head; 
!         head = q; 
!       } 
!     } 
!     ... } 



Queue composition 

Dequeue 

Enqueue 



!   class Queue { 
!     … 
!     public transfer(Queue q) { 
!       atomic { 
!         Qnode n = this.dequeue(); 
!         q.enqueue(n) } 
!     } 
!     ... } 



           Simple example!
    (consistency invariant) 
             !
           0 < x < y!



!  T: x := x+1 ; y:= y+1 

           Simple example!
           (transaction) 



!   accessing object 1; 
!   accessing object 2; 

The illusion of a critical section 

atomic { 

} 



!    “It is better for Intel to get involved in this 
[Transactional Memory] now so when we get to the 
point of having …tons… of cores we will have the 
answers” 

!    Justin Rattner, Intel Chief Technology Officer 



!    “…we need to explore new techniques like 
transactional memory that will allow us to get the 
full benefit of all those transistors and map that 
into higher and higher performance.” 

!  Bill Gates, Businessman 



!    “…manual synchronization is intractable…
transactions are the only plausible 
solution….” 

!  Tim Sweeney, Epic Games 



 
!   Sun/Oracle, Intel, AMD, IBM, MSR   

!   Fortress (Sun); X10 (IBM); Chapel (Cray) 

 

The TM Topic is VERY HOT 



 
!   begin() returns ok 
 
!   read() returns a value or abort  
!   write() returns an ok or abort 

!   commit() returns ok or abort 
!   abort() returns ok 
 

The TM API 
(a simple view) 



Two-phase locking 
 

!   To write or read O, T requires a lock on O;  
T waits if some T’ acquired a lock on O 
 
 
!   At the end, T releases all its locks 



Two-phase locking  
(more details) 

 

!   Every object O, with state s(O) (a register), is 
protected by a lock l(O) (a c&s) 

!   Every transaction has local variables wSet and wLog 

!   Initially: l(O) = unlocked, wSet  = wLog = ∅ 
 



Two-phase locking 
 

Upon op = read() or write(v) on object O 
if O     wSet then  

 wait until unlocked= l(O).c&s(unlocked,locked) 
   wSet = wSet U O 
   wLog = wLog U S(O).read() 
if op = read() then return S(O).read() 
S(O).write(v) 
return ok 
 
 

! 

"



Two-phase locking (cont’d) 

Upon commit()  
cleanup() 
return ok 
 
Upon abort()  
rollback() 
cleanup() 
return ok 
 
  
 
 



Two-phase locking (cont’d) 
 
Upon rollback() 
for all O ∈ wSet do S(O).write(wLog(O)) 
wLog = ∅ 
 
Upon cleanup() 
for all O ∈ wSet do l(O).write(unlocked)  
wSet = ∅ 
  
 
 



Why two phases?  
(what if?) 

 

!   To write or read O, T requires a lock on O;  
T waits if some T’ acquired a lock on O  
 
!     
 
!   T releases the lock on O when it is done with O 



Why two phases? 

T1 

T2 

read(0) write(1) 

O1 O2 

read(0) write(1) 

O2 O1 



Two-phase locking  
(read-write lock) 

 

!   To write O, T requires a write-lock on O;  
T waits if some T’ acquired a lock on O 
 
!   To read O, T requires a read-lock on O;  
T waits if some T’ acquired a write-lock on O 
 
!   Before committing, T releases all its locks 



Two-phase locking 
- better dead than wait - 

 

!   To write O, T requires a write-lock on O;  
T aborts if some T’ acquired a lock on O 
 
!   To read O, T requires a read-lock on O;  
T aborts if some T’ acquired a write-lock on O 
 
!   Before committing, T releases all its locks 
!   A transaction that aborts restarts again 



Two-phase locking 
- better kill than wait - 

 

!   To write O, T requires a write-lock on O;  
T aborts T’ if some T’ acquired a lock on O 
 
!   To read O, T requires a read-lock on O;  
T aborts T’ if some T’ acquired a write-lock on O 
 
!   Before committing, T releases all its locks 
!   A transaction that is aborted restarts again 



Two-phase locking 
- better kill than wait - 

 

!   To write O, T requires a write-lock on O;  
T aborts T’ if some T’ acquired a lock on O 
 
!   To read O, T requires a read-lock on O;  
T waits if some T’ acquired a write-lock on O 
 
!   Before committing, T releases all its locks 
!   A transaction that is aborted restarts again 



Visible Read  
(SXM, RSTM, TLRW) 

 
!  Write is mega killer: to write an object, 

a transaction aborts any live one which 
has read or written the object 

!  Visible but not so careful read: when a 
transaction reads an object, it says so  



Visible Read  

!   A visible read invalidates cache lines 

!   For read-dominated workloads, this means a 
lot of traffic on the bus between processors 
  - This reduces the throughput 
  - Not a big deal with single-CPU, but with 
many core machines (e.g. SPART T2 Niagara) 



Two-phase locking 
with invisible reads  

 

!   To write O, T requires a write-lock on O;  
T waits if some T’ acquired a write-lock on O 
 
!   To read O, T checks if all objects read remain 

valid - else T aborts 
 
!   Before committing, T checks if all objects read 

remain valid and releases all its locks 



Invisible reads              
(more details) 

 

!   Every object O, with state s(O) (register), is protected 
by a lock l(O) (c&s) 

!   Every transaction maintains, besides wSet and wLog: 

!   -  a local variable rset(O) for every object 

 



Invisible reads 
 

Upon write(v) on object O 
if O    wSet then  
    wait until unlocked= l(O).c&s(unlocked,locked)  
    wSet = wSet U O 
    wLog = wLog U S(O).read()  
(*,ts) = S(O).read() 
S(O).write(v,ts) 
return ok 
 
 

! 

"



Invisible reads 
 

Upon read() on object O 
(v,ts) = S(O).read() 
if O  ∈ wSet then return v 
if l(O) = locked or not validate() then abort() 
if rset(O) = 0 then rset(O) = ts 
return v 
 
 



Invisible reads 
 

Upon validate() 
  for all O s.t rset(O) > 0 do 
    (v,ts) = S(O).read() 
    if ts ≠ rset(O) or  
      (O    wset and l(O) = locked) 
    then return false 
  return true 
 
 

! 

"



Invisible reads 
 

Upon commit() 
if not validate() then abort() 
for all O ∈ wset do  
   (v,ts) = S(O).read() 
S(O).write(v,ts+1) 
cleanup() 



Invisible reads 
 

Upon rollback() 
for all O ∈ wSet do S(O).write(wLog(O)) 
wLog = ∅ 
 
Upon cleanup() 
for all O ∈ wset do l(O).write(unlocked) 
wset = ∅ 
rset(O) = 0 for all O   
 



DSTM (SUN) 
 

!   To write O, T requires a write-lock on O;  
T aborts T’ if some T’ acquired a write-lock on O 
 
!   To read O, T checks if all objects read remain 

valid - else abort 
!   Before committing, T releases all its locks 



DSTM 

 

!  Killer write (ownership)  

!  Careful read (validation) 



More efficient algorithm? 
 

Apologizing versus asking permission 

 

!  Killer write 
!  Optimistic read 

!   validity check only at commit time 



Example!

             !
Invariant: 0 < x < y!
Initially: x := 1; y := 2!



Division by zero 

!  T1: x := x+1 ; y:= y+1  

!  T2: z := 1 / (y - x) 



!  T1: x := 3; y:= 6  
 

Infinite loop 

!  T2: a := y; b:= x;  
        repeat  b:= b + 1 until a = b 



Opacity 
!  Serializability 

!  Consistent memory view 



            Trade-off 
 
    The read is either  
    visible or careful  



!
!
!

Intuition  

T1 

T2 

read() 

write() 
commit 

I1,I2,..,Im 

O1,O2,..,On 
read() 
Ik 



Read invisibility 
!  The fact that the read is invisible means T1 

cannot inform T2, which would in turn abort T1 
if it accessed similar objects (SXM, RSTM) 

!  NB. Another way out is the use of multiversions: 
T2 would not have written “on” T1 



Conditional progress  
- obstruction-freedom -  

!  A correct transaction that eventually does not 
encounter contention eventually commits 

 

!  Obstruction-freedom seems reasonable 
and is indeed possible 



DSTM 
 

!   To write O, T requires a write-lock on O (use C&S);  
T aborts T’ if some T’ acquired a write-lock on O (use 

C&S) 
 
!   To read O, T checks if all objects read remain valid - 

else abort (use C&S) 
!   Before committing, T releases all its locks (use C&S) 



 

!   If a transaction T wants to write an object O 
owned by another transaction T’, T calls a 
contention manager  

!   The contention manager can decide to wait, 
retry or abort T’ 

Progress 



Contention managers 
!   Aggressive: always aborts the victim 
 
!   Backoff: wait for some time (exponential backoff) and 

then abort the victim 
 
!   Karma: priority = cumulative number of shared objects 

accessed – work estimate. Abort the victim when 
number of retries exceeds difference in priorities.  

 
!   Polka: Karma + backoff waiting 



Greedy contention manager 

!  State 
!  Priority (based on start time) 
!  Waiting flag (set while waiting) 

!  Wait if other has 
!  Higher priority AND not waiting 

!  Abort other if 
!   Lower priority OR waiting 



T1 

T2 

read() 

write() 

commit 

O1 

O1 
write() 

O2 

Aborting is a fatality 

read() 

O2 

abort 



TM does not always replace locks:         
it hides them  

Memory transactions look like db 
transactions but are different 

Concluding remarks 



The garbage-collection analogy 
 

!   In the early times, the programmers had to take 
care of allocating and de-allocating memory 

!   Garbage collectors do it for you: they are now 
incorporated in Java and other languages 

!   Hardware support was initially expected, but 
now software solutions are very effective 


