
1 © R. Guerraoui

Generalized Universality

 R. Guerraoui, EPFL

2

Act 1

Act 2

Act 3

Classical Universality

Modern Universality

Generalized Universality

3

Algorithm

A finite set of precise instructions

Must always produce a result

The only intelligence required is to
understand and compute the instructions

4

Which machine enables to compute everything?

5

Act 1

Act 2

Act 3

Classical Universality

Generalized Universality

Modern Universality

6

Algorithm

A finite set of precise instructions

Must always produce a result

The only intelligence required is to
understand and compute the instructions

NB. Despite concurrency and failures

7

Linearizable
(atomic)

Highly-available
(wait-free)

Universality of consensus
[Lamport-Schneider-Herlihy-CT]

8

Consensus

 output = propose(input)

 Processes propose each a value and agree on one
of those values

9

Consensus

Validity: every value decided has been proposed

Agreement: no two different values are decided

Termination: every correct process that proposes a
value eventually decides

10

Universal construction

A state machine of which each process holds a copy

A list of commands local to each process

A list of consensus objects shared by the processes

11

Universal construction

  while(true)

  c = commands.next()
  cons = Consensus.next()

  c’ = cons.propose(c)
  sM.perform(c’)

12

Act 1

Act 2

Act 3

Classical Universality

Modern Universality

Generalized Universality

13

What if consensus is not available?

Consensus is the particular case
of k-consensus

Generalized Universality

14

K-consensus [Chauduri, Afek et al.]

  Every process invokes kVectCons with propose(kVect)
and returns a pair (value,position)

  NB. Equivalent of invoking with a value and obtaining
a value such that at most k are different

  Every process proposes a vector of k values and
returns a value at some position

15

K-consensus

  Validity: the value returned at any position has
been proposed at that position

  Agreement: no two values returned at the same
position are different

  Termination: every correct process that
proposes eventually returns

16

K-consensus

Wait-free impossible in an asynchronous shared
memory system (registers) with k+1 processes

HS,BG,SZ 93 (Godel prize 2004)

k-consensus is strictly weaker than consensus in
any system of more than k+1 processes

17

K-consensus (Sperner)
1

2 3

Sperner’s Lemma: at least one triangle has three colors

2 3

18

K-consensus

 Leader(): returns a process such that eventually
the same correct process is returned to all

 Leader-k(): returns a subset of processes of size
k such that eventually the set is the same and
contains at least one correct process

19

Generalized Universality

With consensus

Processes implement k state machines of which at
least one is highly-available

Processes implement a highly-available state machine

With k-consensus

What form of universality with
K-consensus?

20

Act 1

Act 2

Act 3

Classical Universality

Modern Universality

Generalized Universality

21

k state machines

k state machines: each process holding a copy of each
(sM(i))

k lists of commands local to each process

A list of k-vector consensus objects (kVectCons)

Reads and writes in shared memory

22

Universal construction

  while(true)
  c = commands.next()
  cons = consensus.next()

  c’ = cons.propose(c)
  sM.perform(c’)

23

Generalized universality?

  while(true)
  for j = 1 to k: com(j) = commands(j).next()
  kVectC = kVectCons.next()

  (c,i) = kVectC.propose(com)
  sM(i).perform(c)

24

Generalized universality?

  while(true)
  for j = 1 to k: com(j) = commands(j).next()
  kVectC = kVectCons.next()

  (c,i) = kVectC.propose(com)
  read shared memory and update any missing c’
  sM(i).perform(c)
  write (c,i) in shared memory

25

write (c) at level 1
let V1 be the set of values at level 1
if V1 has only c, write (commit, c) at level 2

let V2 be the set of values at level 2
if V2 has only (commit, c) then return(commit, c)
if V2 has some (commit, c’) then return(adopt, c’)
else return (adopt, c)

Commitment (adopt-commit)

26

Commitment

  Invariant (1): if a value v is committed then no other
value is returned

  Invariant (2): if all processes propose the same
command then the command is committed

27

Generalized universality (step 0)

  newCom = commands.next()

  while(true)

  kVectC = kVectCons.next()

28

Generalized universality (step 1)

  …

  (c,i) = kVectC.propose(newCom)

  …

29

Generalized universality (step1-2)

  …

  (c,i) = kVectC.propose(newCom)

  vect(i) = commitment(i,c)

  …

30

Generalized universality (step1-2-2’)

  …

  (c,i) = kVectC.propose(newCom)

  vect(i) = commitment(i,c)

  for j = 1 to k except i:
  vect(j) = commitment(newCom(j))
…

31

Generalized universality (step 3)

…
for i = 1 to k
  if ok(vect(i)) then

  sM(i).perform(vect(i))
  newCom(i) = commands(i).next()

  else
  newCom(i) = vect(i)

32

Generalized universality (step 3’)

…
for i = 1 to k
  If older(newCom(i),vect(i)) then

 sM(i).perform(newCom(i))
  If no(vect(i)) then newCom(i) = vect(i)
  else
  sM(i).perform(vect(i))
  If vect(i) = newCom(i) then

  newCom(i) = commands(i).next()
  add(newCom(i),vect(i))

33

Commitment

  Safety: a process does not perform a command
unless all others know the command

  Liveness: at least one process executes a
command in every round

NB. Every correct process executes at least one
command every two rounds

34

Act 1

Act 2

Act 3

Classical Universality

Modern Universality

Generalized Universality

