
1 © R. Guerraoui

Computing with
anonymous processes

Prof R. Guerraoui
Distributed Programming Laboratory

2

Counter (sequential spec)

!   A counter has two operations inc() and
read() and maintains an integer x init to 0

!   read():
!   return(x)

!   inc():
!   x := x + 1;
!   return(ok)

3

!   The processes share an array of SWMR registers
Reg[1,..,n] ; the writer of register Reg[i] is pi

!   inc():
!   temp := Reg[i].read() + 1;
!   Reg[i].write(temp);
!   return(ok)

Counter (atomic implementation)

4

!   read():
!   sum := 0;
!   for j = 1 to n do

!   sum := sum + Reg[j].read();
!  return(sum)

Counter (atomic implementation)

5

Weak Counter

!   A weak counter has one operation wInc()
!   wInc():

!   x := x + 1;
!   return(x)

•  Correctness: if an operation precedes another,
then the second returns a value that is larger
than the first one

6

Weak counter execution

p1

p2

p3

 wInc() - 1

wInc() - 2

wInc() - 2

7

!   The processes share an (infinite) array of
MWMR registers Reg[1,..,n,..,], init to 0

!   wInc():
!   i := 0;
!   while (Reg[i].read() ≠ 0) do

!   i := i + 1;
!   Reg[i].write(1);
!   return(i);

Weak Counter
(lock-free implementation)

8

Weak counter execution

p1

p2

p3

 wInc() - 1 wInc() - 2 wInc() -

wInc() -

9

!   The processes also use a MWMR register L
!   wInc():

!   i : = 0;
!   while (Reg[i].read() ≠ 0) do
!   if L has been updated n times then

!   return the largest value seen in L
!   i := i + 1;

!   L.write(i);
!   Reg[i].write(1);
!   return(i);

Weak Counter
(wait-free implementation)

10

!   wInc():
!   t := l := L.read(); i := k:= 0;
!   while (Reg[i].read() ≠ 0) do
!   i : = i + 1;
!   if L.read() ≠ l then

!   l := L.read(); t := max(t,l); k :=k+1;
!   if k = n then return(t);

 L.write(i);
!   Reg[i].write(1);
!   return(i);

Weak Counter
(wait-free implementation)

11

Snapshot (sequential spec)

!   A snapshot has operations update() and
scan() and maintains an array x of size n

!   scan():
!   return(x)

!   NB. No component is devoted to a process
!   update(i,v):

!   x[i] := v;
!   return(ok)

12

Key idea for atomicity
& wait-freedom

!   The processes share a Weak Counter:
Wcounter, init to 0;

!   The processes share an array of registers
Reg[1,..,N] that contains each:
!   a value,
!   a timestamp, and
!   a copy of the entire array of values

13

Key idea for atomicity
& wait-freedom (cont’d)

!   To scan, a process keeps collecting and
returns a collect if it did not change, or some
collect returned by a concurrent scan
!   Timestamps are used to check if a scan

has been taken in the meantime

•  To update, a process scans and writes the
value, the new timestamp and the result of
the scan

14

Snapshot implementation

Every process keeps a local timestamp ts

!   update(i,v):
!   ts := Wcounter.wInc();
!   Reg[i].write(v,ts,self.scan());
!   return(ok)

15

Snapshot implementation

!   scan():
!   ts := Wcounter.wInc();
!   while(true) do

!   If some Reg[j] contains a collect with a
higher timestamp than ts, then return
that collect

!   If n+1 sets of reads return identical
results then return that one

16

Consensus (obstruction-free)
!   We consider binary consensus
!   The processes share two infinite arrays of

registers: Reg0[i] and Reg1[i]

!   Every process holds an index integer i,
init to 1

!   Idea: to impose a value v, a process needs to
be fast enough to fill in registers in Regv[i]

#1 #2 #3 #4

#1 #2 #3 #4

Value 0

Value 1

…

…

17

Consensus (obstruction-free)

!   propose(v):
!   while(true) do

!   if Reg1-v[i] = 0 then
!   Regv[i] := 1;
!   if i > 1 and Reg1-v[i-1] = 0

 then return(v);
!   else v:= 1-v;
!   i := i+1;
end

My team may
be winning

Score 1 for my
team

If we’re
leading by 2,

we won!

If we’re
losing, I

switch teams!

18

A simple execution

!  Team 0 vs Team 1
!  Solo execution:

!  Process p1 (green) comes in alone, and marks
the first two slots of Reg1

!  Processes that come later either have value 1
and decide 1, or switch to value 1 and decide 1

#1 #2 #3 #4

#1 #2 #3 #4

Value 0

Value 1

…

…

1

0 1

19

Lock-step execution

!  Team 0 vs Team 1
!  Lock-step:

!  If the two processes proceed in perfect lock-step,
then the algorithm will go on forever

!  Obstruction-free, but not wait-free

#1 #2 #3 #4

#1 #2 #3 #4

Value 0

Value 1

…

…

1

0

20

Algorithm tip

When designing a concurrent algorithm, it
helps to first check correctness
in solo and lock-step executions

21

Consensus (solo process)

q(1)

 Reg1(1):=1

 Reg0(1)=0

 Reg0(2)=0

 Reg1(2):=1

 Reg0(1)=0

22

Consensus (lock-step)
q(1)

 Reg1(1):=1

 Reg0(1)=0

 Reg0(2)=0

 Reg1(2):=1

 Reg0(1)=1

p(0)

 Reg0(1):=1

 Reg1(1)=0

 Reg1(2)=0

 Reg0(2):=1

 Reg0(1)=1

23

Can we make it wait-free?

!  We need to assume eventual synchrony

!  Definition:
In every execution, there exists a time GST
(global stabilization time) after which the
processes’ internal clocks are perfectly
synchronized

24

Consensus (binary)
!   propose(v):

!   while(true) do
!   If Reg1-v[i] = 0 then
!   Regv[i] := 1;
!   if i > 1 and Reg1-v[i-1] = 0 then

return(v);
!  else if Regv[i] = 0 then v:= 1-v;
!   if v = 1 then wait(2i)
!   i := i+1;
end

One of the teams
becomes slower!

25

Wait-free (intuition)

!  Team 0 vs Team 1
!  Lock-step:

!  The processes in team 1 have to wait for 2i steps
after each loop

!  Hence, eventually, they become so slow that
team 0 wins

#1 #2 #3 #4

#1 #2 #3 #4

Value 0

Value 1

…

…

1

0

26

References

!  Writeup containing all algorithms and more:

http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200496.pdf

