
BG-simulation and Renaming

Julien Stainer

Concurrent Algorithms
Distributed Programming Laboratory

julien.stainer@epfl.ch

1 / 50

Outline

1 BG-Simulation
Problem Statement
Simulation Algorithm
Safe-Agreement
Putting Pieces Together
Computability Consequences

2 Renaming
Problem Statement
Renaming and Crashes
A Splitter-based Algorithm
A Snapshot-based Algorithm

2 / 50

Table of Contents

1 BG-Simulation
Problem Statement
Simulation Algorithm
Safe-Agreement
Putting Pieces Together
Computability Consequences

2 Renaming
Problem Statement
Renaming and Crashes
A Splitter-based Algorithm
A Snapshot-based Algorithm

3 / 50

BG-Simulation

BG-Simulation

The BG-Simulation algorithm allows to wait-free
simulate a t-resilient system of n asynchronous
processes sharing memory with t + 1 asynchronous
simulators sharing memory.

4 / 50

BG-Simulation

• t + 1 asynchronous simulators π0, . . . , πt ;

• in any execution, up to t simulators may crash;

• n simulated processes p0, . . . , pn−1.

We must ensure that, in any simulated execution,
at most t simulated processes crash.

5 / 50

BG-Simulation

• t + 1 asynchronous simulators π0, . . . , πt ;

• in any execution, up to t simulators may crash;

• n simulated processes p0, . . . , pn−1.

We must ensure that, in any simulated execution,
at most t simulated processes crash.

5 / 50

BG-Simulation

• t + 1 asynchronous simulators π0, . . . , πt ;

• in any execution, up to t simulators may crash;

• n simulated processes p0, . . . , pn−1.

We must ensure that, in any simulated execution,
at most t simulated processes crash.

5 / 50

BG-Simulation

• t + 1 asynchronous simulators π0, . . . , πt ;

• in any execution, up to t simulators may crash;

• n simulated processes p0, . . . , pn−1.

We must ensure that, in any simulated execution,
at most t simulated processes crash.

5 / 50

BG-Simulation

• Simulators are provided with a program progi
and an input inputi for each simulated process
pi ;

• each simulator πs simulates all the processes
p0, . . . , pn−1;

• it computes an output outputi for each process
that do not crash during the simulation.

8 / 50

BG-Simulation

• Simulators are provided with a program progi
and an input inputi for each simulated process
pi ;

• each simulator πs simulates all the processes
p0, . . . , pn−1;

• it computes an output outputi for each process
that do not crash during the simulation.

8 / 50

BG-Simulation

• Simulators are provided with a program progi
and an input inputi for each simulated process
pi ;

• each simulator πs simulates all the processes
p0, . . . , pn−1;

• it computes an output outputi for each process
that do not crash during the simulation.

8 / 50

BG-Simulation

We consider deterministic programs progi supposed
to be of the following form:

statei ← initi
while not decided(statei) do

val ← next write(statei)
write(val ,mem[i])
snapi ← snapshot(mem)
statei ← update state(snapi , statei)

end while
return compute output(statei)

9 / 50

Simulation Algorithm

For each process pi , simulator πs maintains:

• pi ’s state: state[i]
(values of variables, instruction pointer, etc.);

• a sequence number for pi ’s last write:
write sn[i];

• a sequence number for pi ’s last snapshot:
snap sn[i].

10 / 50

Simulation Algorithm

For each process pi , simulator πs maintains:

• pi ’s state: state[i]
(values of variables, instruction pointer, etc.);

• a sequence number for pi ’s last write:
write sn[i];

• a sequence number for pi ’s last snapshot:
snap sn[i].

10 / 50

Simulation Algorithm

For each process pi , simulator πs maintains:

• pi ’s state: state[i]
(values of variables, instruction pointer, etc.);

• a sequence number for pi ’s last write:
write sn[i];

• a sequence number for pi ’s last snapshot:
snap sn[i].

10 / 50

Parallel Simulation

• Each simulator runs in parallel the n simulations.

• The n simulation threads are scheduled such
that they all always eventually take steps, even
if some of them never terminate.

• The crash of the simulator prevents future
progress of any thread.

• Threads do not crash individually.

11 / 50

Parallel Simulation

• Each simulator runs in parallel the n simulations.

• The n simulation threads are scheduled such
that they all always eventually take steps, even
if some of them never terminate.

• The crash of the simulator prevents future
progress of any thread.

• Threads do not crash individually.

11 / 50

Parallel Simulation

• Each simulator runs in parallel the n simulations.

• The n simulation threads are scheduled such
that they all always eventually take steps, even
if some of them never terminate.

• The crash of the simulator prevents future
progress of any thread.

• Threads do not crash individually.

11 / 50

Parallel Simulation

• Each simulator runs in parallel the n simulations.

• The n simulation threads are scheduled such
that they all always eventually take steps, even
if some of them never terminate.

• The crash of the simulator prevents future
progress of any thread.

• Threads do not crash individually.

11 / 50

Shared Memory Simulation

• Each simulator πs keeps a local copy smems of
the simulated shared memory;

• smems is an array of n elements, one for each
simulated process;

• smems [i] is the last value written by pi in its
simulation by πs ;

12 / 50

Shared Memory Simulation

• Each simulator πs keeps a local copy smems of
the simulated shared memory;

• smems is an array of n elements, one for each
simulated process;

• smems [i] is the last value written by pi in its
simulation by πs ;

12 / 50

Shared Memory Simulation

• Each simulator πs keeps a local copy smems of
the simulated shared memory;

• smems is an array of n elements, one for each
simulated process;

• smems [i] is the last value written by pi in its
simulation by πs ;

12 / 50

Shared Memory Simulation

• sim view is an array of shared atomic SWMR
registers, one for each simulator;

• πs writes it’s view smems of the simulated
shared memory in its assigned shared register
sim view[s];

• it can take an atomic snapshot of the views of
other simulators sim view[0, . . . , t] on the
simulated shared memory.

• sim view[s ′][i] is a pair containing the last
value written by pi according to simulator πs ′,
and the corresponding sequence number.

13 / 50

Shared Memory Simulation

• sim view is an array of shared atomic SWMR
registers, one for each simulator;

• πs writes it’s view smems of the simulated
shared memory in its assigned shared register
sim view[s];

• it can take an atomic snapshot of the views of
other simulators sim view[0, . . . , t] on the
simulated shared memory.

• sim view[s ′][i] is a pair containing the last
value written by pi according to simulator πs ′,
and the corresponding sequence number.

13 / 50

Shared Memory Simulation

• sim view is an array of shared atomic SWMR
registers, one for each simulator;

• πs writes it’s view smems of the simulated
shared memory in its assigned shared register
sim view[s];

• it can take an atomic snapshot of the views of
other simulators sim view[0, . . . , t] on the
simulated shared memory.

• sim view[s ′][i] is a pair containing the last
value written by pi according to simulator πs ′,
and the corresponding sequence number.

13 / 50

Shared Memory Simulation

• sim view is an array of shared atomic SWMR
registers, one for each simulator;

• πs writes it’s view smems of the simulated
shared memory in its assigned shared register
sim view[s];

• it can take an atomic snapshot of the views of
other simulators sim view[0, . . . , t] on the
simulated shared memory.

• sim view[s ′][i] is a pair containing the last
value written by pi according to simulator πs ′,
and the corresponding sequence number.

13 / 50

We need the simulation to be
coherent across simulators.

We need to ensure the
atomicity of the simulated

shared memory.

We need the simulation to be
coherent across simulators.

We need to ensure the
atomicity of the simulated

shared memory.

Safe-Agreement

A safe-agreement object offers two operations: propose(v) and
decide().

Termination Any invocation of propose by a correct process
terminates. If no process crashes while executing
propose, then any correct process invoking
decide() terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.

In a crash-free system, safe-agreement objects implement
consensus.

17 / 50

Safe-Agreement

A safe-agreement object offers two operations: propose(v) and
decide().

Termination Any invocation of propose by a correct process
terminates. If no process crashes while executing
propose, then any correct process invoking
decide() terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.

In a crash-free system, safe-agreement objects implement
consensus.

17 / 50

Safe-Agreement

A safe-agreement object offers two operations: propose(v) and
decide().

Termination Any invocation of propose by a correct process
terminates. If no process crashes while executing
propose, then any correct process invoking
decide() terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.

In a crash-free system, safe-agreement objects implement
consensus.

17 / 50

Safe-Agreement

A safe-agreement object offers two operations: propose(v) and
decide().

Termination Any invocation of propose by a correct process
terminates. If no process crashes while executing
propose, then any correct process invoking
decide() terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.

In a crash-free system, safe-agreement objects implement
consensus.

17 / 50

Safe-Agreement

1: init REG [0, . . . , n − 1]← [〈⊥, 0〉]
2: operation propose(v)
3: REG [s]← 〈v , 1〉
4: snaps ← REG .snapshot()
5: if ∃x : snaps [x].level = 2 then
6: REG [s]← 〈v , 0〉
7: else
8: REG [s]← 〈v , 2〉
9: end if

10: end operation
11: operation decide()
12: repeat
13: snaps ← REG .snapshot()
14: until ∀x : snaps [x].level 6= 1
15: x ← min {y | snaps [y] = 2}
16: return snaps [x].value
17: end operation

18 / 50

From progi ...

statei ← initi
while not decided(statei) do

val ← next write(statei)
write(val ,mem[i])
snapi ← snapshot(mem)
statei ← update state(snapi , statei)

end while
return compute output(statei)

20 / 50

... to the Simulation Thread

statei ← initi ; write sn[i]← 0; snap sn[i]← 0
while not decided(statei) do

val ← next write(statei)
simulate write(i , val ,mem[i])
snapi ← simulate snapshot(i ,mem)
statei ← update state(snapi , statei)

end while
return compute output(statei)

21 / 50

Simulating Write Operations

operation simulate write(i ,val ,mem[i])
write sn[i]← write sn[i] + 1
smems [i]← 〈val ,write sn[i]〉
sim view[s]← smems

end operation

22 / 50

Simulating Snapshots

operation simulate snapshot(i ,mem)
snap ← sim view.snapshot()
for x ∈ {1, . . . , n} do

let z be s.t. ∀y , snap[z][x].sn ≥ snap[y][x].sn
sim snap[x]← snap[z][x]

end for
snap sn[i]← snap sn[i] + 1
safe agr[i][snap sn[i]].propose(sim snap)
return safe agr[i][snap sn[i]].decide()

end operation

23 / 50

Coherence and Atomicity

• Simulators now all agree on the snapshots of
simulated processes;

• progi being deterministic, they also agree on the
remaining of their simulations (including writes).

• A simulated write is linearized at the first
moment a simulator πs writes a smems

containing this write into sim view[s].

• A simulated snapshot is linearized at the
moment the simulator that proposes it to the
safe-agreement took its corresponding snapshot
of sim view.

24 / 50

Coherence and Atomicity

• Simulators now all agree on the snapshots of
simulated processes;

• progi being deterministic, they also agree on the
remaining of their simulations (including writes).

• A simulated write is linearized at the first
moment a simulator πs writes a smems

containing this write into sim view[s].

• A simulated snapshot is linearized at the
moment the simulator that proposes it to the
safe-agreement took its corresponding snapshot
of sim view.

24 / 50

Coherence and Atomicity

• Simulators now all agree on the snapshots of
simulated processes;

• progi being deterministic, they also agree on the
remaining of their simulations (including writes).

• A simulated write is linearized at the first
moment a simulator πs writes a smems

containing this write into sim view[s].

• A simulated snapshot is linearized at the
moment the simulator that proposes it to the
safe-agreement took its corresponding snapshot
of sim view.

24 / 50

Coherence and Atomicity

• Simulators now all agree on the snapshots of
simulated processes;

• progi being deterministic, they also agree on the
remaining of their simulations (including writes).

• A simulated write is linearized at the first
moment a simulator πs writes a smems

containing this write into sim view[s].

• A simulated snapshot is linearized at the
moment the simulator that proposes it to the
safe-agreement took its corresponding snapshot
of sim view.

24 / 50

But Too Many Crashes

• A simulator can be executing propose
operations on several safe-agreement objects at
the same time (at most one per simulation
thread).

• If it crashes at that point, decide operations of
these objects may block forever for all
simulators;

• the corresponding simulated processes then stop
making progress.

25 / 50

But Too Many Crashes

• A simulator can be executing propose
operations on several safe-agreement objects at
the same time (at most one per simulation
thread).

• If it crashes at that point, decide operations of
these objects may block forever for all
simulators;

• the corresponding simulated processes then stop
making progress.

25 / 50

But Too Many Crashes

• A simulator can be executing propose
operations on several safe-agreement objects at
the same time (at most one per simulation
thread).

• If it crashes at that point, decide operations of
these objects may block forever for all
simulators;

• the corresponding simulated processes then stop
making progress.

25 / 50

All we need is local
synchronization!

We can easily force a thread
never to be in more than one

propose operation.

All we need is local
synchronization!

We can easily force a thread
never to be in more than one

propose operation.

Mutual Exclusion Between Local Threads

operation simulate snapshot(i ,mem)
snap ← sim view.snapshot()
for x ∈ {1, . . . , n} do

let z be s.t. ∀y , snap[z][x].sn ≥ snap[y][x].sn
sim snap[x]← snap[z][x]

end for
snap sn[i]← snap sn[i] + 1
enter mutex
safe agr[i][snap sn[i]].propose(sim snap)
leave mutex
return safe agr[i][snap sn[i]].decide()

end operation

28 / 50

A simulator is never in more
than one propose.

The crash of a simulator can
prevent the progress of at most

one simulated process.

A simulator is never in more
than one propose.

The crash of a simulator can
prevent the progress of at most

one simulated process.

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:

• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:

• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:

• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:

• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:
• a deterministic program for each simulated process;

• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:
• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

BG-Simulation

• We now have a protocol for t + 1 asynchronous simulators
sharing memory.

• t of them may crash.

• They can simulate the execution of a protocol between n > t
asynchronous processes sharing a memory with at most t
crashes.

• They need to be provided with:
• a deterministic program for each simulated process;
• an input for each simulated process.

• The correct simulators can then compute an output for each
simulated process that do not block in the simulation.

30 / 50

Tasks

Tasks are distributed functions defined by a triple (I,O, δ).

• I denotes the set of input configurations,

• Any I ∈ I is a vector of inputs, one for each process.

• O is the set of possible output configurations.

• O ∈ O is a vector of outputs, one for each process, possibly
with some missing values (due to crashes).

• δ : I → 2O is a function that, to any input configuration
I ∈ I, associates the set δ(I) ⊆ O of the output
configurations that are allowed when starting from I .

31 / 50

Tasks

Tasks are distributed functions defined by a triple (I,O, δ).

• I denotes the set of input configurations,

• Any I ∈ I is a vector of inputs, one for each process.

• O is the set of possible output configurations.

• O ∈ O is a vector of outputs, one for each process, possibly
with some missing values (due to crashes).

• δ : I → 2O is a function that, to any input configuration
I ∈ I, associates the set δ(I) ⊆ O of the output
configurations that are allowed when starting from I .

31 / 50

Tasks

Tasks are distributed functions defined by a triple (I,O, δ).

• I denotes the set of input configurations,

• Any I ∈ I is a vector of inputs, one for each process.

• O is the set of possible output configurations.

• O ∈ O is a vector of outputs, one for each process, possibly
with some missing values (due to crashes).

• δ : I → 2O is a function that, to any input configuration
I ∈ I, associates the set δ(I) ⊆ O of the output
configurations that are allowed when starting from I .

31 / 50

Tasks

Tasks are distributed functions defined by a triple (I,O, δ).

• I denotes the set of input configurations,

• Any I ∈ I is a vector of inputs, one for each process.

• O is the set of possible output configurations.

• O ∈ O is a vector of outputs, one for each process, possibly
with some missing values (due to crashes).

• δ : I → 2O is a function that, to any input configuration
I ∈ I, associates the set δ(I) ⊆ O of the output
configurations that are allowed when starting from I .

31 / 50

Tasks

Tasks are distributed functions defined by a triple (I,O, δ).

• I denotes the set of input configurations,

• Any I ∈ I is a vector of inputs, one for each process.

• O is the set of possible output configurations.

• O ∈ O is a vector of outputs, one for each process, possibly
with some missing values (due to crashes).

• δ : I → 2O is a function that, to any input configuration
I ∈ I, associates the set δ(I) ⊆ O of the output
configurations that are allowed when starting from I .

31 / 50

Decision Tasks

• Decision tasks do not depend on inputs and outputs
assignment.

• δ(I) only depends on the set of values in I .

• If I ′ only contains values of I then δ(I ′) ⊆ δI .
• If O ∈ δ(I), then any vector O ′ containing only values

appearing in O also belongs to δ(I).

• Consensus, k-set agreement are decision tasks, renaming isn’t.

32 / 50

Decision Tasks

• Decision tasks do not depend on inputs and outputs
assignment.

• δ(I) only depends on the set of values in I .

• If I ′ only contains values of I then δ(I ′) ⊆ δI .
• If O ∈ δ(I), then any vector O ′ containing only values

appearing in O also belongs to δ(I).

• Consensus, k-set agreement are decision tasks, renaming isn’t.

32 / 50

Decision Tasks

• Decision tasks do not depend on inputs and outputs
assignment.

• δ(I) only depends on the set of values in I .

• If I ′ only contains values of I then δ(I ′) ⊆ δI .

• If O ∈ δ(I), then any vector O ′ containing only values
appearing in O also belongs to δ(I).

• Consensus, k-set agreement are decision tasks, renaming isn’t.

32 / 50

Decision Tasks

• Decision tasks do not depend on inputs and outputs
assignment.

• δ(I) only depends on the set of values in I .

• If I ′ only contains values of I then δ(I ′) ⊆ δI .
• If O ∈ δ(I), then any vector O ′ containing only values

appearing in O also belongs to δ(I).

• Consensus, k-set agreement are decision tasks, renaming isn’t.

32 / 50

Decision Tasks

• Decision tasks do not depend on inputs and outputs
assignment.

• δ(I) only depends on the set of values in I .

• If I ′ only contains values of I then δ(I ′) ⊆ δI .
• If O ∈ δ(I), then any vector O ′ containing only values

appearing in O also belongs to δ(I).

• Consensus, k-set agreement are decision tasks, renaming isn’t.

32 / 50

Any decision task that we can
solve with n processes and t
crashes, we can solve it with
t + 1 processes and t crashes.

The study of decision tasks
computability can be reduced
to the n − 1-resilient case.

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.

• Use n safe-agreements to decide on how to map simulators
inputs on processes.

• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.

• Use n safe-agreements to decide on how to map simulators
inputs on processes.

• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.

• Use n safe-agreements to decide on how to map simulators
inputs on processes.

• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.
• Use n safe-agreements to decide on how to map simulators

inputs on processes.

• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.
• Use n safe-agreements to decide on how to map simulators

inputs on processes.
• Simulate the protocol.

• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.
• Use n safe-agreements to decide on how to map simulators

inputs on processes.
• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.
• Use n safe-agreements to decide on how to map simulators

inputs on processes.
• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

Example

• t-set agreement is impossible to solve among t + 1 processes
with t crashes.

• For any n > t, suppose we have a t-resilient algorithm for
t-set agreement.

• We can then build a t-resilient algorithm for t + 1
processes/simulators.
• Use n safe-agreements to decide on how to map simulators

inputs on processes.
• Simulate the protocol.
• Decide any value decided in the simulation.

• This solves t-set agreement between our t + 1 simulators.

• Contradiction, so there is no such algorithm.

35 / 50

What matters is the number of
crashes, not the number of

processes.

References

• Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG
distributed simulation algorithm. Distributed Computing
14(3), 127146 (2001).

• Gafni, E.: The Extended BG Simulation and the
Characterization of t-Resiliency. STOC 2009.

• Damien Imbs, Michel Raynal: Visiting Gafni’s Reduction
Land: From the BG Simulation to the Extended BG
Simulation. SSS 2009.

37 / 50

References

• Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG
distributed simulation algorithm. Distributed Computing
14(3), 127146 (2001).

• Gafni, E.: The Extended BG Simulation and the
Characterization of t-Resiliency. STOC 2009.

• Damien Imbs, Michel Raynal: Visiting Gafni’s Reduction
Land: From the BG Simulation to the Extended BG
Simulation. SSS 2009.

37 / 50

References

• Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG
distributed simulation algorithm. Distributed Computing
14(3), 127146 (2001).

• Gafni, E.: The Extended BG Simulation and the
Characterization of t-Resiliency. STOC 2009.

• Damien Imbs, Michel Raynal: Visiting Gafni’s Reduction
Land: From the BG Simulation to the Extended BG
Simulation. SSS 2009.

37 / 50

Table of Contents

1 BG-Simulation
Problem Statement
Simulation Algorithm
Safe-Agreement
Putting Pieces Together
Computability Consequences

2 Renaming
Problem Statement
Renaming and Crashes
A Splitter-based Algorithm
A Snapshot-based Algorithm

38 / 50

The Renaming Problem

• n asynchronous processes sharing atomic
registers;

• up to n − 1 of them may crash;

• they are given names in a large namespace
{−N , . . . ,N},N >> n;

• k-renaming provides them with a get name

operation that returns a new unique name in a
smaller namespace {1, . . . , k}.

39 / 50

The Renaming Problem

• n asynchronous processes sharing atomic
registers;

• up to n − 1 of them may crash;

• they are given names in a large namespace
{−N , . . . ,N},N >> n;

• k-renaming provides them with a get name

operation that returns a new unique name in a
smaller namespace {1, . . . , k}.

39 / 50

The Renaming Problem

• n asynchronous processes sharing atomic
registers;

• up to n − 1 of them may crash;

• they are given names in a large namespace
{−N , . . . ,N},N >> n;

• k-renaming provides them with a get name

operation that returns a new unique name in a
smaller namespace {1, . . . , k}.

39 / 50

The Renaming Problem

• n asynchronous processes sharing atomic
registers;

• up to n − 1 of them may crash;

• they are given names in a large namespace
{−N , . . . ,N},N >> n;

• k-renaming provides them with a get name

operation that returns a new unique name in a
smaller namespace {1, . . . , k}.

39 / 50

Motivation

• Using shorter names spares bandwidth, memory,
storage, etc.

• The ”big” names are just a way to break
symmetry, renaming protocols allow to
dynamically compute unique identifiers.

• Several problems can be reduced to renaming
(e.g. picking a unique transmitting frequency).

40 / 50

Motivation

• Using shorter names spares bandwidth, memory,
storage, etc.

• The ”big” names are just a way to break
symmetry, renaming protocols allow to
dynamically compute unique identifiers.

• Several problems can be reduced to renaming
(e.g. picking a unique transmitting frequency).

40 / 50

Motivation

• Using shorter names spares bandwidth, memory,
storage, etc.

• The ”big” names are just a way to break
symmetry, renaming protocols allow to
dynamically compute unique identifiers.

• Several problems can be reduced to renaming
(e.g. picking a unique transmitting frequency).

40 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

Renaming and Crashes

41 / 50

• Because of asynchrony and crashes, processes have to change
name after a conflict.

• We need to break symmetry between conflicting processes.

Adaptive Renaming

Ideally the protocol should be adaptive: the largest name obtained
should depend on the actual number of participating processes, not
on the total number of processes.

42 / 50

• Because of asynchrony and crashes, processes have to change
name after a conflict.

• We need to break symmetry between conflicting processes.

Adaptive Renaming

Ideally the protocol should be adaptive: the largest name obtained
should depend on the actual number of participating processes, not
on the total number of processes.

42 / 50

• Because of asynchrony and crashes, processes have to change
name after a conflict.

• We need to break symmetry between conflicting processes.

Adaptive Renaming

Ideally the protocol should be adaptive: the largest name obtained
should depend on the actual number of participating processes, not
on the total number of processes.

42 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:

• at most x − 1 obtain right;
• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:

• at most x − 1 obtain right;
• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:

• at most x − 1 obtain right;
• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:
• at most x − 1 obtain right;

• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:
• at most x − 1 obtain right;
• at most x − 1 obtain down;

• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:
• at most x − 1 obtain right;
• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

The Splitter Object

• The splitter object offers a single operation direction.

• direction returns right down or stop.

• If x processes invoke direction:
• at most x − 1 obtain right;
• at most x − 1 obtain down;
• at most one obtains stop.

• Any invocation to direction by a correct process terminates.

43 / 50

Splitter-based Renaming

operation new name(id)
d ← 1; r ← 1; move ← down
while move 6= stop do move ← S [d , r].direction(id);

if move = right then
r ← r + 1

else if move = down then
d ← d + 1

end if
end while
return (d + r − 1)(d + r − 2)/2 + r

end operation

45 / 50

Great! But we can do even
better.

Snapshot-based Renaming

operation new name(id)
name ← 1
while true do

MEM[i]← 〈id , name〉
snap ← MEM.snapshot()
if ∀j 6= i : snap[j].name 6= name then

return name
else

free ← names of {1, . . . ,∞} that do not appear in snap
rank ← rank of id in the set of identifiers appearing in snap
name ← name at position rank in free

end if
end while

end operation

48 / 50

Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50

Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50

Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50

Proof Elements

Unicity After deciding their name, a process lets it in its
register.

No snapshot occurring after its last write can lead
to another process deciding the same name.

Termination If a set of processes never decides, their rank
variables will stabilize on distinct values.

The one with the smallest rank is then eventually
alone to propose its new name. Contradiction.

49 / 50

Wrap-Up

• BG-simulation allows to simulate larger systems
while preserving the number of crashes.

• Renaming algorithms distribute new unique
names from a smaller namespace.

50 / 50

Wrap-Up

• BG-simulation allows to simulate larger systems
while preserving the number of crashes.

• Renaming algorithms distribute new unique
names from a smaller namespace.

50 / 50

	BG-Simulation
	Problem Statement
	Simulation Algorithm
	Safe-Agreement
	Putting Pieces Together
	Computability Consequences

	Renaming
	Problem Statement
	Renaming and Crashes
	A Splitter-based Algorithm
	A Snapshot-based Algorithm

