Randomized Concurrent Algorithms

Based on slides by Dan Alistarh
Giuliano Losa

A simple example

Register 1

| want to
@ move!

e Two students in a narrow
hallway

* To proceed, one of them has
to change direction!

|Reg|ster2
e Let’s allow them to
communicate (registers) | want to
move!

— They will have to solve
consensus for 2 processes!

A simple example

Register 1

| want to
@ move!
;!E |Reg|ster 2

| want to
move!

[FLP] : there exists an execution
in which processes

get stuck forever, or they

run into each other!

Does this happen in real life?!
Is this possible in real life?

It is unlikely that two people
will continue choosing exactly
the same thing!

What does unlikely mean?

Analysis

* Always finishes in practice!

 Does there still exist an execution in which
they do not finish?

— Do we contradict FLP?

* Yes, the infinite execution is still there
— We do not contradict FLP!

* What is the probability of that infinite
execution?

The problem has changed!

' N N W
ol EY EFY EY Y

* By allowing processes to make random
choices, we give probability to executions

* Bad executions (like in FLP) should happen with
extremely low probability (in this case, 0)

* We ensure safety in all executions, but
termination is ensured with probability 1

The plan for today

* |Intro

— Motivation

* The randomized model

* A Randomized Test-and-Set algorithm
— From 2 to N processes

e Randomized Consensus

— Shared Coins

* Randomized Renaming

Semantics of deterministic
algorithms, correctness, limitations.

* An algorithm denotes a set of histories

e Solving consensus means solving it in all
possible histories.

* FLP: consensus is impossible in an
asynchronous systems if a single process may
crash.

Solving problems with good
probability

* We need to assign probabilities to histories

— Probability distribution on scheduling?

— Probability distribution on inputs?

* No, we don’t have control over these in practice

* |nstead:

— Processes make independent random choices (they
flip coins).

— Schedule and inputs determined by a deterministic
adversary (a function of the history so far).

— We look at the worst possible adversary

Semantics of randomized protocols

* A protocol and an adversary (P,A) denote a set
of histories and an associated probability
distribution.

* A pair (P,A) and a sequence of bits s uniquely
determine a history of the algorithm P.

* The probability of a given execution is the
probability of the sequence of bits that
corresponds to it.

Correctness Properties for
Randomized Algorithms

e We define the class of adversaries we
consider.

* Usually, we keep the safety condition of the
deterministic problem and relax liveness:

“The algorithm should terminate with probability
1 for all adversary in the class”

Example: Consensus

Validity: if all processes propose the same value v,
then every correct process decides v.

Integrity: every correct process decides at most one
value, and if it decides some value v, then v must
have been proposed by some process.

Agreement: if a correct process decides v, then
every correct process decides v.

Termination: every correct process decides some
value.

Randomized Consensus

Adversary: any deterministic adversary.
Validity: if all processes propose the same value v,
then every correct process decides v.

Integrity: every correct process decides at most one
value, and if it decides some value v, then v must
have been proposed by some process.

Agreement: if a correct process decides v, then
every correct process decides v.

(Probabilistic) Termination: with probability 1,
every correct process decides some value.

The simple example

Register 1
Two people in a narrow hallway

In each “round”,

| want to

— choose an option (go forward or move)
with probability 1 /2

— write it to the register

go forward!

If they chose different options, they finish, otherwise
continue

What is the worst case adversary?
Arriving on the same side and
scheduled in lock-steps.

|
|
|
|[Register 2

| want to

move!

What is the probability of finishing in
lessthan 2 rounds? 2 * Yo+ Vo =%

14

Test-and-set specification

» Sequential specification:

e V, a binary register, initially O

procedure Test-and-Set()
ifV=0thenV < 1

. return winner

. else return loser

T&S

Linearization:

winner 8
The winner always
returns first!
Test-and-set() Test-and-set()

2-process test-and-set

Based on the previous “hallway” example
Two SWMR registers R[1], R[2]
— Each owned by a process

A register R[p] can have one of 2 possible values:

— Mine, Yours
Processes express their choices through the registers

Adapted from an algorithm by Tromp and Vitanyi (see
references at the end).

2-process test-and-set

Shared: Registers R[p], R[p’], initially Yours
Local: Registers last_read[p], last_read[p’]

procedure test-and-set () //at process p

1.

O ooNOUL AW

R[p] <- Mine
Loop
last_read[p] <- R[p’]
If (R[p] = last_read[p])
R[p] <- Random(Yours,Mine)
Else break;
EndLoop
If R[p] = Mine then return 1
Else return O

17

Correctness (rough sketch)

* Worst case adversary: lock-step scheduling.

* Unique Winner: Inductive invariants:
— If both processes are at lines 4, 8, or 9, then one of them has a accurate
last_read value.
— If process p is at lines 8 or 9, then last_read[p] is different from R[p].

e Termination:

— Every time processes execute the coin flip in line 5, the probability that
the while loop terminates in the next iteration is .
Hence, the probability that the algorithm executes more than r coin flips is
(1/2)". Therefore, the probability that the algorithm goes on forever is O.

Performance

What is the expected number of steps that a process performs
in an execution?

We need to consider the worst case adversary: the lock-steps
schedule.

Consider the random var T counting the number of rounds
before termination.

T counts the number of trials before first success in a series of
independent binary trials with probability p = .

T has geometric distribution.

The expected number of rounds is 1/p = 2!

From 2 to N processes

* We know how to decide a single “match”

8.
81'

* How do we get a single winner out of a set of N
processes?

winner

20

The tournament

T&S 3
T&S
T&S \xi\(\(\e(
T&S
T&S |, winner
T&S

185 [

21

winner

Since each T&S is wait-free, the
single guy will win!

What is the height of the tree?

22

Correctness

* Unique winner: Suppose there are two winners. Then
both would have to win the root test-and-set,
contradiction

* Termination (with probability 1!):

Follows from the termination of 2-process test-and-
set

 Winner: Either there exists a process that returns
winner, or there is at least a failure

Is this it?

23

How about this property?

Linearization:

VR NI

) ras
T&s () W5
winner

T&S

24

How about this?

Linearization:

= o 1
8 8 Winner
T&S

T&S

Winner

T&S 8
8 Loser

Loser

winner

25

Homework

@

* Fix the N-process test-and-set implementation
so that it is linearizable

Wrap up

* We have a test-and-set algorithm for N
processes

* Always safe

* Terminates with probability 1

* Worst-case local cost O(log N) per process
* Expected total cost O(N)

The plan for today

e Randomized Consensus

— Shared Coins

* Randomized Renaming

Randomized Consensus

* Can we implement Consensus with the same
properties?

29

Randomized Consensus

e Algorithms based on a Shared Coin

* A Shared coin with parameter p, SC(p) is an
algorithm without inputs, which has probability p

that all outputs are 0, and probability p that all
outputs are 1.

 Example:

— Every process flips a local coin, and returns 1 for Heads, O
for Tails

— p =Pr[all outputsare 1] =
Pr[all outputs are0]=(1/2)N

— Usually, we look for higher output parameters
The higher the parameter, the faster the algorithm

Shared Coin -> Binary Consensus

* The algorithm will progress in rounds

* Processes share a doubly-indexed vectors
Proposed|r][i], Check|r][i]
(r = round number, i = process id)

* Proposed|[][] stores values, Check|[][] indicates
whether a process finished

* At each round r >0, process p; places its vote (0
or 1) in Proposed]r][i]

Shared Coin->Binary Consensus

, In each round r, the
procedure propose (v) //at process i SUNG
1.decide = false. r '0 process writes its value

.) = ,r=

in P d[r][i
2. While(decide == false) in Proposed|r][i]

Shared: Matrices Proposed|r][i]; Check[r][i], init. to null. (N

3. r=r+1
4 Proposed(r][i] = v It then checks to see if)
5. view = Collect(Proposed|r] [...]) there is disagreement,
6. if (both 0 and 1 appear inview) and marks it to
7 Check[r][i] = disagree U Check[r][i])
8. else Check]r][i] = agree
9. check-view = Collect(Check[r] [...]) .)
e/ - . . If there is disagreement,
10. if(disagree appears in check-view) .
. . N = then processes flip a
11. if (for some j, check-view[j] = agree) :
. shared coin to agree,
12. v = Proposed]r]|[j]
. . and post the results
13. else v = flip_coin() _ W,
14. else decide = true
15. return v — '

If no-one disagrees,
| then return!

32

Termination

* Worst case adversary: lock-steps schedule.

* Processes have probability at least 2p of
flipping the same value at every round r

* If all processes have the same value at round r
then they decide in round r.

 What is the probability that they go on
forever?

e (1-2p)x(1-2p)x(1-2p)x...=0

What does this mean?

* We can implement consensus ensuring
— safety in all executions
— termination with probability 1.

* By the universal construction, we can
implement anything with these properties

e So...are we done with this class?

* The limit is no longer impossibility, but
performance!

35

Homework 2: Performance

 What is the expected number of rounds that the algorithm
runs for, if the Shared coin has parameter p?

* |n particular, what is the expected running time for the
example shared coin, having

p=(1/2)"?

— Termination time T is a random variable mapping a history to the
number of steps before termination

— Each round is akin to an independent binary trial with success
probability p, hence T has geometric distribution.

— The expectation of Tis 1/ p = 2”n

e Canyou come up with a better shared coin?

The plan for today

* Randomized Renaming

The Renaming Problem

Renaming

N processes, t < N might fail by crashing
Huge initial ID’s (think IP Addresses)

Need to get new unique ID’s from a small
namespace (e.g.,, from1to N)

The opposite of consensus

Why is this useful?

e Getting a small unique name is important
— Smaller reads and writes/messages %@b
— Overall performance =
— Names are a natural prerequisite ‘

* Renaming is related to:

. Renamin
— Mutual exclusion &

— Test-and-set
— Counting

— Resource allocation

What is known

Theorem [HS, RC] In an asynchronous system with

t < N crashes, Deterministic Renaming is
impossible in N + t - 1 or less names.

* Both Shared-Memory and Message-Passing
* Analogous to FLP, much more complicated
e Uses Algebraic Topology!
* Godel Prize 2004

How can randomization help?

|t will allow us to get a tight namespace
(of N names), even in an asynchronous system

* |t will give us better performance
 |dea: derive renaming from test-and-set

* We now know how to implement test-and-set
in an asynchronous system

Renaming from
Test-and-Set

Shared: V, an infinite vector of
randomized test-and-set

objects (J~ Name =3
procedure getName(i) -
j< 1
Whlle(true) A’l \2 \#3 #4 #5

res < V[j].Test-and-set, ()

if res = winner then
return |

elsej&j+1

#N

Shared: V, an infinite vector of
test-and-set objects

Performance

procedure getName(i)

je1

What is the worst-case
local complexity?

O(N)

while(true)

res < V[j].Test-and-set, ()
if res = winner then * What is the worst-case

return j total complexity?
elsej&j+1 * O(N?)

#1

#2

#3

H4

#5

#N

Where is the

randomization?

Randomized Renaming

Shared: V, an infinite vector of

test-and-set objects
procedure getName(i)

while(true)
j = Random(1, N)
res < V[j].Test-and-set, ()
if res = winner then
return |

@

Name =3

#1

#2

T

#4

s

#N

Shared: V, an infinite vector of
test-and-set objects

Randomized Renaming

procedure getName(i)

while(true)
j = Random(1, N)
res < V[j].Test-and-set, ()
if res = winner then
return |

#1

#2

#3

#4

#5

#N

1.

Claim: The expected total
number of tries is
O(N log N)!

Sketch of Proof (not for the exam).

A process will win at most
one test-and-set

Hence it is enough to count
the time until each test-and-
set is accessed at least once!

N items, we access one at
random every time; how
many accesses until we cover
all N of them?

Coupon collector: we need
< 2N log N total accesses,
with probability 1 —1 / N3

Wrap-up

* Termination ensured with probability 1

* Total complexity:
O(N log N) total operations in expectation

Conclusion

e Randomization “avoids” the deterministic
impossibility results (FLP, HS)
— The results still hold, the bad executions still exist

— We give bad executions vanishing probability,
ensuring termination with probability 1

* The algorithms always preserve safety

* Usually we can get better performance by
using randomization

References (use Google Scholar)

For randomization in general:
— Chapter 14 of “Distributed Computing: Fundamentals, Simulations, and
Advanced Topics”, by Hagit Attiya and Jennifer Welch

For the test-and-set example:

— “Randomized two-process wait-free test-and-set” by John Tromp and
Paul Vitanyi.

— “Wait-free test-and-set” by Afek et al.
For the randomized consensus example:
— “Optimal time randomized consensus”by Saks, Shavit, Woll.
— “Randomized Protocols for Asynchronous Consensus” by Aspnes.
For the renaming example:

— “Fast Randomized Test-and-Set and Renaming” by Alistarh, Guerraoui
et al.

