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BG-Simulation

BG-Simulation

The BG-Simulation algorithm allows to wait-free
simulate a t-resilient system of n asynchronous
processes sharing memory with t + 1 asynchronous
simulators sharing memory.
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BG-Simulation

• t + 1 asynchronous simulators π0, . . . , πt ;

• in any execution, up to t simulators may crash;

• n simulated processes p0, . . . , pn−1.

We must ensure that, in any simulated execution,
at most t simulated processes crash.
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BG-Simulation

• Simulators are provided with a program progi
and an input inputi for each simulated process
pi ;

• each simulator πs simulates all the processes
p0, . . . , pn−1;

• it computes an output outputi for each process
that do not crash during the simulation.
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BG-Simulation

We consider deterministic programs progi supposed
to be of the following form:

statei ← initi
while not decided(statei) do

val ← next write(statei)
write(val ,mem[i ])
snapi ← snapshot(mem)
statei ← update state(snapi , statei)

end while
return compute output(statei)
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Simulation Algorithm

For each process pi , simulator πs maintains:

• pi ’s state: state[i ]
(values of variables, instruction pointer, etc.);

• a sequence number for pi ’s last write:
write sn[i ];

• a sequence number for pi ’s last snapshot:
snap sn[i ].
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Parallel Simulation

• Each simulator runs in parallel the n simulations.

• The n simulation threads are scheduled such
that they all always eventually take steps, even
if some of them never terminate.

• The crash of the simulator prevents future
progress of any thread.

• Threads do not crash individually.
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Shared Memory Simulation

• Each simulator πs keeps a local copy smems of
the simulated shared memory;

• smems is an array of n elements, one for each
simulated process;

• smems [i ] is the last value written by pi in its
simulation by πs ;
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Shared Memory Simulation

• sim view is an array of shared atomic SWMR
registers, one for each simulator;

• πs writes it’s view smems of the simulated
shared memory in its assigned shared register
sim view[s];

• it can take an atomic snapshot of the views of
other simulators sim view[0, . . . , t] on the
simulated shared memory.

• sim view[s ′][i ] is a pair containing the last
value written by pi according to simulator πs ′,
and the corresponding sequence number.
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We need the simulation to be
coherent across simulators.

We need to ensure the
atomicity of the simulated

shared memory.
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Safe-Agreement

A safe-agreement object offers two operations: propose(v) and
decide().

Termination Any invocation of propose by a correct process
terminates. If no process crashes while executing
propose, then any correct process invoking
decide() terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.

In a crash-free system, safe-agreement objects implement
consensus.
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Safe-Agreement

1: init REG [0, . . . , n − 1]← [〈⊥, 0〉]
2: operation propose(v)
3: REG [s]← 〈v , 1〉
4: snaps ← REG .snapshot()
5: if ∃x : snaps [x ].level = 2 then
6: REG [s]← 〈v , 0〉
7: else
8: REG [s]← 〈v , 2〉
9: end if

10: end operation
11: operation decide( )
12: repeat
13: snaps ← REG .snapshot()
14: until ∀x : snaps [x ].level 6= 1
15: x ← min {y | snaps [y ] = 2}
16: return snaps [x ].value
17: end operation
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From progi ...

statei ← initi
while not decided(statei) do

val ← next write(statei)
write(val ,mem[i ])
snapi ← snapshot(mem)
statei ← update state(snapi , statei)

end while
return compute output(statei)
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... to the Simulation Thread

statei ← initi ; write sn[i ]← 0; snap sn[i ]← 0
while not decided(statei) do

val ← next write(statei)
simulate write(i , val ,mem[i ])
snapi ← simulate snapshot(i ,mem)
statei ← update state(snapi , statei)

end while
return compute output(statei)
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Simulating Write Operations

operation simulate write(i ,val ,mem[i ])
write sn[i ]← write sn[i ] + 1
smems [i ]← 〈val ,write sn[i ]〉
sim view[s]← smems

end operation
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Simulating Snapshots

operation simulate snapshot(i ,mem)
snap ← sim view.snapshot()
for x ∈ {1, . . . , n} do

let z be s.t. ∀y , snap[z ][x ].sn ≥ snap[y ][x ].sn
sim snap[x ]← snap[z ][x ]

end for
snap sn[i ]← snap sn[i ] + 1
safe agr[i ][snap sn[i ]].propose(sim snap)
return safe agr[i ][snap sn[i ]].decide()

end operation
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Coherence and Atomicity

• Simulators now all agree on the snapshots of
simulated processes;

• progi being deterministic, they also agree on the
remaining of their simulations (including writes).

• A simulated write is linearized at the first
moment a simulator πs writes a smems

containing this write into sim view[s].

• A simulated snapshot is linearized at the
moment the simulator that proposes it to the
safe-agreement took its corresponding snapshot
of sim view.
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But Too Many Crashes

• A simulator can be executing propose
operations on several safe-agreement objects at
the same time (at most one per simulation
thread).

• If it crashes at that point, decide operations of
these objects may block forever for all
simulators;

• the corresponding simulated processes then stop
making progress.
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All we need is local
synchronization!

We can easily force a thread
never to be in more than one

propose operation.
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Mutual Exclusion Between Local Threads

operation simulate snapshot(i ,mem)
snap ← sim view.snapshot()
for x ∈ {1, . . . , n} do

let z be s.t. ∀y , snap[z ][x ].sn ≥ snap[y ][x ].sn
sim snap[x ]← snap[z ][x ]

end for
snap sn[i ]← snap sn[i ] + 1
enter mutex
safe agr[i ][snap sn[i ]].propose(sim snap)
leave mutex
return safe agr[i ][snap sn[i ]].decide()

end operation

28 / 50



A simulator is never in more
than one propose.

The crash of a simulator can
prevent the progress of at most

one simulated process.
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BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:

• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.
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Tasks

Tasks are distributed functions defined by a triple (I,O, δ).

• I denotes the set of input configurations,

• Any I ∈ I is a vector of inputs, one for each process.

• O is the set of possible output configurations.

• O ∈ O is a vector of outputs, one for each process, possibly
with some missing values (due to crashes).

• δ : I → 2O is a function that, to any input configuration
I ∈ I, associates the set δ(I ) ⊆ O of the output
configurations that are allowed when starting from I .
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Decision Tasks

• Decision tasks do not depend on inputs and outputs
assignment.

• δ(I ) only depends on the set of values in I .

• If I ′ only contains values of I then δ(I ′) ⊆ δI .
• If O ∈ δ(I ), then any vector O ′ containing only values

appearing in O also belongs to δ(I ).

• Consensus, k-set agreement are decision tasks, renaming isn’t.
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Any decision task that we can
solve with n processes and t
crashes, we can solve it with
t + 1 processes and t crashes.



The study of decision tasks
computability can be reduced
to the n − 1-resilient case.



Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.

• Use n safe-agreements to decide on how to map simulators
inputs on processes.

• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.
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What matters is the number of
crashes, not the number of

processes.
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The Renaming Problem

• n asynchronous processes sharing atomic
registers;

• up to n − 1 of them may crash;

• they are given names in a large namespace
{−N , . . . ,N},N >> n;

• k-renaming provides them with a get name

operation that returns a new unique name in a
smaller namespace {1, . . . , k}.
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Motivation

• Using shorter names spares bandwidth, memory,
storage, etc.

• The ”big” names are just a way to break
symmetry, renaming protocols allow to
dynamically compute unique identifiers.

• Several problems can be reduced to renaming
(e.g. picking a unique transmitting frequency).
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• Because of asynchrony and crashes, processes have to change
name after a conflict.

• We need to break symmetry between conflicting processes.

Adaptive Renaming

Ideally the protocol should be adaptive: the largest name obtained
should depend on the actual number of participating processes, not
on the total number of processes.
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The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:

• at most x − 1 obtain right;
• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.
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Splitter-based Renaming

operation new name(id)
d ← 1; r ← 1; move ← down
while move 6= stop do move ← S [d , r ].direction(id);

if move = right then
r ← r + 1

else if move = down then
d ← d + 1

end if
end while
return (d + r − 1)(d + r − 2)/2 + r

end operation
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Great! But we can do even
better.



Snapshot-based Renaming

operation new name(id)
name ← 1
while true do

MEM[i ]← 〈id , name〉
snap ← MEM.snapshot()
if ∀j 6= i : snap[j ].name 6= name then

return name
else

free ← names of {1, . . . ,∞} that do not appear in snap
rank ← rank of id in the set of identifiers appearing in snap
name ← name at position rank in free

end if
end while

end operation
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Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50



Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50



Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50



Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50



Wrap-Up

• BG-simulation allows to simulate larger systems
while preserving the number of crashes.

• Renaming algorithms distribute new unique
names from a smaller namespace.
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