Linked Lists:
Locking vs. Lock-Free

Concurrent Algorithms 2013
Programming Assignment

Linked list

 Data structure with group of nodes

- representing a sequence

(I3l 3F—{c[3—{dD)

* Operations

- add()

- remove()
- contains()

Task

» Implement 2 versions of a linked list
- lock-based
- lock-free
* The algorithms are given
- design is tough
- implementation can also be tricky

Deliverables

* An archive with your code
* A short report

« Deadline (strict)
Monday, December 16th, 23:59

Skeleton Code in C

Benchmarking code: do NOT change
It

Scripts

- Test correctness

- execute experiments

- print graphs

See README (or ca_prog_assignment.pdf)
If Cis a problem, contact the TAs

Programmer’s Toolbox

* Registers:

- Shared memory locations

+ Atomic Operations:

- Fetch-and-Add

- Test-and-Set

- Compare-and-Swap

- Provided in atomic_ops.h

* Use them to build concurrent objects

6

Atomic Operations in
Practice
+ Example: CAS based lock:

vold lock(lock t* lock) {
while (CAS(lock,0,1)==1) {}
}
vold unlock (lock t* lock) {
*lock = 0;
}

Linked Lists:
Locking vs. Lock-Free

Original slides
by Maurice Herlihy & Nir Shavit

Outline

- Lock-free linked list
- Lock-based linked list

Linked List

* Using a list-based Set
- Common application
- Building block for other apps

10

Set Interface

- Unordered collection of items
* No duplicates

+ Methods

—add(x) put x in set
— remove (x) take X out of set
—contains(x) tests if X in set

11

List Node

public class Node {
public T 1item;
public int key;
public Node next;

}

12

The List-Based Set

(= {@3—*@3—* el

Sorted with Sentinel nodes
(min & max possible keys)

13

Reminder: Lock-Free Data

®

Structures

* No matter what ...
- Some thread will complete method call
- Even if others halt at malicious times
- Weaker than wait-free, yet

* Implies that
- You can’ t use locks (why?)
- Um, that' s why they call it lock-free

14

Why lock-free?

» Any concurrent data structure based
on mutual exclusion has a weakness

- If one thread

- Enters critical section

- And “eats the big muffin”
» Cache miss, page fault, descheduled ...
- Software error, ...

- Everyone else using that lock is stuck!

15

Lock-free Lists

» Eliminate locking entirely

» contains() wait-free and add() and
remove() lock-free

+ Use only compareAndSwap()

16

Problem

Bad news

B

Problem

* Method updates node’ s hext field
+ After node has been removed

18

Solution

|Use 1 bit to signify removal

JAtomically
- Swing reference and
- Update flag

‘IRemove in two steps
- Set mark bit in next field
- Redirect predecessor’'s pointer

19

Logical vs. Physical Deletion

* Logical delete
- Marks current node as removed

* Physical delete
- Redirects predecessor’ s next

20

Removing a Node

SEROERI ALl
V ®
L

Removing a Node

Removing a Node

([3=lly ElB—={3—~El

Removing a Node

([5—~

remov
eb OOOQ @
24

Traversing the List

* Q: what do you do when you find a
“logically” deleted node in your path?

* A: finish the job.
- CAS the predecessor’ s next field
- Proceed (repeat as needed)

25

Lock-Free Traversal

an

Summary: Lock-free Removal

Logical Removal =
Set Mark Bit

Ll [=5=>{alO0] #WIOI]

Use CAS to verify pointer Physical

is correct Removal
CAS pointer

Not enough!

27

Lock-free Removal

Logical Removal =
Set Mark Bit

cli|

Ll [5=>(a]0f 5=>(b]O Ak

Problem:

. Physical
d not added fo list.. pemoval Node added
Must Prevent CAS Before
manipulation of Physical

removed node’ s pointer Removal CAS

28

Our Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

(I3>G 3Bl F+E 33D
Physical l

Mark-Bit and Pointer Removal Fail CAS: Node not
AS

added after logical
are CASed together Removal

29

A Lock-free Algorithm
SN

(T_3>(a0 #ﬁ@@jlo)

1. add() and remove() physically remove marked
hodes

2. Wait-free find() traverses both marked and
removed nodes

30

Outline

- Lock-free linked list
- Lock-based linked list

31

What about lock-based
algorithms?

* Generally easier to design
* In many cases simpler code
* May be faster

32

Locks

- Used to ensure mutual exclusion to
critical sections

- 2 methods:
- Lock()
- Unlock()

* Many algorithms to implement locks

33

Coarse Grained Locking

é6
(I3[F—E[3—{d]]

Coarse Grained Locking

(T3] 3F¥—

-

Coarse Grained Locking

2

(13—l 3+—> d1]
e

Simple but hotspot + bottleneck

36

Coarse-Grained Locking

» Easy, same as synchronized methods

+ Simple, clearly correct
- Deserves respect!

* Works poorly with contention
- Queue locks help
- But bottleneck still an issue

37

Fine-grained Locking

* Requires careful thought
+ Split object into pieces
- Each piece has own lock

- Methods that work on disjoint pieces
need not exclude each other

38

Hand-over-Hand locking

([F—(el5—b[F—{]]

g

Hand-over-Hand locking

6

%—'@3—»@3

0%

Hand-over-Hand locking

6 6

el bl F— (]

0%

Hand-over-Hand locking

Hand-over-Hand locking

6 6

Removing a Node

HE g O g O g OE g€l

OOOQ

Removing a Node

O o

Removing a Node

6 6
B (OO g O g C1B

O o,

Removing a Node

6 o

[@3—»@[}
>

Removing a Node

6 o

[@B—»@D
>

Removing a Node

HE g O g O g OE g€l

%5
O o,

Removing a Node

[[F=> e[~ ElF>(c[5—{]]

%5
O o,

e
Removing a Nod
an
3l (][5~
(T3~

00.* %;

de
Removing a No
an
el FrllF (e[
(15—

00.* %;

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Uh, Oh

SEagth e[=]
Lk

Uh, Oh

Bad news

T~ B
Lk

Problem

* To delete node b
- Swing node a’ s next field to c

[IQ o[>l
* Problem is,

- Someone could delete ¢ concurrently

aly bly «lJ

59

Insight

- Tf a node is locked

- No one can delete node’ s successor
» If a thread locks

- Node to be deleted

- And its predecessor
- Then it works

60

Hand-Over-Hand Again

HE g O g O g OE gt

OOOQ

Hand-Over-Hand Again

Hand-Over-Hand Again

a[[(c[F—(]]

O o

Hand-Over-Hand Again

= ﬂ! GEaqCIR

Hand-Over-Hand Again

6 6

@D—»@D
oo ,. o 0

Hand-Over-Hand Again

SEagth (e[l]
LS

Removing a Node

HE g O g O g OE g€l

%5
O o,

Removing a Node

BB dOE g OE g OE gt

%5
O o,

e
Removing a Nod
an
3l (][5~
(T3~

00.* %;

Removing a Node
(5= (e[3>l (c[3—(]]

%5
O o,

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 6
BB (55 (O dOE 2gClB

O o,
74

Removing a Node

6 6 o6 o
B OB G e d G ag (1N

Removing a Node

6 6

([FH(a] = %@D

Removing a Node

6 6

L Tlel- @{/@D
Oo,”

de
Removing a No

Oo,

Removing a Node

Removing a Node
(13— (d] ‘3 ED
r'emove(b)

Removing a Node

([5—>(al ‘3 an

Adding Nodes

- To add node e

- Must lock predecessor
- Must lock successor

* Neither can be deleted
- (Is successor lock actually required?)

82

Drawbacks

* Better than coarse-grained lock
- Threads can traverse in parallel

- Still not ideal

- Long chain of acquire/release
- Inefficient

83

“To Lock or Not to Lock”

» Locking vs. Non-blocking: Extremist views
on both sides

* Programming assignment:

- Locking & non-blocking linked list
implementations.

84

Grading (bonus)

* Lock-based: 0.5 points
* Lock-free: 0.5 points

* Fastest implementation
- Lock-based: 0.5 points

- Lock-free: 0.5 points

- A student can get only one bonus bonus
- If needed: 2" fastest (lock-based) will get it

85

Recap

* Implement 2 linked list algorithms
- A lock-based
- A lock-free

* Deadline (strict):
Monday, December 16, 23:59

86

