
Concurrent Algorithms September 29, 2015

Exercise 2

Problem 1. A splitter is a shared object that has only one operation, called splitter, that can return stop, left
or right. Every splitter object ensures the following:

1. If a single process executes splitter, then the process is returned stop;

2. If two or more processes execute splitter, then not all of them get the same output value; and

3. At most one process is returned stop.

Your task is to implement a wait-free, atomic splitter object using only atomic (multi-valued, MRMW) reg-
isters.

Problem 2. The snapshot algorithm presented in the lecture has step complexity that is a function of the
number of processes n. That is, in the worst case, a process needs f (n) steps to complete a single update or
scan operation, where f is some function.

Imagine a situation where n is very large but usually only a few processes use a snapshot object. In such
a scenario, it would be best to have a snapshot implementation which step complexity is not a function of
n but of the number of processes that use the shared object.

Your task is to write such an algorithm. More precisely, you should devise an algorithm for a (wait-free,
atomic) snapshot object such that the step complexity of its update and scan operations is f (k), where k is
the number of processes that ever invoked either of the operations (in the current execution) and f is some
function independent of n.

p-1


