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•  CPU caches 
•  Cache coherence 
•  Placement of data 
•  Hardware synchronization instructions 
•  Correctness: Memory model & compiler 
•  Performance: Programming techniques 



The Programmer’s Toolbox: 
Hardware Synchronization Instructions 
•  Depends on the processor; 
•  CAS generally provided; 
•  Test-and-Set and Fetch-and-Increment etc. may 

or may not be provided; 
•  x86: 
– Atomic exchange, increment, decrement provided 
– Memory barrier also available 

•  New Intels (Haswell) provide transactional 
memory 

 



Example:  Atomic Ops in GCC 

type __sync_fetch_and_OP(type *ptr,  type value);
type __sync_OP_and_fetch(type *ptr,  type value);
// OP in {add,sub,or,and,xor,nand}

type __sync_val_compare_and_swap(type *ptr,  type 
oldval, type newval);
bool __sync_bool_compare_and_swap(type *ptr,  type 
oldval, type newval);

__sync_synchronize(); // memory barrier



Intel’s Transactional Synchronization 
Extensions (TSX) 

1.  Hardware lock elision (HLE) 
•  Instruction prefixes:

XACQUIRE
XRELEASE

Ex: 
__hle_{acquire,release}_compare_exchange_n{1,2,4,8}

•  Try to execute critical sections without acquiring/
releasing the lock. 

•  If conflict detected, abort and acquire the lock before 
re-doing the work 

 
 



Intel’s Transactional Synchronization 
Extensions (TSX) 

2.   Restricted Transactional Memory (RTM) 
 _xbegin();
_xabort();
_xtest();
_xend();

Not starvation free! 
Transactions can be aborted for a variety of reasons. 
Should have a non-transactional back-up. 
Limited transaction size. 

 



Intel’s Transactional Synchronization 
Extensions (TSX) 

2.  Restricted Transactional Memory (RTM) 
Example: 
 

if (_xbegin() == _XBEGIN_STARTED){
counter = counter + 1;
_xend();

} else {
__sync_fetch_and_add(&counter,1);

} 
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Concurrent Algorithm Correctness 

•  Designing correct concurrent algorithms: 
1. Theoretical part  
2. Practical part 

•  The processor and compiler optimize 
assuming no concurrency! 



The Memory Consistency Model 

  

P1 P2 
A = 1; B = 1;

r1 = B; r2 = A;

//A, B shared variables, initially 0;
//r1, r2 – local variables;

What values can r1 and r2 take? 
(assume x86 processor) 

Answer:  
(0,1), (1,0), (1,1) and (0,0) 

  



The Memory Consistency Model 

•  The order in which memory instructions 
appear to execute 
– What would the programmer like to see? 

•  Sequential consistency  
– All operations executed in some sequential order; 
– Memory operations of each thread in program 

order; 
–  Intuitive, but limits performance; 



The Memory Consistency Model 
How can the processor reorder instructions to 

different memory addresses? 

x86 (Intel, AMD): TSO variant 
•  Reads not reordered w.r.t. reads 
•  Writes not reordered w.r.t writes 
•  Writes not reordered w.r.t. reads 
•  Reads may be reordered w.r.t. writes 

to different memory addresses  

//A,B,C
//globals
…
int x,y,z;
x = A;
y = B;
B = 3;
A = 2;
y = A;
C = 4;
z = B;
…



The Memory Consistency Model 

•  Single thread – reorderings transparent; 
•  Avoid reorderings: memory barriers 
–  x86 – implicit in atomic ops; 
–  “volatile” in Java; 
–  Expensive - use only when really necessary; 

•  Different processors – different memory 
consistency models 
–  e.g.,  ARM – relaxed memory model (anything goes!); 
– VMs (e.g. JVM, CLR) have their own memory models;  



Beware of the Compiler 
void lock(int * some_lock) {

while (CAS(some_lock,0,1) != 0) {}
}
void unlock(int * some_lock) {

*some_lock = 0;
}

•  The compiler can: 
•  reorder 
•  remove instructions 
•  not write values to memory 

C ”volatile” != 
 Java “volatile” 

lock(&the_lock);
…
unlock(&the_lock);

void lock(int * some_lock) {
while (CAS(some_lock,0,1) != 0) {}
asm volatile(“” ::: “memory”); //compiler barrier

}
void unlock(int * some_lock) {

asm volatile(“” ::: “memory”); //compiler barrier
*some_lock = 0;

}

int the_lock=0; volatile int the_lock=0; 
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Concurrent Programming Techniques 

•  What techniques can we use to speed up our 
concurrent application? 

•  Main idea: minimize contention on cache lines 

•  Use case: Locks 
– acquire() 
– release() 



Let’s start with a simple lock… 
Test-and-Set Lock 

typedef volatile uint lock_t;

void acquire(lock_t * some_lock) {
while (TAS(some_lock) != 0) {}
asm volatile(“” ::: “memory”);

}
void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);
*some_lock = 0;

}



How good is this lock? 

•  A simple benchmark 
•  Have 48 threads continuously acquire a lock, 

update some shared data, and unlock 
•  Measure how many operations we can do in a 

second 

•  Test-and-Set lock: 190K operations/second 



How can we improve things? 
Avoid cache-line ping-pong: 
Test-and-Test-and-Set Lock 

void acquire(lock_t * some_lock) {
while(1) {

while (*some_lock != 0) {}
if (TAS(some_lock) == 0) {

return;
}

}
asm volatile(“” ::: “memory”);

}
void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);
*some_lock = 0;

}
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But we can do even better 
Avoid thundering herd: 

Test-and-Test-and-Set with Back-off 
void acquire(lock_t * some_lock) {

uint backoff = INITIAL_BACKOFF;
while(1) {

while (*some_lock != 0) {}
if (TAS(some_lock) == 0) {

return;
} else {

lock_sleep(backoff);
backoff=min(backoff*2,MAXIMUM_BACKOFF);

}
}
asm volatile(“” ::: “memory”);

}
void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);
*some_lock = 0;

}
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Are these locks fair? 
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What if we want fairness? 
Use a FIFO mechanism: 

Ticket Locks 
typedef ticket_lock_t {

volatile uint head;
volatile uint tail;

} ticket_lock_t;

void acquire(ticket_lock_t * a_lock) {
uint my_ticket = fetch_and_inc(&(a_lock->tail));
while (a_lock->head != my_ticket) {}
asm volatile(“” ::: “memory”);

}
void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);
a_lock->head++;

}



What if we want fairness? 
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Can we back-off here as well? 
Yes, we can: 

Proportional back-off 
void acquire(ticket_lock_t * a_lock) {

uint my_ticket = fetch_and_inc(&(a_lock->tail));
uint distance, current_ticket;
while (1) {

current_ticket = a_lock->head;
if (current_ticket == my_ticket) break;
distance = my_ticket – current_ticket;
if (distance > 1) 

lock_sleep(distance * BASE_SLEEP);
}
asm volatile(“” ::: “memory”);

}
void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);
a_lock->head++;

}
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Still, everyone is spinning on the same 
variable…. 

Use a different address for each thread: 
 Queue Locks 

1 

run 

2 

spin 
  

3 

spin 
  

4 

arriving 

4 

spin 
  

1 

leaving 

2 

run 

Use with moderation: storage overheads 
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To sum it up 

•  Reading before trying to write 
•  Pausing when it’s not our turn 
•  Ensuring fairness 
•  Accessing disjoint addresses (cache lines) 

More than 10x performance gain! 



Conclusion 

•  Concurrent algorithm design: 
– Theoretical design 
– Practical design (may be just as important) 

•  You need to know your hardware 
– For correctness 
– For performance 



Reminder 

Programming assignments due next Tuesday! 
 

If you have any questions,  
attend today’s exercise session 


