
1

Randomized Concurrent Algorithms

Based on slides by Dan Alistarh
Giuliano Losa

2

A simple example

• Two students in a narrow
hallway

• To proceed, one of them has
to change direction!

• Let’s allow them to
communicate (registers)

– They will have to solve
consensus for 2 processes!

I want to
go forward!

I want to
go forward!

Register 1

Register 2

I want to
move!

I want to
move!

3

A simple example

• [FLP] : there exists an execution
in which processes
get stuck forever, or they
run into each other!

• Does this happen in real life?!

• Is this possible in real life?

• It is unlikely that two people
will continue choosing exactly
the same thing!

• What does unlikely mean?

I want to go
forward!

I want to go
forward!

Register 1

Register 2

I want to
move!

I want to
move!

5

Analysis

• Always finishes in practice!

• Does there still exist an execution in which
they do not finish?
– Do we contradict FLP?

• Yes, the infinite execution is still there
– We do not contradict FLP!

• What is the probability of that infinite
execution?

6

The problem has changed!

• By allowing processes to make random
choices, we give probability to executions

• Bad executions (like in FLP) should happen with
extremely low probability (in this case, 0)

• We ensure safety in all executions, but
termination is ensured with probability 1

7

The plan for today

• Intro

– Motivation

• The randomized model

• A Randomized Test-and-Set algorithm

– From 2 to N processes

• Randomized Consensus

– Shared Coins

• Randomized Renaming

8

Semantics of deterministic
algorithms, correctness, limitations.

• An algorithm denotes a set of histories

• Solving consensus means solving it in all
possible histories.

• FLP: consensus is impossible in an
asynchronous systems if a single process may
crash.

Solving problems with good
probability

• We need to assign probabilities to histories
– Probability distribution on scheduling?

– Probability distribution on inputs?

• No, we don’t have control over these in practice

• Instead:

– Processes make independent random choices (they
flip coins).

– Schedule and inputs determined by a deterministic
adversary (a function of the history so far).

– We look at the worst possible adversary

9

Semantics of randomized protocols

• A protocol and an adversary (P,A) denote a set
of histories and an associated probability
distribution.

• A pair (P,A) and a sequence of bits s uniquely
determine a history of the algorithm P.

• The probability of a given execution is the
probability of the sequence of bits that
corresponds to it.

10

Correctness Properties for
Randomized Algorithms

• We define the class of adversaries we
consider.

• Usually, we keep the safety condition of the
deterministic problem and relax liveness:

“The algorithm should terminate with probability
1 for all adversary in the class”

11

12

Example: Consensus

• Validity: if all processes propose the same value v,
then every correct process decides v.

• Integrity: every correct process decides at most one
value, and if it decides some value v, then v must
have been proposed by some process.

• Agreement: if a correct process decides v, then
every correct process decides v.

• Termination: every correct process decides some
value.

13

Randomized Consensus

• Adversary: any deterministic adversary.
• Validity: if all processes propose the same value v,

then every correct process decides v.

• Integrity: every correct process decides at most one
value, and if it decides some value v, then v must
have been proposed by some process.

• Agreement: if a correct process decides v, then
every correct process decides v.

• (Probabilistic) Termination: with probability 1,
every correct process decides some value.

14

The simple example

• Two people in a narrow hallway

• In each “round”,

– choose an option (go forward or move)
with probability 1 / 2

– write it to the register

• If they chose different options, they finish, otherwise
continue

• What is the worst case adversary?
Arriving on the same side and
scheduled in lock-steps.

• What is the probability of finishing in
less than 2 rounds? ½ * ½ + ½ = ¾

I want to
go forward!

I want to
move!

Register 1

Register 2

Test-and-set specification

• Sequential specification:

• V, a binary register, initially 0

• procedure Test-and-Set()

• if V = 0 then V ← 1

• return winner

• else return loser
T&S

winner

loser

Test-and-set() Test-and-set()

winner loser
Linearization:

The winner always
returns first!

16

2-process test-and-set

• Based on the previous “hallway” example

• Two SWMR registers R[1], R[2]

– Each owned by a process

• A register R[p] can have one of 2 possible values:

– Mine, Yours

• Processes express their choices through the registers

• Adapted from an algorithm by Tromp and Vitanyi (see
references at the end).

17

2-process test-and-set
Shared: Registers R[p], R[p’], initially Yours
Local: Registers last_read[p], last_read[p’]

procedure test-and-setp() //at process p
1. R[p] <- Mine
2. Loop
3. last_read[p] <- R[p’]
4. If (R[p] = last_read[p])
5. R[p] <- Random(Yours,Mine)
6. Else break;
7. EndLoop
8. If R[p] = Mine then return 1
9. Else return 0

18

Correctness (rough sketch)

• Worst case adversary: lock-step scheduling.
• Unique Winner: Inductive invariants:

– If both processes are at lines 4, 8, or 9, then one of them has a accurate
last_read value.

– If process p is at lines 8 or 9, then last_read[p] is different from R[p].

• Termination:

– Every time processes execute the coin flip in line 5, the probability that
the while loop terminates in the next iteration is ½.
Hence, the probability that the algorithm executes more than r coin flips is
(1/2)r. Therefore, the probability that the algorithm goes on forever is 0.

19

Performance

• What is the expected number of steps that a process performs
in an execution?

• We need to consider the worst case adversary: the lock-steps
schedule.

• Consider the random var T counting the number of rounds
before termination.

• T counts the number of trials before first success in a series of
independent binary trials with probability p = ½.

• T has geometric distribution.

• The expected number of rounds is 1/p = 2!

20

From 2 to N processes

• We know how to decide a single “match”

• How do we get a single winner out of a set of N
processes?

T&S

winner

loser

21

The tournament
T&S

T&S

T&S

T&S

T&S

T&S

T&S

winner

22

Question

T&S

T&S

T&S

T&S

T&S

T&S

T&S

winner

What if only one guy shows up?

Since each T&S is wait-free, the
single guy will win!

What is the height of the tree?

23

Correctness

• Unique winner: Suppose there are two winners. Then
both would have to win the root test-and-set,
contradiction

• Termination (with probability 1!):
Follows from the termination of 2-process test-and-
set

• Winner: Either there exists a process that returns
winner, or there is at least a failure

Is this it?

24

How about this property?

Test-and-set() Test-and-set()

1 0
Linearization:

T&S

T&S

winner

T&S

25

How about this?

Test-and-set() Test-and-set()

0 1
Linearization:

T&S

T&S

winner

T&S

Loser

Winner

Winner

Loser

26

Homework

• Fix the N-process test-and-set implementation
so that it is linearizable

• Hint: you only need to add one register

27

Wrap up

• We have a test-and-set algorithm for N
processes

• Always safe

• Terminates with probability 1

• Worst-case local cost O(log N) per process

• Expected total cost O(N)

28

The plan for today

• Intro

– Motivation

• Some Basic Probability

• A Randomized Test-and-Set algorithm

– From 2 to N processes

• Randomized Consensus

– Shared Coins

• Randomized Renaming

29

Randomized Consensus

• Can we implement Consensus with the same
properties?

30

Randomized Consensus

• Algorithms based on a Shared Coin
• A Shared coin with parameter ρ, SC(ρ) is an

algorithm without inputs, which has probability ρ
that all outputs are 0, and probability ρ that all
outputs are 1.

• Example:
– Every process flips a local coin, and returns 1 for Heads, 0

for Tails
– ρ = Pr[all outputs are 1] =

Pr[all outputs are 0] = (1/2)N
– Usually, we look for higher output parameters

The higher the parameter, the faster the algorithm

31

Shared Coin -> Binary Consensus

• The algorithm will progress in rounds

• Processes share a doubly-indexed vectors
Proposed[r][i], Check[r][i]
(r = round number, i = process id)

• Proposed[][] stores values, Check[][] indicates
whether a process finished

• At each round r > 0, process pi places its vote (0
or 1) in Proposed[r][i]

32

Shared Coin->Binary Consensus
Shared: Matrices Proposed[r][i]; Check[r][i], init. to null.
procedure proposei(v) //at process i
1.decide = false, r = 0
2. While(decide == false)
3. r = r + 1
4. Proposed[r][i] = v
5. view = Collect(Proposed[r] […])
6. if (both 0 and 1 appear in view)
7. Check[r][i] = disagree
8. else Check[r][i] = agree
9. check-view = Collect(Check[r] […])
10. if(disagree appears in check-view)
11. if (for some j, check-view[j] = agree)
12. v = Proposed[r][j]
13. else v = flip_coin()
14. else decide = true
15. return v

In each round r, the
process writes its value

in Proposed[r][i]

It then checks to see if
there is disagreement,

and marks it to
Check[r][i]

If there is disagreement,
then processes flip a
shared coin to agree,
and post the results

If no-one disagrees,
then return!

34

Termination

• Worst case adversary: lock-steps schedule.

• Processes have probability at least 2ρ of
flipping the same value at every round r

• If all processes have the same value at round r
then they decide in round r.

• What is the probability that they go on
forever?

• (1 – 2p)x(1-2p)x(1-2p)x… = 0

35

What does this mean?

• We can implement consensus ensuring

– safety in all executions

– termination with probability 1.

• By the universal construction, we can
implement anything with these properties

• So…are we done with this class?

• The limit is no longer impossibility, but
performance!

36

Homework 2: Performance

• What is the expected number of rounds that the algorithm
runs for, if the Shared coin has parameter ρ?

• In particular, what is the expected running time for the
example shared coin, having
 ρ = (1/2)n?

– Termination time T is a random variable mapping a history to the
number of steps before termination

– Each round is akin to an independent binary trial with success
probability ρ, hence T has geometric distribution.

– The expectation of T is 1/ ρ = 2^n

• Can you come up with a better shared coin?

37

The plan for today

• Intro

– Motivation

• Some Basic Probability

• A Randomized Test-and-Set algorithm

– From 2 to N processes

• Randomized Consensus

– Shared Coins

• Randomized Renaming

• N processes, t < N might fail by crashing

• Huge initial ID’s (think IP Addresses)

• Need to get new unique ID’s from a small
namespace (e.g., from 1 to N)

• The opposite of consensus

The Renaming Problem

Renaming
128.178.80.4

128.178.23.17

128.178.0.1
128.178.5.1

128.178.7.2

128.178.0.4

128.178.0.1 128.178.0.1

128.178.0.1

7

1 2

3
5

9 10
4 11

Why is this useful?

• Getting a small unique name is important
– Smaller reads and writes/messages

– Overall performance

– Names are a natural prerequisite

• Renaming is related to:
– Mutual exclusion

– Test-and-set

– Counting

– Resource allocation

Renaming

3378

4

What is known

• Both Shared-Memory and Message-Passing

• Analogous to FLP, much more complicated

• Uses Algebraic Topology!

• Gödel Prize 2004

Theorem [HS, RC] In an asynchronous system with
t < N crashes, Deterministic Renaming is

impossible in N + t - 1 or less names.

41

How can randomization help?

• It will allow us to get a tight namespace
(of N names), even in an asynchronous system

• It will give us better performance

• Idea: derive renaming from test-and-set

• We now know how to implement test-and-set
in an asynchronous system

• Shared: V, an infinite vector of
randomized test-and-set
objects

• procedure getName(i)
• j ← 1
• while(true)
• res ← V[j].Test-and-seti ()
• if res = winner then
• return j
• else j ← j + 1

Renaming from
Test-and-Set

#1 #2 #3 #4 #5 …

Name = 3

#N

• Shared: V, an infinite vector of
test-and-set objects

• procedure getName(i)
• j ← 1
• while(true)
• res ← V[j].Test-and-seti ()
• if res = winner then
• return j
• else j ← j + 1

Performance

• What is the worst-case
local complexity?

• O(N)

• What is the worst-case
total complexity?

• O(N2)

#1 #2 #3 #4 #5 … #N
Where is the

randomization?

• Shared: V, an infinite vector of
test-and-set objects

• procedure getName(i)
•
• while(true)
• j = Random(1, N)
• res ← V[j].Test-and-seti ()
• if res = winner then
• return j
•

Randomized Renaming

#1 #2 #3 #4 #5 …

Name = 3

#N

• Shared: V, an infinite vector of
test-and-set objects

• procedure getName(i)
•
• while(true)
• j = Random(1, N)
• res ← V[j].Test-and-seti ()
• if res = winner then
• return j
•

Randomized Renaming
1. Claim: The expected total

number of tries is
O(N log N)!

• Sketch of Proof (not for the exam):
• A process will win at most

one test-and-set
• Hence it is enough to count

the time until each test-and-
set is accessed at least once!

• N items, we access one at
random every time; how
many accesses until we cover
all N of them?

• Coupon collector: we need
< 2N log N total accesses,
with probability 1 – 1 / N3

#1 #2 #3 #4 #5 … #N

46

Wrap-up

• Termination ensured with probability 1

• Total complexity:
O(N log N) total operations in expectation

47

Conclusion

• Randomization “avoids” the deterministic
impossibility results (FLP, HS)

– The results still hold, the bad executions still exist

– We give bad executions vanishing probability,
ensuring termination with probability 1

• The algorithms always preserve safety

• Usually we can get better performance by
using randomization

48

References (use Google Scholar)
• For randomization in general:

– Chapter 14 of “Distributed Computing: Fundamentals, Simulations, and
Advanced Topics”, by Hagit Attiya and Jennifer Welch

• For the test-and-set example:
– “Randomized two-process wait-free test-and-set” by John Tromp and

Paul Vitányi.

– “Wait-free test-and-set” by Afek et al.

• For the randomized consensus example:
– “Optimal time randomized consensus”by Saks, Shavit, Woll.

– “Randomized Protocols for Asynchronous Consensus” by Aspnes.

• For the renaming example:
– “Fast Randomized Test-and-Set and Renaming” by Alistarh, Guerraoui

et al.

