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Randomized Concurrent Algorithms 

Based on slides by Dan Alistarh 
Giuliano Losa 
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A simple example 

• Two students in a narrow 
hallway 

• To proceed, one of them has 
to change direction! 

 

• Let’s allow them to 
communicate (registers) 

– They will have to solve 
consensus for 2 processes! 

I want to  
go forward! 

I want to  
go forward! 

Register 1 

Register 2 

I want to  
move! 

I want to  
move! 
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A simple example 

• [FLP] : there exists an execution 
in which processes  
get stuck forever, or they  
run into each other! 

• Does this happen in real life?! 

• Is this possible in real life? 

• It is unlikely that two people  
will continue choosing exactly 
the same thing! 

• What does unlikely mean? 

I want to go 
forward! 

I want to go 
forward! 

Register 1 

Register 2 

I want to  
move! 

I want to  
move! 
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Analysis 

• Always finishes in practice! 

• Does there still exist an execution in which 
they do not finish? 
– Do we contradict FLP? 

• Yes, the infinite execution is still there 
– We do not contradict FLP! 

• What is the probability of that infinite 
execution? 
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The problem has changed! 

 

 

• By allowing processes to make random 
choices, we give probability to executions 

• Bad executions (like in FLP) should happen with 
extremely low probability (in this case, 0) 

• We ensure safety in all executions, but 
termination is ensured with probability 1 
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The plan for today 

• Intro 

– Motivation 

• The randomized model 

• A Randomized Test-and-Set algorithm 

– From 2 to N processes 

• Randomized Consensus 

– Shared Coins 

• Randomized Renaming 
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Semantics of deterministic 
algorithms, correctness, limitations. 

 
• An algorithm denotes a set of histories 

• Solving consensus means solving it in all 
possible histories. 

• FLP: consensus is impossible in an 
asynchronous systems if a single process may 
crash. 



Solving problems with good 
probability 

• We need to assign probabilities to histories 
– Probability distribution on scheduling? 

– Probability distribution on inputs? 

• No, we don’t have control over these in practice 

• Instead:  

– Processes make independent random choices (they 
flip coins). 

– Schedule and inputs determined by a deterministic 
adversary (a function of the history so far). 

– We look at the worst possible adversary 
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Semantics of randomized protocols 

• A protocol and an adversary (P,A) denote a set 
of histories and an associated probability 
distribution. 

• A pair (P,A) and a sequence of bits s uniquely 
determine a history of the algorithm P. 

• The probability of a given execution is the 
probability of the sequence of bits that 
corresponds to it. 
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Correctness Properties for 
Randomized Algorithms 

• We define the class of adversaries we 
consider. 

• Usually, we keep the safety condition of the 
deterministic problem and relax liveness: 

 

“The algorithm should terminate with probability 
1 for all adversary in the class” 

11 



12 

Example: Consensus 

• Validity: if all processes propose the same value v, 
then every correct process decides v. 

• Integrity: every correct process decides at most one 
value, and if it decides some value v, then v must 
have been proposed by some process. 

• Agreement: if a correct process decides v, then 
every correct process decides v. 

• Termination: every correct process decides some 
value. 
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Randomized Consensus 

• Adversary: any deterministic adversary. 
• Validity: if all processes propose the same value v, 

then every correct process decides v. 

• Integrity: every correct process decides at most one 
value, and if it decides some value v, then v must 
have been proposed by some process. 

• Agreement: if a correct process decides v, then 
every correct process decides v. 

• (Probabilistic) Termination: with probability 1, 
every correct process decides some value. 
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The simple example 

• Two people in a narrow hallway 

• In each “round”,  

– choose an option (go forward or move)  
with probability 1 / 2 

– write it to the register 

• If they chose different options, they finish, otherwise 
continue 

• What is the worst case adversary? 
Arriving on the same side and 
scheduled in lock-steps. 

• What is the probability of finishing in 
less than 2 rounds? ½ * ½ + ½ = ¾  

 

I want to  
go forward! 

I want to  
move! 

Register 1 

Register 2 



Test-and-set specification 

• Sequential specification: 

• V, a binary register, initially 0 

• procedure Test-and-Set() 

•      if V = 0 then V ← 1  

•           return winner 

•      else return loser 
T&S 

winner 

loser 

Test-and-set() Test-and-set() 

winner loser 
Linearization:  

The winner always 
returns first! 
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2-process test-and-set 

• Based on the previous “hallway” example 

• Two SWMR registers R[1], R[2] 

– Each owned by a process 

• A register R[p] can have one of 2 possible values: 

– Mine, Yours 

• Processes express their choices through the registers 

• Adapted from an algorithm by Tromp and Vitanyi (see 
references at the end). 
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2-process test-and-set  
Shared: Registers R[p], R[p’], initially Yours 
Local: Registers last_read[p], last_read[p’] 

procedure test-and-setp()    //at process p 
1. R[p] <- Mine 
2. Loop 
3.     last_read[p] <- R[p’] 
4.     If (R[p] = last_read[p]) 
5.         R[p] <- Random(Yours,Mine) 
6.     Else break; 
7. EndLoop 
8. If R[p] = Mine then return 1 
9. Else return 0 
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Correctness (rough sketch) 

• Worst case adversary: lock-step scheduling. 
• Unique Winner: Inductive invariants: 

– If both processes are at lines 4, 8, or 9, then one of them has a accurate 
last_read value. 

– If process p is at lines 8 or 9, then last_read[p] is different from R[p]. 

• Termination:  

– Every time processes execute the coin flip in line 5, the probability that 
the while loop terminates in the next iteration is ½.  
Hence, the probability that the algorithm executes more than r coin flips is 
(1/2)r.  Therefore, the probability that the algorithm goes on forever is 0. 
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Performance 

• What is the expected number of steps that a process performs 
in an execution? 

• We need to consider the worst case adversary: the lock-steps 
schedule. 

• Consider the random var T counting the number of rounds 
before termination. 

• T counts the number of trials before first success in a series of 
independent binary trials with probability p = ½. 

• T has geometric distribution. 

• The expected number of rounds is 1/p = 2! 



20 

From 2 to N processes 

• We know how to decide a single “match” 

 

 

 

 

• How do we get a single winner out of a set of N 
processes? 

T&S 

winner 

loser 
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The tournament 
T&S 

T&S 

T&S 

T&S 

T&S 

T&S 

T&S 

winner 
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Question 

T&S 

T&S 

T&S 

T&S 

T&S 

T&S 

T&S 

winner 

What if only one guy shows up? 

Since each T&S is wait-free, the 
single guy will win!  

What is the height of the tree? 
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Correctness 

• Unique winner: Suppose there are two winners. Then 
both would have to win the root test-and-set, 
contradiction 

• Termination (with probability 1!):  
Follows from the termination of 2-process test-and-
set  

• Winner: Either there exists a process that returns 
winner, or there is at least a failure 

Is this it? 
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How about this property? 

Test-and-set() Test-and-set() 

1 0 
Linearization:  

T&S 

T&S 

winner 

T&S 
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How about this? 

Test-and-set() Test-and-set() 

0 1 
Linearization:  

T&S 

T&S 

winner 

T&S 

Loser 

Winner 

Winner 

Loser 
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Homework 

• Fix the N-process test-and-set implementation 
so that it is linearizable 

• Hint: you only need to add one register 
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Wrap up 

• We have a test-and-set algorithm for N 
processes  

• Always safe 

• Terminates with probability 1 

• Worst-case local cost O( log N ) per process 

• Expected total cost O( N )  
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The plan for today 

• Intro 

– Motivation 

• Some Basic Probability 

• A Randomized Test-and-Set algorithm 

– From 2 to N processes 

• Randomized Consensus 

– Shared Coins 

• Randomized Renaming 
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Randomized Consensus 

• Can we implement Consensus with the same 
properties? 
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Randomized Consensus 

• Algorithms based on a Shared Coin 
• A Shared coin with parameter ρ, SC(ρ) is an 

algorithm without inputs, which has probability ρ 
that all outputs are 0, and probability ρ that all 
outputs are 1.  

• Example: 
– Every process flips a local coin, and returns 1 for Heads, 0 

for Tails 
– ρ = Pr[ all outputs are 1 ] =  

Pr[ all outputs are 0 ] = (1/2)N 
– Usually, we look for higher output parameters 

The higher the parameter, the faster the algorithm 
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Shared Coin -> Binary Consensus 

• The algorithm will progress in rounds  

• Processes share a doubly-indexed vectors 
Proposed[r][i], Check[r][i] 
(r = round number, i = process id) 

• Proposed[][] stores values, Check[][] indicates 
whether a process finished 

• At each round r > 0, process pi places its vote (0 
or 1) in Proposed[r][i] 



32 

Shared Coin->Binary Consensus 
Shared: Matrices Proposed[r][i]; Check[r][i], init. to null. 
procedure proposei( v )    //at process i 
1.decide = false, r = 0 
2. While( decide == false ) 
3.             r = r + 1  
4.             Proposed[r][i] = v 
5.             view = Collect( Proposed[r] […]) 
6.             if (both 0 and 1 appear in view ) 
7.                   Check[r][i] = disagree 
8.             else Check[r][i] = agree 
9.             check-view = Collect( Check[r] […]) 
10.             if( disagree appears in check-view ) 
11.                   if (for some j, check-view[j] = agree) 
12.                          v = Proposed[r][j] 
13.                   else v = flip_coin() 
14.             else decide = true 
15. return v 
     

In each round r, the 
process writes its value 

in Proposed[r][i] 

It then checks to see if 
there is disagreement, 

and marks it to 
Check[r][i] 

If there is disagreement, 
then processes flip a 
shared coin to agree, 
and post the results 

If no-one disagrees, 
then return! 
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Termination 

• Worst case adversary: lock-steps schedule. 

• Processes have probability at least 2ρ of 
flipping the same value at every round r 

• If all processes have the same value at round r 
then they decide in round r. 

• What is the probability that they go on 
forever? 

• (1 – 2p)x(1-2p)x(1-2p)x… = 0 
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What does this mean? 

• We can implement consensus ensuring  

– safety in all executions 

– termination with probability 1. 

• By the universal construction, we can 
implement anything with these properties 

• So…are we done with this class? 

• The limit is no longer impossibility, but 
performance! 
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Homework 2: Performance 

• What is the expected number of rounds that the algorithm 
runs for, if the Shared coin has parameter ρ? 

• In particular, what is the expected running time for the 
example shared coin, having 
 ρ = (1/2)n? 

– Termination time T is a random variable mapping a history to the 
number of steps before termination 

– Each round is akin to an independent binary trial with success 
probability ρ, hence T has geometric distribution. 

– The expectation of T is 1/ ρ = 2^n 

• Can you come up with a better shared coin? 
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The plan for today 

• Intro 

– Motivation 

• Some Basic Probability 

• A Randomized Test-and-Set algorithm 

– From 2 to N processes 

• Randomized Consensus 

– Shared Coins 

• Randomized Renaming 



 

 

 

 

• N processes, t < N might fail by crashing 

• Huge initial ID’s (think IP Addresses) 

• Need to get new unique ID’s from a small 
namespace ( e.g., from 1 to N ) 

• The opposite of consensus 

The Renaming Problem 

Renaming 
128.178.80.4 

128.178.23.17 

128.178.0.1 
128.178.5.1 

128.178.7.2 

128.178.0.4 

128.178.0.1 128.178.0.1 

128.178.0.1 

7 

1 2 

3 
5 

9 10 
4 11 



Why is this useful? 

• Getting a small unique name is important 
– Smaller reads and writes/messages 

– Overall performance 

– Names are a natural prerequisite 

• Renaming is related to: 
– Mutual exclusion 

– Test-and-set 

– Counting 

– Resource allocation 

Renaming 

3378 
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What is known 

 

 

 

• Both Shared-Memory and Message-Passing 

• Analogous to FLP, much more complicated 

• Uses Algebraic Topology!  

• Gödel Prize 2004 

Theorem [HS, RC] In an asynchronous system with  
t < N crashes, Deterministic Renaming is  

impossible in N + t - 1 or less names. 
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How can randomization help? 

• It will allow us to get a tight namespace  
(of N names), even in an asynchronous system 

• It will give us better performance 

• Idea: derive renaming from test-and-set 

• We now know how to implement test-and-set 
in an asynchronous system 



• Shared: V, an infinite vector of 
randomized test-and-set 
objects 

• procedure getName(i) 
•      j ← 1 
•      while( true )  
•         res ← V[j].Test-and-seti ()  
•         if res = winner then 
•             return j 
•         else j ← j + 1 

Renaming from  
Test-and-Set 

#1 #2 #3 #4 #5 … 

Name  = 3 

#N 



• Shared: V, an infinite vector of 
test-and-set objects 

• procedure getName(i) 
•      j ← 1 
•      while( true )  
•         res ← V[j].Test-and-seti ()  
•         if res = winner then 
•             return j 
•         else j ← j + 1 

Performance 
 

• What is the worst-case 
local complexity? 

• O(N) 

 

 

• What is the worst-case 
total complexity? 

• O(N2) 

#1 #2 #3 #4 #5 … #N 
Where is the 

randomization? 



• Shared: V, an infinite vector of 
test-and-set objects 

• procedure getName(i) 
•       
•      while( true ) 
•         j = Random(1, N)  
•         res ← V[j].Test-and-seti ()  
•         if res = winner then 
•             return j 
•          

Randomized Renaming 

#1 #2 #3 #4 #5 … 

Name  = 3 

#N 



• Shared: V, an infinite vector of 
test-and-set objects 

• procedure getName(i) 
•       
•      while( true ) 
•         j = Random(1, N)  
•         res ← V[j].Test-and-seti ()  
•         if res = winner then 
•             return j 
•          

Randomized Renaming 
1. Claim: The expected total 

number of tries is  
O( N log N)! 

• Sketch of Proof (not for  the exam):  
• A process will win at most 

one test-and-set 
• Hence it is enough to count 

the time until each test-and-
set is accessed at least once! 

• N items, we access one at 
random every time; how 
many accesses until we cover 
all N of them? 

• Coupon collector: we need   
< 2N log N total accesses, 
with probability 1 – 1 / N3 

#1 #2 #3 #4 #5 … #N 
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Wrap-up 

• Termination ensured with probability 1 

• Total complexity:  
O( N log N ) total operations in expectation 
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Conclusion 

• Randomization “avoids” the deterministic 
impossibility results (FLP, HS) 

– The results still hold, the bad executions still exist 

– We give bad executions vanishing probability, 
ensuring termination with probability 1 

• The algorithms always preserve safety 

• Usually we can get better performance by 
using randomization 
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