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Adopt-commit is a one-shot distributed object.

• It offers the operation propose(value),

• returns 〈tag , value〉, tag ∈ {commit, adopt}.

Validity Any returned value has been proposed.
If a process pi invokes propose(v) and returns before
any other process pj invokes propose(v ′) with v ′ 6= v ,
then only 〈commit, v〉 is returned.

Agreement If a process returns 〈commit, v〉, the only pairs that
can be returned are 〈commit, v〉 and 〈adopt, v〉.

Termination An invocation of propose() by a correct process
terminates.
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Adopt-commit Implementation

• n processes

• Two arrays of n SWMR atomic registers A[j ] and B[j ],
0 ≤ j ≤ n − 1

• All registers initialized to the special value ⊥
• Two local sets ai and bi
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Adopt-commit Implementation

1: operation AC.propose(vi )
2: A[i ]← vi ; ai ← ∅
3: for j from 0 to n − 1 do
4: tmpi ← A[j ]
5: if tmpi 6= ⊥ then ai ← ai ∪ {tmpi} end if
6: end for
7: if ai = {v} then B[i ]← 〈one, v〉 else B[i ]← 〈more, vi 〉 end if
8: bi ← ∅
9: for j from 0 to n − 1 do
10: tmpi ← B[j ]
11: if tmpi 6= ⊥ then bi ← bi ∪ {tmpi} end if
12: end for
13: if bi = {〈one, v〉} then
14: return(〈commit, v〉)
15: else if ∃〈one, v〉 ∈ bi then
16: return(〈adopt, v〉)
17: else
18: return(〈adopt, vi 〉)
19: end if
20: end operation
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Elements of Proof

• Validity and termination are straightforward.

• Agreement: at most one value can appear with the tag one.
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Adopt-commit-based Consensus

• Implements consensus.

• Implementation stripped in sequence of asynchronous rounds.

• Based on an infinite array of Adopt-commit objects AC [r ],
r ≥ 0.

• A shared MWMR register DEC initialized to ⊥.
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Adopt-commit-based Consensus

1: operation CONS.propose(vi )
2: esti ← vi ; ri ← 0
3: while DEC = ⊥ do
4: if leaderi = i then
5: ri ← ri + 1
6: 〈tagi , vali 〉 ← AC [ri ].propose(esti )
7: if tagi = commit then
8: DEC ← vali
9: else

10: esti ← vali
11: end if
12: end if
13: end while
14: return DEC
15: end operation
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Elements of Proof

Validity • Straightforward.

Agreement • No two processes decide differently at the same
round.

• After the first round r at which a process
decides a value v , the estimates of all processes
in the following rounds r ′ > r are all v .

Termination • If eventually one and only one correct process
verifies leaderi = i then any correct process
eventually decides.

• If all processes verify leaderi = i forever, the
algorithm is only obstruction-free.
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Universality in Sequential Computing

Universality of the Turing Machine
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Universality in Distributed Computing

Consensus is universal
Any object O following a sequential specification can be
implemented, in a wait-free and linearizable manner, from atomic
registers and consensus objects.1

If we know how to solve consensus in our system, we can
implement a highly available Turing machine.

1Maurice Herlihy: Wait-Free Synchronization. ACM TOPLAS (1991)
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Universality without Consensus

What kind of universality can we achieve
without consensus?
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Universality without Consensus

A weaker agreement: k-set agreement.

Interface Offers a propose(v) operation that returns a value.

Validity Decided values are proposed values.

Termination Any invocation of propose by a correct process
terminates.

Agreement No more than k different values are decided in the
system.
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Universality without Consensus

Another generalization of consensus: k-simultaneous consensus.

Interface Offers a propose(v1, . . . , vk) operation that returns
a pair (index , value), index ∈ {1, . . . , k}.

Validity If a propose operation returns (i , v), then a process
invoked propose(v1, . . . , vk) with vi = v .

Termination Any invocation of propose by a correct process
terminates.

Agreement If two propose operations return (i , v) and (i ′, v ′)
with i = i ′, then v = v ′.
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Universality without Consensus

• Both 1-set agreement and 1-simultaneous consensus are
equivalent to consensus.

• k-set agreement and k simultaneous consensus are equivalent
in asynchronous shared memory systems in presence of an
arbitrary number of crashes.

• k-set agreement cannot be implemented in asynchronous
shared memory systems prone to t ≥ k crashes.
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Universality without Consensus

Generalized Universality

From k-simultaneous consensus objects and registers, it is possible
to implement k shared objects of which at least one is highly
available2.

2Gafni E. and Guerraoui R., Generalizing universality. CONCUR (2011)
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From Standard Universal Construction...

1: while true do
2: c ← commands.next()
3: CONS ← consensus.next()
4: c ′ ← CONS .propose(c)
5: sm.perform(c ′)
6: end while

18 / 43



A First Naive Approach

1: while true do
2: for j from 1 to k do
3: c[j ]← commands[j ].next()
4: end for
5: kSC ← k-sim-cons.next()
6: (i , dc)← kSC .propose(c[1], . . . , c[k])
7: sm[i ].perform(dc)
8: end while

19 / 43



Problem with Safety
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Problem with Safety

• Each process needs to keep track of the operations applied on
the different machines.

• They need to communicate the commands they apply and to
retrieve the commands of the other processes.

• Adopt-commit objects may help...
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Enforcing Safety

1: while true do
2: for j from 1 to k do
3: if c[j ] = ⊥ then c[j ]← commands[j ].next() end if
4: end for
5: kSC ← k-sim-cons.next()
6: (i , dc)← kSC .propose(c[1], . . . , c[k])
7: for j from 1 to k do
8: AC [j ]← adopt-commit[j ].next()
9: if i = j then

10: 〈tag [j ], ac com[j ]〉 ← AC [j ].propose(dc)
11: else
12: 〈tag [j ], ac com[j ]〉 ← AC [j ].propose(c[j ])
13: end if
14: if tag [j ] = commit then
15: sm[j ].perform(ac com[j ]); c[j ]← ⊥
16: else
17: c[j ]← ac com[j ]
18: end if
19: end for
20: end while
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Problem with Liveness

p1 (1, c11 )← kSC .propose(c11 , c
1
2 )

p2 (2, c22 )← kSC .propose(c21 , c
2
2 )

p1||p2 AC [1].propose(c11 )||AC [1].propose(c21 )

p1||p2 AC [2].propose(c12 )||AC [2].propose(c22 )

The four adopt-commit can return 〈adopt,−〉...
It can be repeated forever without any progress.
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Exploit Success First

Adopt-commit guarantees a commit if a propose
terminates before any other value is proposed.

The k-simultaneous consensus does not return more
than one command per machine.

Exploit Success First

Let’s launch the processes first on the machines
returned by the k-simultaneous consensus.
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Exploit Success First

1: while true do
2: for j from 1 to k do
3: if c[j ] = ⊥ then c[j ]← commands[j ].next() end if
4: end for
5: kSC ← k-sim-cons.next()
6: 〈i , dc〉 ← kSC .propose(c[1], . . . , c[k])
7: AC [i ]← adopt-commit[i ].next()
8: 〈tag [i ], ac com[i ]〉 ← AC [i ].propose(dc)
9: for j from 1 to k, j 6= i do

10: AC [j ]← adopt-commit[j ].next()
11: 〈tag [j ], ac com[j ]〉 ← AC [j ].propose(c[j ])
12: if tag [j ] = commit then
13: sm[j ].perform(ac com[j ]); c[j ]← ⊥
14: else
15: c[j ]← ac com[j ]
16: end if
17: end for
18: end while
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Exploit Success First

• If a process px gets 〈i , dc〉 from the k-simultaneous consensus
and does not commit dc to AC [i ],

• then another process py concurrently proposed another value
to AC [i ].

• py necessarily (a) got a pair 〈i ′, dc ′〉 with i 6= i ′ from the
k-simultaneous consensus,

• and (b) already finished executing AC [i ′].propose.

• If py didn’t commit, then another process concurrently
accessed AC [i ′].

• But it cannot be px !

• Now there is at least a commit per round.
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Still some Safety Problems

We now commit at each round and each process at least adopts
each of the committed values. But commands can be skipped.

p1 commits and apply a command c on machine m

p2 adopts c for machine m

p1 proposes c ′ for machine m

p1 commits c ′ for machine m

p2 commits/adopt c ′ for m?
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Maintaining a History

We can solve the problems of skipped and doubled commands by:

• Piggy-backing the previous command in the currently
proposed one.

• When a command is committed, the local history is checked
to verify

(a) if the committed command has not already been
applied;

(b) if the previous command has already been
applied, if not, apply both commands.

• Histories can also be exchanged directly through the shared
memory.3

3Michel Raynal, Julien Stainer, Gadi Taubenfeld: Distributed Universality.
OPODIS (2014)
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Generalized Universality

From k-simultaneous consensus objects and atomic
register, it is possible to simulate k state-machines

such that at least one always progresses.
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Extensions

• The current algorithm is non-blocking, some processes may
never apply any command to the machines.

• It can become wait-free by the use of helping:

• Processes write in shared memory the commands they plan to
execute on the machines.

• While deciding the next command to apply on a machine m,
processes check the number of commands nc that have been
applied to m.

• If process px with x = nc mod n has written a command that
has not been executed, then other processes propose it as
(nc + 1)-th command to execute on m.
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Extensions

• When there is no contention (e.g. a process is far ahead), the
use of the k-simultaneous consensus object can be avoided, at
the cost of more adopt-commit objects.

• To guarantee that several machines progress, the
k-simultaneous consensus objects can be replaced by more
powerful objects.
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Safe-Agreement

A safe-agreement object offers two operations: propose(v) and
decide().

Termination Any invocation of propose by a correct process
terminates. If no process crashes while executing
propose, then any correct process invoking
decide() terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.

In a crash-free system, safe-agreement objects implement
consensus.
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Safe-Agreement

1: init REG [0, . . . , n − 1]← [〈⊥, 0〉]
2: operation propose(v)
3: REG [i ]← 〈v , 1〉
4: snapi ← REG .snapshot()
5: if ∃x : snapi [x ].level = 2 then
6: REG [i ]← 〈v , 0〉
7: else
8: REG [i ]← 〈v , 2〉
9: end if

10: end operation
11: operation decide( )
12: repeat
13: snapi ← REG .snapshot()
14: until ∀x : snapi [x ].level 6= 1
15: x ← min {y | snapi [y ] = 2}
16: return snapi [x ].value
17: end operation
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BG-Simulation

The BG-Simulation allows to wait-free simulate a larger system
while preserving the number of crashes.

• t + 1 simulators q0, . . . , qt among which up to t may crash.

• n simulated processes p0, . . . , pn−1 communicating by writes
and snapshots.

• Each simulator simulates in parallel each of the simulated
processes.

• They use the shared memory available to the simulators to
simulate writes and snapshots of the simulated processes.

To preserve coherence, simulators have to agree on
the snapshots taken by the simulated processes.
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BG-Simulation

1: init ri ← 1
2: while pi not decided do
3: simulate its ri -th write on behalf of pi
4: simulate its ri -th snapshot on behalf of pi
5: propose this snapshot to the ri -th safe-agreement object

associated to pi
6: decide on a snapshot from this safe-agreement object
7: compute the new state of pi
8: ri ← ri + 1
9: end while
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BG-Simulation

• Simulators agree on the state of simulated processes

• But the crash of a simulator can block more
than one simulated process.
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BG-Simulation

1: init ri ← 1
2: while pi not decided do
3: simulate its ri -th write on behalf of pi
4: simulate its ri -th snapshot on behalf of pi
5: enter mutex
6: propose this snapshot to the ri -th safe-agreement object

associated to pi
7: exit mutex
8: decide on a snapshot from this safe-agreement object
9: compute the new state of pi

10: ri ← ri + 1
11: end while
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BG-Simulation

• Thanks to the mutex, a simulator never participates to more
than one safe-agreement propose operation.

• The crash of a simulator consequently blocks at
most one simulated process.
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Computability Consequences

• Consensus is impossible in a system of 2 processes with 1
crash
=⇒ consensus is impossible in a system of 100 processes

with 1 crash.

• k-set agreement is impossible in a system of k + 1 processes
with k crashes
=⇒ k-set agreement is impossible in a system of 100

processes with k crashes.
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What matters in a system is not the
number of processes but the
maximum number of crashes.
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Wrap-Up

• Adopt-commit and adopt-commit-based
consensus

• Universal construction from k-simultaneous
consensus objects and registers

• BG-simulation
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