
Outline

•  CPU caches
•  Cache coherence
•  Placement of data
•  Hardware synchronization instructions
•  Correctness: Memory model & compiler
•  Performance: Programming techniques

The Programmer’s Toolbox:
Hardware Synchronization Instructions
•  Depends on the processor;
•  CAS generally provided;
•  Test-and-Set and Fetch-and-Increment etc. may

or may not be provided;
•  x86:
– Atomic exchange, increment, decrement provided
– Memory barrier also available

•  New Intels (Haswell) provide transactional
memory

Example: Atomic Ops in GCC

type __sync_fetch_and_OP(type *ptr, type value);
type __sync_OP_and_fetch(type *ptr, type value);
// OP in {add,sub,or,and,xor,nand}

type __sync_val_compare_and_swap(type *ptr, type
oldval, type newval);
bool __sync_bool_compare_and_swap(type *ptr, type
oldval, type newval);

__sync_synchronize(); // memory barrier

Intel’s Transactional Synchronization
Extensions (TSX)

1.  Hardware lock elision (HLE)
•  Instruction prefixes:

XACQUIRE
XRELEASE

Ex:
__hle_{acquire,release}_compare_exchange_n{1,2,4,8}

•  Try to execute critical sections without acquiring/
releasing the lock.

•  If conflict detected, abort and acquire the lock before
re-doing the work

Intel’s Transactional Synchronization
Extensions (TSX)

2. Restricted Transactional Memory (RTM)
 _xbegin();
_xabort();
_xtest();
_xend();

Not starvation free!
Transactions can be aborted for a variety of reasons.
Should have a non-transactional back-up.
Limited transaction size.

Intel’s Transactional Synchronization
Extensions (TSX)

2.  Restricted Transactional Memory (RTM)
Example:

if (_xbegin() == _XBEGIN_STARTED){
counter = counter + 1;
_xend();

} else {
__sync_fetch_and_add(&counter,1);

}

Outline

•  CPU caches
•  Cache coherence
•  Placement of data
•  Hardware synchronization instructions
•  Correctness: Memory model & compiler
•  Performance: Programming techniques

Concurrent Algorithm Correctness

•  Designing correct concurrent algorithms:
1. Theoretical part
2. Practical part

•  The processor and compiler optimize
assuming no concurrency!

The Memory Consistency Model

P1 P2
A = 1; B = 1;

r1 = B; r2 = A;

//A, B shared variables, initially 0;
//r1, r2 – local variables;

What values can r1 and r2 take?
(assume x86 processor)

Answer:
(0,1), (1,0), (1,1) and (0,0)

The Memory Consistency Model

•  The order in which memory instructions
appear to execute
– What would the programmer like to see?

•  Sequential consistency
– All operations executed in some sequential order;
– Memory operations of each thread in program

order;
–  Intuitive, but limits performance;

The Memory Consistency Model
How can the processor reorder instructions to

different memory addresses?

x86 (Intel, AMD): TSO variant
•  Reads not reordered w.r.t. reads
•  Writes not reordered w.r.t writes
•  Writes not reordered w.r.t. reads
•  Reads may be reordered w.r.t. writes

to different memory addresses

//A,B,C
//globals
…
int x,y,z;
x = A;
y = B;
B = 3;
A = 2;
y = A;
C = 4;
z = B;
…

The Memory Consistency Model

•  Single thread – reorderings transparent;
•  Avoid reorderings: memory barriers
–  x86 – implicit in atomic ops;
–  “volatile” in Java;
–  Expensive - use only when really necessary;

•  Different processors – different memory
consistency models
–  e.g., ARM – relaxed memory model (anything goes!);
– VMs (e.g. JVM, CLR) have their own memory models;

Beware of the Compiler
void lock(int * some_lock) {

while (CAS(some_lock,0,1) != 0) {}
}
void unlock(int * some_lock) {

*some_lock = 0;
}

•  The compiler can:
•  reorder
•  remove instructions
•  not write values to memory

C ”volatile” !=
 Java “volatile”

lock(&the_lock);
…
unlock(&the_lock);

void lock(int * some_lock) {
while (CAS(some_lock,0,1) != 0) {}
asm volatile(“” ::: “memory”); //compiler barrier

}
void unlock(int * some_lock) {

asm volatile(“” ::: “memory”); //compiler barrier
*some_lock = 0;

}

int the_lock=0; volatile int the_lock=0;

Outline

•  CPU caches
•  Cache coherence
•  Placement of data
•  Hardware synchronization instructions
•  Correctness: Memory model & compiler
•  Performance: Programming techniques

Concurrent Programming Techniques

•  What techniques can we use to speed up our
concurrent application?

•  Main idea: minimize contention on cache lines

•  Use case: Locks
– acquire()
– release()

Let’s start with a simple lock…
Test-and-Set Lock

typedef volatile uint lock_t;

void acquire(lock_t * some_lock) {
while (TAS(some_lock) != 0) {}
asm volatile(“” ::: “memory”);

}
void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);
*some_lock = 0;

}

How good is this lock?

•  A simple benchmark
•  Have 48 threads continuously acquire a lock,

update some shared data, and unlock
•  Measure how many operations we can do in a

second

•  Test-and-Set lock: 190K operations/second

How can we improve things?
Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

void acquire(lock_t * some_lock) {
while(1) {

while (*some_lock != 0) {}
if (TAS(some_lock) == 0) {

return;
}

}
asm volatile(“” ::: “memory”);

}
void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);
*some_lock = 0;

}

Performance comparison

0

50

100

150

200

250

300

350

400

Test-and-Set Test-and-Test-and-Set

O
ps

/s
ec

on
d

(t
ho

us
an

ds
)

But we can do even better
Avoid thundering herd:

Test-and-Test-and-Set with Back-off
void acquire(lock_t * some_lock) {

uint backoff = INITIAL_BACKOFF;
while(1) {

while (*some_lock != 0) {}
if (TAS(some_lock) == 0) {

return;
} else {

lock_sleep(backoff);
backoff=min(backoff*2,MAXIMUM_BACKOFF);

}
}
asm volatile(“” ::: “memory”);

}
void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);
*some_lock = 0;

}

Performance comparison

0

100

200

300

400

500

600

700

800

Test-and-Set Test-and-Test-and-Set Test-and-Test-and-Set
w. backoff

O
ps

/s
ec

on
d

(t
ho

us
an

ds
)

Are these locks fair?

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N
um

be
r

of
 p

ro
ce

ss
ed

 r
eq

ue
st

s

Thread number

Processed requests per thread, Test-and-Set lock

What if we want fairness?
Use a FIFO mechanism:

Ticket Locks
typedef ticket_lock_t {

volatile uint head;
volatile uint tail;

} ticket_lock_t;

void acquire(ticket_lock_t * a_lock) {
uint my_ticket = fetch_and_inc(&(a_lock->tail));
while (a_lock->head != my_ticket) {}
asm volatile(“” ::: “memory”);

}
void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);
a_lock->head++;

}

What if we want fairness?

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N
um

be
r

of
 p

ro
ce

ss
ed

 r
eq

ue
st

s

Thread number

Processed requests per thread, Ticket Locks

Performance comparison

0
100
200
300
400
500
600
700
800

O
ps

/s
ec

on
d

(t
ho

us
an

ds
)

Can we back-off here as well?
Yes, we can:

Proportional back-off
void acquire(ticket_lock_t * a_lock) {

uint my_ticket = fetch_and_inc(&(a_lock->tail));
uint distance, current_ticket;
while (1) {

current_ticket = a_lock->head;
if (current_ticket == my_ticket) break;
distance = my_ticket – current_ticket;
if (distance > 1)

lock_sleep(distance * BASE_SLEEP);
}
asm volatile(“” ::: “memory”);

}
void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);
a_lock->head++;

}

Performance comparison

0
200
400
600
800

1000
1200
1400
1600

O
ps

/s
ec

on
d

(t
ho

us
an

ds
)

Still, everyone is spinning on the same
variable….

Use a different address for each thread:
 Queue Locks

1

run

2

spin

3

spin

4

arriving

4

spin

1

leaving

2

run

Use with moderation: storage overheads

Performance comparison

0
200
400
600
800

1000
1200
1400
1600
1800
2000

O
ps

/s
ec

on
d

(t
ho

us
an

ds
)

To sum it up

•  Reading before trying to write
•  Pausing when it’s not our turn
•  Ensuring fairness
•  Accessing disjoint addresses (cache lines)

More than 10x performance gain!

Conclusion

•  Concurrent algorithm design:
– Theoretical design
– Practical design (may be just as important)

•  You need to know your hardware
– For correctness
– For performance

Reminder

Programming assignments due next Tuesday!

If you have any questions,
attend today’s exercise session

