
Concurrent Algorithms December 1, 2015

Exercise 9

Problem 1. Prove the correctness of the Adopt-Commit implementation from the lecture.

Problem 2. Prove the correctness of the adopt-commit-based consensus from the lecture in the two fol-
lowing cases:

a) When all processes verify leaderi = i forever. The algorithm is only obstruction-free in this case.

b) When there is a correct process such that, eventually, any correct process pj verifies leaderj = i forever.
The algorithm is then wait-free.

Problem 3. A k-set-agreement object is a generalization of a consensus object in which processes could
decide up to k different values. Formally, k-set-agreement satisfies the following properties:

1. Validity: Values decided by each process are the values proposed some processes.

2. Agreement: At most k different values could be decided.

3. Termination: Every correct process eventually decides a value.

Your task is to show that k-set-agreement and k-consensus (or k-simultaneous agreement), given in the
class, are equivalent. That is, you have to show that one implements the other.

Hint: When implementing k-consensus using k-set-agreement, an algorithm that solves the problem is the
following:

1: function KSC.PROPOSE(v1, . . . , vk)
2: Vi ← [v1, . . . , vk]
3: dVi ← kSA.PROPOSE(Vi)
4: REG[i]← dVi
5: snapi ← REG.snapshot()
6: ci ← number of distinct (non-⊥) vectors in snapi
7: di ←minimum (non-⊥) vector in snapi
8: return⟨ci, di[ci]⟩
9: end function

Where REG[0, . . . , n− 1] in an array of single-writer multi-readers atomic registers initialized at⊥. Pro-
cesses write atomically a vector of values in their register (Line 4). REG.snapshot() returns an atomic snapshot
of this array of registers. Consequently, snapi[0, . . . , n− 1] is an array of vectors, possibly containing ⊥ val-
ues for some indices. We suppose that there is an order on the set of values that can be proposed, and we
use the induced lexicographic order on vectors at Line 7.

Your task is then to prove that the algorithm implements a k-simultaneous consensus from k-set agree-
ment objects and atomic registers.

p-1



Problem 4. Below is an algorithm that implements a single state machine replication using consensus
shared objects:
Local:
sM // a copy of the state machine
Commands // a list of command
ready // binary register (initially true)

Shared:
Consensus // a list of shared consensus objects

while(true) {
if ready then c = Commands.next()

cons = Consensus.next()

c’ = cons.propose(c)

sM.perform(c’)

if c’ == c then ready = true

else ready = false

}

The algorithm ensures the following correctness properties:

1. Validity: If a process pi performs command c, then c was issued by some process pj and pi performed
every command issued by pj before c.

2. Ordering: If a process performs command c without having performed command c′, then no process
performs c′ without having performed c.

3. Progress: Every correct process performs an infinite number of commands on the state machine.

However the algorithm is not fair, i.e. it does not ensure the following property:

• Fairness: If a correct process issues command c, then it eventually performs c on the state machine.

Your task:

1. Show why the algorithm does not ensure fairness, i.e. show an execution violating the property.

2. Modify the algorithm so that the resulting algorithm would ensure fairness.

p-2


