
Concurrent Algorithms 2015

Midterm Exam

Solutions

December 1st, 2015

Time: 1h45

Instructions:

• This midterm is ”closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known results from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you upon request by the TAs.

Good luck!

Problem Max Points Score
1 2

2 3

3 3

4 2

Total 10

1

2

Problem 1

A binary consensus shared object has a single operation propose that takes a value v equal to 0 or 1 as an
argument, and returns 0 or 1. When a process pi invokes propose(v), we say that pi proposes value v.
When pi has returned value v′ from propose(v), we say that pi decides value v′ (notice that v′ does not
have to be equal to v). A binary consensus object satisfies the following properties (for binary values):

Agreement No two processes decide different values.

Validity The value decided is one of the values proposed.

Your task is to show that with sufficiently many binary consensus shared objects and m-valued atomic
registers one can implement an m-valued consensus shared object. An m-valued consensus shared object is
similar to the binary consensus object, except that it allows processes to propose (and consequently decide)
among m values. Explain why your algorithm satisfies the Agreement and Validity properties.

Solution

We agree on the value one bit at a time. The processes share an n-element array of atomic registers, and
an array of K consensus objects, where K is the number of bits necessary to encode the largest possible
proposed value. Each process i announces its input in the i-th index of a shared array of m-valued
atomic registers. At any time each process has a preference, the value it is trying to convince the others
to decide.

Initially, each process’s preference is its input. At round i, each process uses the i-th bit of its
preference as input to the i-th binary consensus object. If it wins, it continues to the i + 1-th binary
consensus object with the same preference. If it loses, it scans the announcement array for an input
that agrees with all the binary values decided in prior consensus rounds, and uses that value for its
preference in the next round.

3

4

Problem 2

Consider the following incorrect algorithm invoked by process i:

uses: label[1, . . . , N] — shared array of registers, f lag[1, . . . , N] — shared array of boolean registers
initially: label[1, . . . , N]← 0, f lag[1, . . . , N]← false

1 upon locki() do
2 label[i]← max(label[1], . . . , label[N]) + 1
3 f lag[i]← true
4 while (∃k 6= i)(f lag[k] and ((label[k], k)� (label[i], i))) do
5 ;

6 upon unlock() do
7 f lag[i]← false

Where (label[k], k)� (label[i], i)) is true in the following two cases:

• label[k] < label[i], or

• label[k] = label[i] and k < i

This algorithm incorrectly implements the bakery lock algorithm. Its purpose is to ensure the First-
Come-First-Served (FCFS) and mutual exclusion properties. This means that when a process gets a label,
it waits until no process with an earlier label is trying to enter the critical section protected by the lock
before entering (FCFS), and that only one process can be in the critical section protected by the lock at
any point in time (mutual exclusion). Your tasks are the following:

a) Show that the algorithm presented is incorrect and correct the error(s).

b) We saw safe, regular and atomic registers in the course lectures. What type of register is the
minimum necessary for the correct bakery algorithm to satisfy both the FCFS and mutual exclusion
properties? Explain why.

c) We define a new wraparound register which is atomic but also has the following property: there is
a value v such that adding 1 to v yields 0 and not v + 1. If we use wraparound registers for the
correct Bakery algorithm’s variables, does the algorithm still satisfy the two properties (FCFS and
mutual exclusion)? Explain why.

Solution

Step Process 1 Process 2

1 label[1].Read()→ 0
2 label[2].Read()→ 0
3 label[1]← 1
4 label[1].Read()→ 1
5 label[2].Read()→ 0
6 label[2]← 2
7 f lag[2]← true
8 while is false
9 f lag[1]← true

10 while is false
11

Table 1: Possible execution for the incorrect Bakery algorithm.

5

a) The algorithm is incorrect. Suppose the execution presented in Table 1. At step 9, process 2 has
entered the critical section before process 1, breaking the FCFS property. At step 11, both processes
are in the critical section. Thus, the algorithm does not preserve mutual exclusion. In order to fix
the algorithm, we simply swap lines 2 and 3 of the presented algorithm. The correct algorithm is
the following:

uses: label[1, . . . , N] — shared array of registers, f lag[1, . . . , N] — shared array of boolean registers
initially: label[1, . . . , N]← 0, f lag[1, . . . , N]← false

1 upon lock() do
2 f lag[i]← true
3 label[i]← max(label[1], . . . , label[N]) + 1
4 while (∃k 6= i)(f lag[k] and (label[k], k)� (label[i], i))) do
5 ;

6 upon unlock() do
7 f lag[i]← false

b) The Bakery lock algorithm does not preserve mutual exclusion using safe registers. Suppose we
have two processes, 1 and 2, both with labels equal to 1. Both processes proceed in parallel and
process 2 enters its waiting loop first, reading label[1] at the same time process 1 writes to it.
Process 2 can read any arbitrary value (including a value larger than 1) and both processes could
end up entering the critical section at the same time.

The algorithm ensures both the FCFS and mutual exclusion properties when using regular registers.
Suppose processes 1 and 2 get labels j and j′ with j < j′. Process 2 is faster and reaches the while
loop and reads label[1] in the while loop at the same time process 1 writes to it. Process 2 can only
read the value being written or the previous one, both of which are less or equal to j′, so it will
not enter the critical section, maintaining the FCFS property. For the mutual exclusion property,
suppose processes 1 and 2 are concurrently in the critical section. Let labeling1 and labeling2 be
the last respective sequences of acquiring new labels prior to entering the critical section. Suppose
that (label[1], 1) � (label[2], 2). When process 2 successfully completed the test in its waiting
section, it must have read that f lag[1] was false or that (label[2], 2) � (label[1], 1). If process 2
read that f lag[1] was false, then that read preceded or overlapped process 1?s write to f lag[1],
which preceded process 1?s read of f lag[2] and write to f lag[1], implying that label[1] > label[2],
a contradiction. So process 2 observed that (label[2], 2)� (label[1], 1). Since process 1 never wrote
such a value, process 2 must have read label[1] at the time process 1 was updating it. But process
2 must have seen either the value being written, or the previous value, both of which are less than
or equal to label[2], a contradiction. Consequently, regular registers are the minimum required for
the correct Bakery algorithm to ensure both properties

c) If we use wraparound registers for the correct Bakery algorithm, the algorithm does not satisfy
FCFS, since a process can get a smaller label than a previous one, entering the loop first. It also
does not satisfy mutual exclusion, since getting a label of 0 can cause a process to enter the critical
section while the process with label v is already in it.

6

Problem 3

In the exercise sessions we showed that it is impossible to implement a consensus object using (any
number of) base Compare-and-Swap (C&S) objects of which t can be non-responsive. Assume the
responsive failure model in which if a base object fails (returns

⊗
), the object will keep returning

⊗
for every invocation later. Is it possible to implement a consensus object using m base C&S objects of
which t can fail in a responsive manner? Explain why.

We remind you that a C&S object provides one atomic operation CAS with the following sequential
specification:

uses: current value — local variable
initially: current value← ⊥

1 upon CAS(old value, new value) do
2 ret← current value
3 if old value = current value then
4 current value← new value

5 return ret

Hint: Choose an m such that m > t.

Solution

To solve the problem we need (at least) m = t + 1 base C&S objects, so that there is at least one object
that is non-faulty. Then, the idea behind the solution is to use all m C&S objects and according to the
return value of each object, either adopt a new value, or continue with the previous one.

uses: cas array[1, . . . , m] — shared array of m C&S objects
initially: cas array[1, . . . , m]← ⊥

1 upon propose(value) do
2 ret← value
3 i← 1
4 while i ≤ m do
5 r ← cas array[i].CAS(⊥, ret)
6 if r 6= ⊗

and r 6= ⊥ then
7 ret← r

8 i← i + 1

9 return ret

The intuition of this algorithm is very simple: the value that will be put on the (for sure) non-faulty
C&S will be the one decided, cause every process will adopt this value.

7

8

Problem 4

As seen in the course lectures, a snapshot shared object provides two operations, update() and scan() and
maintains an array x of size n. The sequential specification of a snapshot object is the following:

uses: x[1, . . . , M] — array of registers,
initially: x[1, . . . , M]← ⊥

1 upon update(i, v) do
2 x[i]← v
3 return ok

4 upon scan() do
5 return x[1, . . . , M]

We present below a wait-free implementation of the snapshot object, as presented in the course
lectures:

uses: x[1, . . . , M] — array of registers,
initially: x[1, . . . , M]← ⊥

1 upon update(i, v) do
2 ts← ts + 1
3 x[i].write(v, ts, sel f .scan())
4 return ok

5 upon collect() do
6 for i← 1 to M do
7 ret[i]← x[i].read()

8 return ret[1, . . . , M]

9 upon scan() do
10 t1← sel f .collect()
11 t2← t1
12 while true do
13 t3← sel f .collect()
14 if t3 = t2 then
15 return t3

16 for j← 1 to M do
17 if t3[j, 2] ≥ t1[j, 2] + 2 then
18 return (t3[j,3])

19 t2← t3

The condition on line 17 checks for a difference of at least 2 in the timestamps. Explain what happens
if the condition is replaced by the following:

a) if t3[j, 2] ≥ t1[j, 2] + 1 then

b) if t3[j, 2] ≥ t1[j, 2] + 3 then

9

Solution

Step Process 1 Process 2

1 scan()→ (0, 0, 0)
2 scan()→ (0, 0, 0)
3 x[1].write(5, 1, (0, 0, 0))
4 return(ok)
5

6 collect()→ (5, 0, 0)
7 x[2].write(5, 1, (0, 0, 0))
8 collect()→ (5, 5, 0)
9 return(t3[2, 3])→ (0, 0, 0)

Table 2: Possible steps of an execution of the snapshot algorithm with [if t3[j, 2] ≥ t1[j, 2] + 1 then] as
the condition in line 17.

p1

p2

scan()→ (0, 0, 0) write(1, 5) collect()→ (5, 0, 0) collect()→ (5, 5, 0)

scan()→ (0, 0, 0) write(2, 5)

Figure 1: Possible execution of the snapshot algorithm with [if t3[j, 2] ≥ t1[j, 2] + 1 then] as the condition
in line 17.

a) The implementation is incorrect. Consider the execution in Table 2. The update operation of
process 1 overlaps with the update operation of process 2, and so the scan of process 2 does not
capture the write of process 1. Then, process 1 invokes a scan operation, which does two collect
operations. Between the two, process 2 does its write after the first collect of process 1. After the
second collect of process 1 is not identical to the first, the algorithm reaches line 16 of the code.
The arrays are not the same for index 2 and the timestamp difference is 1, so the process returns
the scan of process 2. This result does not contain the update that process 1 did in the previous
operation, which is incorrect, since the two operations do not overlap. The execution is also shown
in Figure 1.

b) The algorithm continues to be correct. Intuitively, it gives the process one more ”opportunity” to
try to get two consecutive collect results that match.

10

