
Transactional Memory

R. Guerraoui, EPFL

Locking is ’’history’’

Lock-freedom is difficult

Wanted

A concurrency control abstraction
that is simple, robust and efficient

 Transactions

Historical perspective
!   Eswaran et al (CACM’76) Databases
!   Papadimitriou (JACM’79) Theory
!   Liskov/Sheifler (TOPLAS’82) Language
!   Knight (ICFP’86) Architecture
!   Herlihy/Moss (ISCA’93) Hardware
!   Shavit/Touitou (PODC’95) Software
!   Herlihy et al (PODC’03) Software – Dynamic

!   accessing object 1;
!   accessing object 2;

Back to the sequential level

!   accessing object 1;
!   accessing object 2;

Back to the sequential level

atomic {

}

 Semantics

 !
Every transaction appears to execute

at an indivisible point in time !

Double-ended queue

Enqueue Dequeue

!   class Queue {
!   QNode head;
!   QNode tail;
!   public enq(Object x) {
!   atomic {
!   QNode q = new QNode(x);
!   q.next = head;
!   head = q;
!   }
!   }
!   ... }

Queue composition

Dequeue

Enqueue

!   class Queue {
!   …
!   public transfer(Queue q) {
!   atomic {
!   Qnode n = this.dequeue();
!   q.enqueue(n) }
!   }
!   ... }

 Simple example!
 (consistency invariant)
 !
 0 < x < y!

!  T: x := x+1 ; y:= y+1

 Simple example!
 (transaction)

!   accessing object 1;
!   accessing object 2;

The illusion of a critical section

atomic {

}

!   “It is better for Intel to get involved in this
[Transactional Memory] now so when we get to the
point of having …tons… of cores we will have the
answers”

!   Justin Rattner, Intel Chief Technology Officer

!   “…we need to explore new techniques like
transactional memory that will allow us to get the
full benefit of all those transistors and map that
into higher and higher performance.”

!  Bill Gates, Businessman

!   “…manual synchronization is intractable…
transactions are the only plausible
solution….”

!  Tim Sweeney, Epic Games

!   Sun/Oracle, Intel, AMD, IBM, MSR

!   Fortress (Sun); X10 (IBM); Chapel (Cray)

The TM Topic is VERY HOT

!   begin() returns ok

!   read() returns a value or abort
!   write() returns an ok or abort

!   commit() returns ok or abort
!   abort() returns ok

The TM API
(a simple view)

Two-phase locking

!   To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

!   At the end, T releases all its locks

Two-phase locking
(more details)

!   Every object O, with state s(O) (a register), is
protected by a lock l(O) (a c&s)

!   Every transaction has local variables wSet and wLog

!   Initially: l(O) = unlocked, wSet = wLog = ∅

Two-phase locking

Upon op = read() or write(v) on object O
if O wSet then

 wait until unlocked= l(O).c&s(unlocked,locked)
 wSet = wSet U O
 wLog = wLog U S(O).read()
if op = read() then return S(O).read()
S(O).write(v)
return ok

!

"

Two-phase locking (cont’d)

Upon commit()
cleanup()
return ok

Upon abort()
rollback()
cleanup()
return ok

Two-phase locking (cont’d)

Upon rollback()
for all O ∈ wSet do S(O).write(wLog(O))
wLog = ∅

Upon cleanup()
for all O ∈ wSet do l(O).write(unlocked)
wSet = ∅

Why two phases?
(what if?)

!   To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

!  

!   T releases the lock on O when it is done with O

Why two phases?

T1

T2

read(0) write(1)

O1 O2

read(0) write(1)

O2 O1

Two-phase locking
(read-write lock)

!   To write O, T requires a write-lock on O;
T waits if some T’ acquired a lock on O

!   To read O, T requires a read-lock on O;
T waits if some T’ acquired a write-lock on O

!   Before committing, T releases all its locks

Two-phase locking
- better dead than wait -

!   To write O, T requires a write-lock on O;
T aborts if some T’ acquired a lock on O

!   To read O, T requires a read-lock on O;
T aborts if some T’ acquired a write-lock on O

!   Before committing, T releases all its locks
!   A transaction that aborts restarts again

Two-phase locking
- better kill than wait -

!   To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

!   To read O, T requires a read-lock on O;
T aborts T’ if some T’ acquired a write-lock on O

!   Before committing, T releases all its locks
!   A transaction that is aborted restarts again

Two-phase locking
- better kill than wait -

!   To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

!   To read O, T requires a read-lock on O;
T waits if some T’ acquired a write-lock on O

!   Before committing, T releases all its locks
!   A transaction that is aborted restarts again

Visible Read
(SXM, RSTM, TLRW)

!  Write is mega killer: to write an object,

a transaction aborts any live one which
has read or written the object

!  Visible but not so careful read: when a
transaction reads an object, it says so

Visible Read

!   A visible read invalidates cache lines

!   For read-dominated workloads, this means a
lot of traffic on the bus between processors
 - This reduces the throughput
 - Not a big deal with single-CPU, but with
many core machines (e.g. SPART T2 Niagara)

Two-phase locking
with invisible reads

!   To write O, T requires a write-lock on O;
T waits if some T’ acquired a write-lock on O

!   To read O, T checks if all objects read remain

valid - else T aborts

!   Before committing, T checks if all objects read

remain valid and releases all its locks

Invisible reads
(more details)

!   Every object O, with state s(O) (register), is protected
by a lock l(O) (c&s)

!   Every transaction maintains, besides wSet and wLog:

!   - a local variable rset(O) for every object

Invisible reads

Upon write(v) on object O
if O wSet then
 wait until unlocked= l(O).c&s(unlocked,locked)
 wSet = wSet U O
 wLog = wLog U S(O).read()
(*,ts) = S(O).read()
S(O).write(v,ts)
return ok

!

"

Invisible reads

Upon read() on object O
(v,ts) = S(O).read()
if O ∈ wSet then return v
if l(O) = locked or not validate() then abort()
if rset(O) = 0 then rset(O) = ts
return v

Invisible reads

Upon validate()
 for all O s.t rset(O) > 0 do
 (v,ts) = S(O).read()
 if ts ≠ rset(O) or
 (O wset and l(O) = locked)
 then return false
 return true

!

"

Invisible reads

Upon commit()
if not validate() then abort()
for all O ∈ wset do
 (v,ts) = S(O).read()
S(O).write(v,ts+1)
cleanup()

Invisible reads

Upon rollback()
for all O ∈ wSet do S(O).write(wLog(O))
wLog = ∅

Upon cleanup()
for all O ∈ wset do l(O).write(unlocked)
wset = ∅
rset(O) = 0 for all O

DSTM (SUN)

!   To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a write-lock on O

!   To read O, T checks if all objects read remain

valid - else abort
!   Before committing, T releases all its locks

DSTM

!  Killer write (ownership)

!  Careful read (validation)

More efficient algorithm?

Apologizing versus asking permission

!  Killer write
!  Optimistic read

!   validity check only at commit time

Example!

 !
Invariant: 0 < x < y!
Initially: x := 1; y := 2!

Division by zero

!  T1: x := x+1 ; y:= y+1

!  T2: z := 1 / (y - x)

!  T1: x := 3; y:= 6

Infinite loop

!  T2: a := y; b:= x;
 repeat b:= b + 1 until a = b

Opacity
!  Serializability

!  Consistent memory view

 Trade-off

 The read is either
 visible or careful

!
!
!

Intuition

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik

Read invisibility
!  The fact that the read is invisible means T1

cannot inform T2, which would in turn abort T1
if it accessed similar objects (SXM, RSTM)

!  NB. Another way out is the use of multiversions:
T2 would not have written “on” T1

Conditional progress
- obstruction-freedom -

!  A correct transaction that eventually does not
encounter contention eventually commits

!  Obstruction-freedom seems reasonable
and is indeed possible

DSTM

!   To write O, T requires a write-lock on O (use C&S);
T aborts T’ if some T’ acquired a write-lock on O (use

C&S)

!   To read O, T checks if all objects read remain valid -

else abort (use C&S)
!   Before committing, T releases all its locks (use C&S)

!   If a transaction T wants to write an object O
owned by another transaction T’, T calls a
contention manager

!   The contention manager can decide to wait,
retry or abort T’

Progress

Contention managers
!   Aggressive: always aborts the victim

!   Backoff: wait for some time (exponential backoff) and

then abort the victim

!   Karma: priority = cumulative number of shared objects

accessed – work estimate. Abort the victim when
number of retries exceeds difference in priorities.

!   Polka: Karma + backoff waiting

Greedy contention manager

!  State
!  Priority (based on start time)
!  Waiting flag (set while waiting)

!  Wait if other has
!  Higher priority AND not waiting

!  Abort other if
!   Lower priority OR waiting

T1

T2

read()

write()

commit

O1

O1
write()

O2

Aborting is a fatality

read()

O2

abort

TM does not always replace locks:
it hides them

Memory transactions look like db
transactions but are different

Concluding remarks

The garbage-collection analogy

!   In the early times, the programmers had to take
care of allocating and de-allocating memory

!   Garbage collectors do it for you: they are now
incorporated in Java and other languages

!   Hardware support was initially expected, but
now software solutions are very effective

