
1 © R. Guerraoui

Concurrent Algorithms
(Overview)

Prof R. Guerraoui
Distributed Programming Laboratory

2

In short

 This course is about the principles
of robust concurrent computing

3

 Certain things are incorrect and it is
important to understand why
(at least what correctness means)

 Certain things are impossible and its
important to understand why
(at least to not try)

4

WARNING

  This course is different from the course :
Distributed Algorithms

  shared memory vs message passing

  It does make a lot of sense to take both

5

 Major chip manufacturers have
announced what is perceived as a major
paradigm shift in computing:

Multiprocessors vs faster processors

Maybe Moore was wrong…

6

Major chip manufacturers have announced a
major paradigm shift:

New York Times, 8 May 2004:
Intel … [has] decided to focus its development efforts
on «dual core» processors … with two engines instead of
one, allowing for greater efficiency because the
processor workload is essentially shared.

7

 The clock speed of a processor
cannot be increased without
overheating

But

 More and more processors can fit in
the same space

8

"  Dual-core commonplace in laptops
"  Quad-core in desktops
"  Dual quad-core in servers
"  All major chip manufacturers produce

multicore CPUs
"   SUN Niagara (8 cores, 32 threads)
"   Intel Xeon (4 cores)
"   AMD Opteron (4 cores)

9

L1 cache

L2 cache

L3 cache
(shared)

10

11

"  Multiple hardware processors: each executes a
series of processes (software constructs)
modeling sequential programs

"  Multicore architecture: multiple processors are
placed on the same chip

12

"  Two fundamental components that fall apart:
processors and memory

"  The Interconnect links the processors with the
memory:

"   - SMP (symmetric): bus (a tiny Ethernet)
"   - NUMA (network): point-to-point network

13

"  The basic unit of time is the cycle: time to
execute an instruction

"  This changes with technology but the relative
cost of instructions (local vs memory) does not

14

Simple view

15

"  The basic unit of communication is the read and
write to the memory (through the cache)

"  More sophisticated objects are sometimes
provided and, as we will see, necessary: C&S,
T&S, LL/SC

16

"  Cannot rely on CPUs getting faster in every
generation

"  Utilizing more than one CPU core requires
concurrency

17

"  One of the biggest future software
challenges: exploiting concurrency
"   Every programmer will have to deal with it
"   Concurrent programming is hard to get right

18

 Speed will be achieved by having
several processors work on
independent parts of a task

But

 the processors would occasionally
need to pause and synchronize

19

 Why synchronize?

But

 If the task is indeed common, then
pure parallelism is usually
impossible and, at best, inefficient

20

Shared object

Concurrent processes

21

public class Counter

private long value;

public Counter(int i) { value = i;}

public long getAndIncrement()
{
return value++;
}

Counter

22

Locked object

Locking (mutual exclusion)

23

Locking with compare&swap()

  A Compare&Swap object maintains a value x, init
to ⊥, and y;

  It provides one operation: c&s(old,new);

 Sequential spec:
●  c&s(old,new)
{y := x; if x = old then x := new; return(y)}

24

lock() {
repeat until
unlocked = this.c&s(unlocked,locked)
}

unlock() {
 this.c&s(locked,unlocked)
 }

Locking with compare&swap()

25

Locking with test&set()

  A test&set object maintains binary values x, init
to 0, and y;

  It provides one operation: t&s()

 Sequential spec:
  t&s() {y := x; x: = 1; return(y);}

26

lock() {
repeat until (0 = this.t&s());
}

unlock() {
 this.setState(0);
 }

Locking with test&set()

27

lock() {
while (true)
 {
 repeat until (0 = this.getState());
 if 0 = (this.t&s()) return(true);
 }
}

unlock() {
 this.setState(0);
 }

Locking with test&set()

28

 Lock l = ...;
 l.lock();
 try {
// access the resource protected by this lock
 } finally {
 l.unlock();
 }

Explicit use of a lock

29

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() {
 c++;
 }
 public synchronized void getAndincrement()
{
 c++; return c;
 }
 public synchronized int value() {
 return c;
 }
}

Implicit use of a lock

30

Locking (mutual exclusion)

"  Difficult: 50% of the bugs reported in
Java come from the mis-use of
« synchronized »

"  Fragile: a process holding a lock
prevents all others from progressing

"  Slow: the act of locking itself impacts
performance

31

Locked object

One process at a time

32

Processes are asynchronous

"  Page faults
"  Pre-emptions
"  Failures
"  Cache misses, …

33

Processes are asynchronous

"  A cache miss can delay a process by ten
instructions

"  A page fault by few millions
"  An os preemption by hundreds of

millions…

34

Coarse grained locks => slow

Fine grained locks => errors

35

Double-ended queue

Enqueue Dequeue

36

Processes are asynchronous

"  Page faults, pre-emptions, failures,
cache misses, …

"  A process can be delayed by millions of
instructions …

37

Alternative to locking?

38

Wait-free atomic objects

"  Wait-freedom: every process that invokes
an operation eventually returns from the
invocation (robust … unlike locking)

"  Atomicity: every operation appears to
execute instantaneously (as if the object
was locked…)

39

In short

 This course shows how to
 wait-free implement high-level
 atomic objects out of more
 primitive base objects

40 Shared object

Concurrent processes

41

This course

"  Theoretical but no specific theoretical
background

"  Exercices throughout the semester

"  Written exam at the end

42

Roadmap

"  Model
"   Processes and objects
"   Atomicity and wait-freedom

"  Examples
"  Content

43

Processes

  We assume a finite set of processes

  Processes are denoted by p1,..pN or p, q, r

  Processes have unique identities and know
each other (unless explicitly stated otherwise)

44

Processes

"  Processes are sequential units of
computations

"  Unless explicitly stated otherwise, we make
no assumption on process (relative) speed

45

Processes

p1

p2

p3

46

Processes
"  A process either executes the algorithm

assigned to it or crashes

"  A process that crashes does not recover (in
the context of the considered computation)

"  A process that does not crash in a given
execution (computation or run) is called
correct (in that execution)

47

Processes

p1

p2

p3

crash

48

On objects and processes

"  Processes execute local computation or
access shared objects through their
operations

"  Every operation is expected to return a reply

49

Processes

p1

p2

p3

operation

operation

operation

50

On objects and processes

"  Sequentiality means here that, after invoking
an operation op1 on some object O1, a
process does not invoke a new operation (on
the same or on some other object) until it
receives the reply for op1

"  Remark. Sometimes we talk about operations
when we should be talking about operation
invocations

51

Processes

p1

p2

p3

operation

operation

operation

52

Atomicity
"  Every operation appears to execute at some

indivisible point in time (called linearization
point) between the invocation and reply time
events

53

Atomicity

p1

p2

p3

operation

operation

operation

54

Atomicity

p1

p2

p3

operation

operation

operation

55

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash

56

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

57

Atomicity (the crash case)

p1

p2

p3

operation

operation

p2

58

Wait-freedom

"  Any correct process that invokes an
operation eventually gets a reply, no matter
what happens to the other processes (crash
or very slow)

59

Wait-freedom

p1

p2

p3

operation

60

Wait-freedom
"  Wait-freedom conveys the robustness of the

implementation

"  With a wait-free implementation, a process
gets replies despite the crash of the n-1
other processes

"  Note that this precludes implementations
based on locks (mutual exclusion)

61

Wait-freedom

p1

p2

p3

crash

operation

crash

62

Roadmap

"  Model
"   Processes and objects
"   Atomicity and wait-freedom

"  Examples
"  Content

63

"  Most synchronization primitives
(problems) can be precisely expressed
as atomic objects (implementations)

"  Studying how to ensure robust
synchronization boils down to studying
wait-free atomic object implementations

Motivation

64

Example 1

"  The reader/writer synchronization problem
corresponds to the register object

"  Basically, the processes need to read or
write a shared data structure such that the
value read by a process at a time t, is the
last value written before t

65

Register

"  A register has two operations: read() and
write()

"  We assume that a register contains an integer
for presentation simplicity, i.e., the value stored
in the register is an integer, denoted by x
(initially 0)

66

Sequential specification

"  Sequential specification

"   read()

"   return(x)

"   write(v)

"   x <- v;

"   return(ok)

67

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 2

 write(2) - ok

68

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 2

 write(2) - ok

69

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 write(2) - ok

70

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 write(2) - ok

71

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

72

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

73

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

74

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

75

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

76

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

77

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

78

Example 2

"  The producer/consumer synchronization
problem corresponds to the queue object

"  Producer processes create items that need
to be used by consumer processes

"  An item cannot be consumed by two
processes and the first item produced is
the first consumed

79

Queue

"  A queue has two operations:
enqueue() and dequeue()

"  We assume that a queue internally
maintains a list x which exports
operation appends() to put an item at the
end of the list and remove() to remove
an element from the head of the list

80

Sequential specification

"  dequeue()

"   if(x=0) then return(nil);

"   else return(x.remove())

"  enqueue(v)

"   x.append(v);

"   return(ok)

81

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 deq() - x

 enq(y) - ok

82

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 deq() - x

 enq(y) - ok

83

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 enq(y) - ok

84

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 enq(y) - ok

85

Roadmap

"  Model
"   Processes and objects
"   Atomicity and wait-freedom

"  Examples
"  Content

86

Content

"   (1) Implementing registers

"   (2) The power & limitation of registers

"   (3) Universal objects & synchronization number

"   (4) The power of time & failure detection

"   (5) Tolerating failure prone objects

"   (6) Anonymous implementations

"   (7) Transaction memory

87

In short
 This course shows how to wait-free

implement high-level atomic
objects out of basic objects

Remark. Unless explicitly stated
otherwise, objects mean atomic objects
and implementations are wait-free

