
1

© R. Guerraoui

The Power of Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Atomic execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

3

Atomic execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

4

Registers

  Question 1: what objects can we implement
with registers?

  Question 2: what objects we cannot
implement?

5

Wait-free implementations of
atomic objects

  An atomic object is simply defined by its
sequential specification; i.e., by how its
operations should be implemented when
there is no concurrency

  Implementations should be wait-free: every
process that invokes an operation eventually
gets a reply (unless the process crashes)

6

Counter (sequential spec)
  A counter has two operations inc() and
read() and maintains an integer x init to 0

  read():
  return(x)

  inc():
  x := x + 1;
  return(ok)

7

Naive implementation
  The processes share one register Reg
  read():

  return(Reg.read())
  inc():

  temp:= Reg.read()+1;
  Reg.write(temp);
  return(ok)

8

Atomic execution?

p1

p2

p3

 inc() - ok

read() - 1

 inc() - ok

9

Atomic implementation
  The processes share an array of registers
Reg[1,..,n]

  inc():

  Reg[i].write(Reg[i].read() +1);
  return(ok)

10

Atomic implementation

  read():

  sum := 0;
  for j = 1 to n do

  sum := sum + Reg[j].read();
 return(sum)

11

Atomic execution?

p1

p2

p3

 inc() - ok

read() - 2

 inc() - ok

12

Snapshot (sequential spec)
  A snapshot has operations update() and
scan() and maintains an array x of size n

  scan():

  return(x)
  update(i,v):

  x[i] := v;
  return(ok)

13

Very naive implementation
  Each process maintains an array of integer
variables x init to [0,..,0]

  scan():

 return(x)
  update(i,v):

  x[i] := v;
  return(ok)

14

Atomic execution?

p1

p2

p3

 update(1,1) - ok

collect() - [0,0,0]

15

Less naive implementation
  The processes share one array of N registers
Reg[1,..,N]
  scan():

  for j = 1 to N do
  x[j] := Reg[j].read();

 return(x)
  update(i,v):

  Reg[i].write(v); return(ok)

16

Atomic execution?

p1

p2

p3

 update(1,1) - ok

collect() - [1,0,0]

17

Atomic execution?

p1

p2

p3

 update(1,1) - ok

scan() - [1,0,2]

 update(3,2) - ok

18

Atomic execution?

p1

p2

p3

 scan() - [0,0,10]

update(2,1) - ok

 update(3,10) - ok

19

Non-atomic vs
atomic snapshot

  What we implement here is some kind of
regular snapshot:

  A scan returns, for every index of the
snapshot, the last written values or the
value of any concurrent update

  We call it collect

20

Key idea for atomicity

  To scan, a process keeps reading the entire
snapshot (i.e., it collect), until two results
are the same

  This means that the snapshot did not change,
and it is safe to return without violating
atomicity

21

Same value vs. Same timestamp

p1

p2

p3

scan() - [0,0,2]

collect()-[0,0,2]

update(2,0)

collect()-[0,0,2]

update(2,1)

update(3,2)

update(2,0)

update(2,1)

update(3,2)

update(3,0)

22

Enforcing atomicity
  The processes share one array of N registers
Reg[1,..,N]; each contains a value and a
timestamp
  We use the following operation for modularity
  collect():

  for j = 1 to N do
  x[j] := Reg[j].read();

 return(x)

23

Enforcing atomicity (cont’d)
  scan():

  temp1 := self.collect();
  while(true) do

 temp2 := self.collect();
 if (temp1 = temp2) then

  return (temp1.val)
 temp1 := temp2;

  update(i,v):
  ts := ts + 1;
  Reg[i].write(v,ts);
  return(ok)

24

Wait-freedom?

p1

p2

p3

 scan() -
…

collect()-[0,0,10]

 update(3,10) - ok

update(2,1) - ok

collect()-[0,1,10]

 update(2,3) - ok

25

Key idea for atomicity
& wait-freedom

  The processes share an array of registers
Reg[1,..,N] that contains each:
  a value,
  a timestamp, and
  a copy of the entire array of values

26

Key idea for atomicity
& wait-freedom (cont’d)

  To scan, a process keeps collecting and
returns a collect if it did not change, or some
collect returned by a concurrent scan
  Timestamps are used to check if the
collect changes or if a scan has been taken
in the meantime

•  To update, a process scans and writes the
value, the new timestamp and the result of
the scan

27

Snapshot implementation
Every process keeps a local timestamp ts

  update(i,v):

  ts := ts + 1;
  Reg[i].write(v,ts,self.scan());
  return(ok)

28

Snapshot implementation

  scan():
  t1 := self.collect(); t2:= t1
  while(true) do

  t3:= self.collect();
  if (t3 = t2) then return (t3);

  for j = 1 to N do
  if(t3[j,2] ≥ t1[j,2]+2) then

  return (t3[j,3])
  t2 := t3

Return the
first value in
each cell in t3

29

Possible execution?

p1

p2

p3

 scan() - [0,0,3]

 update(3,2)-ok update(3,1)-ok

 update(3,3)-ok

