Randomized Concurrent Algorithms

Based on slides by Dan Alistarh
 Giuliano Losa

A simple example

- Two students in a narrow hallway
- To proceed, one of them has to change direction!
- Let's allow them to communicate (registers)
- They will have to solve consensus for 2 processes!

A simple example

- [FLP] : there exists an execution in which processes get stuck forever, or they run into each other!
- Does this happen in real life?!
- Is this possible in real life?
- It is unlikely that two people will continue choosing exactly the same thing!
- What does unlikely mean?

Analysis

- Always finishes in practice!
- Does there still exist an execution in which they do not finish?
- Do we contradict FLP?
- Yes, the infinite execution is still there
- We do not contradict FLP!
- What is the probability of that infinite execution?

The problem has changed!

- By allowing processes to make random choices, we give probability to executions
- Bad executions (like in FLP) should happen with extremely low probability (in this case, 0)
- We ensure safety in all executions, but termination is ensured with probability 1

The plan for today

- Intro

- Motivation

- The randomized model
- A Randomized Test-and-Set algorithm
- From 2 to N processes
- Randomized Consensus
- Shared Coins
- Randomized Renaming

Semantics of deterministic

algorithms, correctness, limitations.

- An algorithm denotes a set of histories
- Solving consensus means solving it in all possible histories.
- FLP: consensus is impossible in an asynchronous systems if a single process may crash.

Solving problems with good probability

- We need to assign probabilities to histories
- Probability distribution on scheduling?
- Probability distribution on inputs?
- No, we don't have control over these in practice
- Instead:
- Processes make independent random choices (they flip coins).
- Schedule and inputs determined by a deterministic adversary (a function of the history so far).
- We look at the worst possible adversary

Semantics of randomized protocols

- A protocol and an adversary (P, A) denote a set of histories and an associated probability distribution.
- A pair (P,A) and a sequence of bits s uniquely determine a history of the algorithm P.
- The probability of a given execution is the probability of the sequence of bits that corresponds to it.

Correctness Properties for Randomized Algorithms

- We define the class of adversaries we consider.
- Usually, we keep the safety condition of the deterministic problem and relax liveness:
"The algorithm should terminate with probability 1 for all adversary in the class"

Example: Consensus

- Validity: if all processes propose the same value v, then every correct process decides v.
- Integrity: every correct process decides at most one value, and if it decides some value v, then v must have been proposed by some process.
- Agreement: if a correct process decides v, then every correct process decides v.
- Termination: every correct process decides some value.

Randomized Consensus

- Adversary: any deterministic adversary.
- Validity: if all processes propose the same value v, then every correct process decides v.
- Integrity: every correct process decides at most one value, and if it decides some value v, then v must have been proposed by some process.
- Agreement: if a correct process decides v, then every correct process decides v.
- (Probabilistic) Termination: with probability 1, every correct process decides some value.

The simple example

- Two people in a narrow hallway
- In each "round",
- choose an option (go forward or move) with probability 1 / 2
- write it to the register
- If they chose different options, they finish, otherwise continue
- What is the worst case adversary? Arriving on the same side and scheduled in lock-steps.
- What is the probability of finishing in less than 2 rounds? $1 / 2 * 1 / 2+1 / 2=3 / 4$

Test-and-set specification

- Sequential specification:
- V, a binary register, initially 0
- procedure Test-and-Set() if $\mathrm{V}=0$ then $\mathrm{V} \leftarrow 1$ return winner else return loser

Linearization:

2-process test-and-set

- Based on the previous "hallway" example
- Two SWMR registers R[1], R[2]
- Each owned by a process
- A register $\mathrm{R}[\mathrm{p}]$ can have one of 2 possible values:
- Mine, Yours
- Processes express their choices through the registers
- Adapted from an algorithm by Tromp and Vitanyi (see references at the end).

2-process test-and-set

Shared: Registers R[p], R[p’], initially Yours Local: Registers last_read[p], last_read[p’] procedure test-and-set ${ }_{p}() \quad / /$ at process p

1. $\mathrm{R}[\mathrm{p}]$ <- Mine
2. Loop
3. last_read $[p]<-R\left[p^{\prime}\right]$
4. If $(R[p]=$ last_read $[p])$
5. $\quad \mathrm{R}[\mathrm{p}]$ <- Random(Yours,Mine)
6. Else break;
7. EndLoop
8. If $\mathrm{R}[\mathrm{p}]=$ Mine then return 1
9. Else return 0

Correctness (rough sketch)

- Worst case adversary: lock-step scheduling.
- Unique Winner: Inductive invariants:
- If both processes are at lines 4,8 , or 9 , then one of them has a accurate last_read value.
- If process p is at lines 8 or 9 , then last_read[p] is different from $R[p]$.
- Termination:
- Every time processes execute the coin flip in line 5, the probability that the while loop terminates in the next iteration is $1 / 2$.
Hence, the probability that the algorithm executes more than r coin flips is $(1 / 2)^{r}$. Therefore, the probability that the algorithm goes on forever is 0 .

Performance

- What is the expected number of steps that a process performs in an execution?
- We need to consider the worst case adversary: the lock-steps schedule.
- Consider the random var T counting the number of rounds before termination.
- T counts the number of trials before first success in a series of independent binary trials with probability $p=1 / 2$.
- Thas geometric distribution.
- The expected number of rounds is $1 / p=2$!

From 2 to N processes

- We know how to decide a single "match"
- How do we get a single winner out of a set of N processes?

Question

Correctness

- Unique winner: Suppose there are two winners. Then both would have to win the root test-and-set, contradiction
- Termination (with probability 1!):

Follows from the termination of 2-process test-andset

- Winner: Either there exists a process that returns winner, or there is at least a failure

> Is this it?

How about this property?

Linearization:

How about this?

Linearization:

Homework

- Fix the N -process test-and-set implementation so that it is linearizable
- Hint: you only need to add one register

Wrap up

- We have a test-and-set algorithm for N processes
- Always safe
- Terminates with probability 1
- Worst-case local cost $\mathrm{O}(\log \mathrm{N})$ per process
- Expected total cost O(N)

The plan for today

- Intro
- Motivation
- Some Basic Probability
- A Randomized Test-and-Set algorithm
- From 2 to N processes
- Randomized Consensus
- Shared Coins
- Randomized Renaming

Randomized Consensus

- Can we implement Consensus with the same properties?

Randomized Consensus

- Algorithms based on a Shared Coin
- A Shared coin with parameter $\boldsymbol{\rho}, \mathbf{S C}(\rho)$ is an algorithm without inputs, which has probability ρ that all outputs are 0 , and probability ρ that all outputs are 1.
- Example:
- Every process flips a local coin, and returns 1 for Heads, 0 for Tails
$-\boldsymbol{\rho}=\operatorname{Pr}[$ all outputs are 1$]=$ $\operatorname{Pr}[$ all outputs are 0$]=(1 / 2)^{\mathrm{N}}$
- Usually, we look for higher output parameters The higher the parameter, the faster the algorithm

Shared Coin -> Binary Consensus

- The algorithm will progress in rounds
- Processes share a doubly-indexed vectors Proposed[r][i], Check[r][i]
(r = round number, $\mathrm{i}=$ process id)
- Proposed[][] stores values, Check[][] indicates whether a process finished
- At each round $r>0$, process p_{i} places its vote (0 or 1) in Proposed[r][i]

Shared Coin->Binary Consensus

Termination

- Worst case adversary: lock-steps schedule.
- Processes have probability at least $\mathbf{2 p}$ of flipping the same value at every round \mathbf{r}
- If all processes have the same value at round r then they decide in round r.
- What is the probability that they go on forever?
- $(1-2 p) x(1-2 p) x(1-2 p) x \ldots=0$

What does this mean?

- We can implement consensus ensuring
- safety in all executions
- termination with probability 1.
- By the universal construction, we can implement anything with these properties
- So...are we done with this class?
- The limit is no longer impossibility, but performance!

Homework 2: Performance

- What is the expected number of rounds that the algorithm runs for, if the Shared coin has parameter ρ ?
- In particular, what is the expected running time for the example shared coin, having
$\rho=(1 / 2)^{\mathrm{n}}$?
- Termination time T is a random variable mapping a history to the number of steps before termination
- Each round is akin to an independent binary trial with success probability $\boldsymbol{\rho}$, hence T has geometric distribution.
- The expectation of T is $1 / \rho=2^{\wedge} n$
- Can you come up with a better shared coin?

The plan for today

- Intro
- Motivation
- Some Basic Probability
- A Randomized Test-and-Set algorithm
- From 2 to N processes
- Randomized Consensus
- Shared Coins
- Randomized Renaming

The Renaming Problem

- N processes, t < N might fail by crashing
- Huge initial ID's (think IP Addresses)
- Need to get new unique ID's from a small namespace (e.g., from 1 to N)
- The opposite of consensus

Why is this useful?

- Getting a small unique name is important - Smaller reads and writes/messages
- Overall performance
- Names are a natural prerequisite
- Renaming is related to:
- Mutual exclusion
- Test-and-set
- Counting
- Resource allocation

What is known

Theorem [HS, RC] In an asynchronous system with t < N crashes, Deterministic Renaming is impossible in $\mathrm{N}+\mathrm{t}-1$ or less names.

- Both Shared-Memory and Message-Passing
- Analogous to FLP, much more complicated
- Uses Algebraic Topology!
- Gödel Prize 2004

How can randomization help?

- It will allow us to get a tight namespace (of N names), even in an asynchronous system
- It will give us better performance
- Idea: derive renaming from test-and-set
- We now know how to implement test-and-set in an asynchronous system

Renaming from

Test-and-Set

- Shared: V, an infinite vector of randomized test-and-set objects
- procedure getName(i)
- $\quad j \leftarrow 1$
- while(true)
res $\leftarrow \mathrm{V}[\mathrm{j}]$.Test-and-set ${ }_{\mathrm{i}}()$

if res = winner then
return j
else $\mathrm{j} \leftarrow \mathrm{j}+1$

Performance

- Shared: V, an infinite vector of test-and-set objects
- procedure getName(i)
- $\quad \mathrm{j} \leftarrow 1$
- while(true) res $\leftarrow \mathrm{V}[\mathrm{j}]$.Test-and-set ${ }_{\mathrm{i}}$ () if res = winner then return j
else $\mathrm{j} \leftarrow \mathrm{j}+1$

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$

- What is the worst-case local complexity?
- O(N)
- What is the worst-case total complexity?
- O(N2)

Randonizedrending

- Shared: V, an infinite vector of test-and-set objects
- procedure getName(i)

```
while( true )
    j = Random(1, N)
    res < V[j].Test-and-set }\mp@subsup{\textrm{i}}{(}{()
    if res = winner then
```

 return j

Randomized Renaming

- Shared: V, an infinite vector of test-and-set objects
- procedure getName(i)
-
- while(true)
- $\quad \mathrm{j}=\operatorname{Random}(1, \mathrm{~N})$ res $\leftarrow \mathrm{V}[\mathrm{j}]$.Test-and-set ${ }_{\mathrm{i}}()$
if res = winner then return j

1. Claim: The expected total number of tries is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$!

- Sketch of Proof (not for the exam):
- A process will win at most one test-and-set
- Hence it is enough to count the time until each test-andset is accessed at least once!
- N items, we access one at random every time; how many accesses until we cover all N of them?
- Coupon collector: we need $<2 N \log N$ total accesses, with probability 1-1/ N^{3}

Wrap-up

- Termination ensured with probability 1
- Total complexity:
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$ total operations in expectation

Conclusion

- Randomization "avoids" the deterministic impossibility results (FLP, HS)
- The results still hold, the bad executions still exist
- We give bad executions vanishing probability, ensuring termination with probability 1
- The algorithms always preserve safety
- Usually we can get better performance by using randomization

References (use Google Scholar)

- For randomization in general:
- Chapter 14 of "Distributed Computing: Fundamentals, Simulations, and Advanced Topics", by Hagit Attiya and Jennifer Welch
- For the test-and-set example:
- "Randomized two-process wait-free test-and-set" by John Tromp and Paul Vitányi.
- "Wait-free test-and-set" by Afek et al.
- For the randomized consensus example:
- "Optimal time randomized consensus"by Saks, Shavit, Woll.
- "Randomized Protocols for Asynchronous Consensus" by Aspnes.
- For the renaming example:
- "Fast Randomized Test-and-Set and Renaming" by Alistarh, Guerraoui et al.

