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When readers need to write? 

Register Implementation (readers don’t write): 

Read()   
1: x := read(…) 
2: y := read(…) 

3: return(x) 
Atomic Register 

Regular Register 

Regular Register 

Regular Register 

Regular Register 

Read  
Operation 



3 

SRSW regular ⇒ SRSW atomic 

Read() 
1.  (t’, x’) = Reg.read() 
2.  if (t’ > t) then t:=t’ ; x:=x’ 
3.  return(x)       

•  Reg : SRSW register   
•  t, x : local variables 

Write(v) 
1.  t := t+1 
2. Reg.write(v,t); 
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"   Not for multiple readers… 

"   Not without timestamps… 
•  variable t representing logical time 

"   What is behind these limitations? 

SRSW regular ⇒ SRSW atomic 
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Bound on SWSR atomic register implementations 

"   Theorem 1: 
There is no wait-free algorithm that: 
•  Implements a SWSR atomic register. 
•  Uses a finite number of SWSR regular registers. 
•  The registers can be written only by the writer (of 

the atomic register). 
Atomic Register 

Regular Register 

Regular Register 

Regular Register 

Regular Register 

WRITE Read 
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The proof 
"   Assume an algorithm… show contradiction 

"   Replace any number of SWSR regular registers 
with a single one (w.l.o.g) - reg 

Atomic Register 

Regular Register 
reg 

Atomic Register 

Regular Register 

Regular Register 

Regular Register 

Regular Register 
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The Proof (cont’d) 
"   Consider an execution in which the writer 

alternates writing 0 and 1 infinitely many times. 
•  reg can assume finite number of values. 
•  There is a value v0 that appears infinitely 

many times in reg after a Write(0). 

writer 

Write(1) Write(0) Write(1) Write(0) Write(1) Write(0) 
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The Proof (cont’d) 
"   Consider the subset of Write(1) ops starting 

when reg is in state v0. 
•  reg can assume finite number of values after 

Write(1). 
•  There is a value vn that appears infinitely many 

times in reg after a Write(1). 

"   The state of reg changes infinitely many times 
from v0 to vn when Write(1) occurs. 

writer 

Write(1) Write(0) Write(1) Write(0) Write(1) Write(0) 
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The Proof (cont’d) 
Similarily (generalization):  
There must exist values v0, v1, … vn, such that 

a)  v0 is the value of reg before infinite Write(1) ops. 
b)  vn is the value of reg after infinite Write(1) ops. 
c)  ∀i<n:  reg changes infinitely many times               

 from vi to vi+1  during infinite Write(1) ops.  

writer 

Write(0) Write(1) 

… 
write(v1) write(v2) 

Write(0) Write(1) 

… 
write(v1) write(v2) write(vn) write(vn) 



10 

The Proof (cont’d) 

writer 

reader 

Write(0) Write(1) 

reg 

… … 
write(v1) write(v2) write(vi) write(vn) 

v0 v1 

vi 

vi vn v0 v1 v2 vi vn 

Write(0) Write(1) 

… … 
write(v1) write(v2) write(vi) write(vn) 

read() read() 
vi 

v2 … … … … 

Execution 1 
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The Proof (cont’d) 

writer 

Write(0) Write(1) 

… … 
write(v1) write(v2) write(vi) write(vn) 

Write(0) Write(1) 

… … 
write(v1) write(v2) write(vi) write(vn) 

v0 
reader 

read() read() 
v0 

writer 

Write(0) 

v0 
read() read() 

v0 reader 

Read() returns 0 
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The Proof (cont’d) 

writer 

Write(0) Write(1) 

… … 
write(v1) write(v2) write(vi) write(vn) 

Write(0) Write(1) 

… … 
write(v1) write(v2) write(vi) write(vn) 

vn 
reader 

read() read() 
vn 

writer 

Write(1) 

vn 
read() read() 

vn reader 

Read() returns 1 

Write(0) 
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The Proof (cont’d) 

writer 

reader 

Write(0) Write(1) 

reg 

… 
write(v1) write(v2) write(vi) 

vi 

read() read() 
vi 

vi 

Execution 2 
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The Proof (cont’d) 
"   There is a minimum i (0<i<=n) such that: 

If the reader always reads vi, then: 
•  The reader returns 1. 

If the reader always reads vi-1, then:  
•  The reader returns 0. 
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The Proof (end) 

writer 

reader 

Write(0) Write(1) 

reg 

… 
write(v1) write(v2) write(vi) 

vi 

read() read() 
vi 

? 

vi-1 

read() read() 
vi-1 

Read() -> 1 Read() -> 0 
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The Proof (cont’d) 

writer 

reader 

Write(0) Write(1) 

reg 

… … 
write(v1) write(v2) write(vi) write(vn) 

… 

vi 

Write(0) Write(1) 

… … 
write(v1) write(v2) write(vi) write(vn) 

read() read() 
vi 

If readers write (and writers read), executions 1 and 2 do not have to be  
indistinguishable to the reader. Execution 1 (shown in this slide) has an infinite  
no. of writes. We could imagine the algorithm in which the reader writes something  
(say a bit) before the first low-level read. This is read by writer at the end of  
Write(1). The reader does not change this bit before next Read. 

Then, the writer simply writes some aditional bit at the begining of the next change  
from 0 to 1. Hence, reader reads this in the second low-level read along with vi.  
This makes the reader distinguish execution 1 from execution 2. 
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Summary 
"   The reader needs to write in order to reduce the 

space complexity: 
"  Reduce space from unbounded to bounded.  
"  Key requirement: reader–writer communication  

"   The (bounded) algorithm will come a bit later 
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Single to Multi Reader: 
SRSW atomic to MRSW atomic 

Write(v) 
1.  t1 := t1+1 
2.  for j = 1 to N  
3.    WReg.write(v,t1) 
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Read() 
1.  for j = 1 to N do 
2.    (t[j], x[j]) := RReg[i, j].read() 
3.  (t[0], x[0]) = WReg[i].read() 
4.  (t, x) := highest(t[..], x[..]) 
5.  for j = 1 to N do  
6.    RReg[j, i].write(t, x) 
7.  return(x)       

Single to Multi Reader: 
SRSW atomic to MRSW atomic 
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"   The transformation would not work for 
multiple writers   

"   The transformation would not work if the 
readers do not communicate (i.e., if a reader 
does not write) 

Single to Multi Reader: 
SRSW atomic to MRSW atomic 
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Bound on SWMR atomic 
register implementations 

"   Theorem 2: 
"  There is no wait-free algorithm that 

implements a (SWMR) atomic register using 
any number of (SWSR) atomic registers that 
can all be written by the writer (of the SWMR 
atomic register). 
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Bound on SWMR atomic register implementations 

"   Theorem 2: 
There is no wait-free algorithm that: 
•  Implements a SWMR atomic register. 
•  Uses any number of SWSR atomic registers. 
•  The registers can be written only by the writer (of 

the atomic register). 
Atomic Register 

Atomic Register 

Atomic Register 

Atomic Register 

Atomic Register 

WRITE 

Read 

Read 
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The proof 
"   We assume such an algorithm and show 

contradiction 
"  Denote the SWMR register by reg* 

"   We assume 2 readers p1 and p2. 
"  The writer is pw. 
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The proof 
"   We replace all atomic registers read by p1 by a 

single one – reg1. 
"   We replace all atomic registers read by p2 by a 

single one – reg2 

Atomic Register 

Atomic Register 

Atomic Register 

WRITE 

Read 

Read 
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The proof (cont’d) 
"   Consider the first write of 1 into reg* 

"   This consists of a number of low-level writes w1 
to wk into reg1/reg2 

pw 

Write(1) 

… … 

wj+1 wk wj w1 

pi 

Read() -> vj
i 
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The proof (cont’d) 
"   ∀i∈{1,2}, ∃ ji: 1≤ji≤k:  

∀j<ji: vj
i=0 and ∀j≥ji: vj

i=1 
"   Observe that j1 does not equal j2 

"  wji must write to regi 

pw 

Write(1) 

… … 

wj+1 wk wj w1 

pi 

Read() -> vj
i 
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The proof (end) 
"   w.l.o.g. assume j1<j2 

pw 

Write(1) 

… … 
wj1+1 

wk wj1 w1 

p1 

Read() -> 1 

p2 

Read() -> 0 
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The proof (end) 
"   w.l.o.g. assume j1<j2 

pw 

Write(1) 

… … 
wj1+1 

wk wj1 w1 

p1 

Read() -> 1 

p2 

Read() -> 0 

If readers write, the proof is simple to break. Assume that the writer writes a 
timestamp along the value. The reader p1 would simply writeback the 
timestamp/value pair to a dedicated SWSR atomic register read by p2 (as in 
the transformation seen in the class). 
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Summary 
"   The readers need to write in implementations of:  
•  multi-reader  
•  wait-free  
•  atomic  

   (out of weaker base objects) 

"   Even when the available space is unbounded 

"   Same idea: 
•  Implementing SWMR atomic from SWMR regular 

"   We can implement SWMR regular from SWSR atomic  
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From safe to atomic: one bit 
    Wait-free implementation one SWSR atomic bit 

"   Brute force (the reader does not write): 
1.  SWSR safe to SWSR regular bit 

"   Simple 
2.  SWSR regular bit to SWMR multivalued 

"   O(N) in space and time 
3.  SWMR regular to SWSR atomic 

"   Timestamps (unbounded space) 



31 

Wait-free implementation of one SWSR atomic bit 

"  Something different: 

The reader should write! 

"  Aim for O(1) complexity in space and in time 

From safe to atomic: one bit 
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How many safe bits? 
"   A single one will not be enough (Theorem 1) 

"  We need at least: 
•  one for writer to write value 
•  one for reader will write  

"   Can we do it with only 2 SWSR safe bits? 
"  No… 

"   Assume two bits 
•  V, written by the writer and read by the reader 
•  R, written by the reader and read by the writer 
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2 safe bits are not enough 
Write(1) 

1 

read() read() 
1 

writer 

reader 

V=0 

Read() 

read() 
1 0 

read() read() 
0 

Read() 

read() 
0 

Write(0) 

Read()->1 

Writer must change something! 
Cannot change R must change V 

"   After Write(1) V must equal 1 
"  Assuming that the initial value is 0 
"  Dual if the initial value is 1 

"   After Write(0) V must equal 0 

Read()->0 
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2 safe bits are not enough 
Write(1) 

write(1)     (into V) 

1 

read() read() 
1 

writer 

reader 

V=0 

Read() 

read() 
1 0 

read() read() 
0 

Read() 

read() 
0 

"   The proof holds regardless of the number of bits 
in which the reader writes 

"   The writer needs (at least) 2 bits for himself 
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3 bits are enough  
(Tromp’s algorithm) 

"   2 bits owned (written) by the writer  
"  V (for a value) and W (control flag) 

"   1 bit owned by the reader (R – control flag) 
"   When the writer executes: 

"   if W=R then { … } 
"   We mean: 

1) r :=read(R) 
2) if (W=r) then … 

"   r is a local variable 
"   A copy of W is stored localy 
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Tromp’s algorithm 
Write(v)   
1: if old ≠ v then  
2:     change(V)   
2: if (W=R) then 
3:  change(W) 
4: old := v 
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Tromp’s algorithm 
Write(v)   
0: (if old ≠ v then)  
1: change(V)   
2: if (W=R) then 
3:  change(W) 
4: (old := v) 
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Tromp’s algorithm 

Write(v)   
1: change(V)   
2: if (W=R) then 
3:  change(W) 

Read()   
1: if (W=R) then return(v) 
2: x := read(V) 

3: if (W≠R) then change(R) 
4: v := read V 

5: if (W=R) then return(v) 
6: v := read(V) 

7: return(x) 
- Handshaking   
W≠R ⇔ there is a new value 
W=R ⇔ no new values 
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Correctness 
"   Liveness – straigthforward 

"   Safety – a bit more difficult 
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Atomicity (review) 

For every execution: 
•  We can assign a serialization point for each operation.  
•  Each operation takes place instantaneously at its 

serialization point. 

p1 

p2 

 write(1) 

read()=1 

 write(0) 

read()=0 
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Atomicity (conditions) 
For every execution: 

There exists a partial order of operations such that: 
1.  All Write operations are ordered. 
2.  Each Read operation is ordered with respect to all write ops. 
3.  Each Read operation returns the value of the immediately 

preceding Write operation. 
4.  If op1 precedes op2, then not(op2 < op1) in the ordering. 
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Atomicity (conditions) 

Define ordering: 
1.  Writes are ordered as they are issued. 
2.  Reads: 

•  Find last “Read(V)” that precedes return for Read. 
•  Find “Write(V)” that wrote that value. 
•  Write that contains “Write(V)” ordered before Read.    

For every execution: 
There exists a partial order of operations such that: 
1.  All Write operations are ordered. 
2.  Each Read operation is ordered with respect to all write ops. 
3.  Each Read operation returns the value of the immediately 

preceding Write operation. 
4.  If op1 precedes op2, then not(op2 < op1) in the ordering. 
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Atomicity (conditions) 
For every execution: 

There exists a partial order of operations such that: 
1.  All Write operations are ordered. 
2.  Each Read operation is ordered with respect to all Write ops. 
3.  Each Read operation returns the value of the immediately 

preceding Write operation. 
4.  If op1 precedes op2, then not(op2 < op1) in the ordering. 

Define ordering: 
1.  Writes are (trivially) ordered. 
2.  Reads: 

•  Find last “Read(V)” that precedes return for Read. 
•  Find “Write(V)” that wrote that value. 
•  Write that contains “Write(V)” ordered before Read.    
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Correctness 1 (Safety) 
"   Each Read operation returns the value of the 

immediately preceding Write operation.   
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Correctness 1 
"   Each Read operation returns the value of the 

immediately preceding Write operation. 

•  Assume for the sake of contradiction…   

writer 

reader 
read V 

change V change V 
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Correctness 1 
"   Case 1: Read op returns on line 5 or 7 
•  Returns v or x read during Read op. 
•  V acts like a regular register. 
•  read(V) can not return old value. 
Contradiction…   

writer 

reader 
read V 

change V change V 
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Correctness 1 
"   Case 2: Read op returns on line 1. 
•  Returns v from previous Read op: (R=W) 
•  But, after write operation, (R≠W). 
•  So there must have been a previous Read. 
•  And that Read must have "Read(V)" 
Contradiction…   

writer 

reader 
(R=W) 

change V change V 

read V change(R) 

(R≠W) read R 
(if W=R) 

read(V) 
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Correctness 2 (Regularity) 
"   A Read returns the value of the concurrent 

Write or a previous Write.   

"    The writer is only allowed to access the shared 
memory to change the value of the implemented 
register. If a read operation is concurrent with a write 
that changes the value, it is allowed to return both 0 
and 1 
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Correctness 3 (Atomicity) 
"   Lemma: If Read r1 precedes r2 and ri returns 

the value written by the Write vi (i=1..2), then  
v1=v2 or v1 precedes v2 

"   Proof: Suppose v2 precedes v1 (*) 
"   r1 does not return the initial value (no Write 

precedes the initial Write) 
"   r2 returns some value read by some low-level 

read from V 
"  Otherwise r2 returns the same value as r1 

(the initial value) 
"  See line 1 of reader’s code 
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Correctness 3 
"   If Read r1 precedes Read r2, then not(r2< r1).   

•  Assume for the sake of contradiction…   

writer 

reader 
read V = ρ2  

change V change V 

read V = ρ1 

r2 r1 
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Correctness 3 
"   Let ρi be the read(V) returned by ri (i=1..2). 
"   Claim 1: ρ1 precedes ρ2 

"  ρ1 ∈ r1 or some Read that precedes r1. 
"  If ρ2∈r2, then Claim 1 is trivial (since r1→r2).  

writer 

reader 
read V = ρ2  

change V change V 

read V = ρ1 

r2 r1 
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Correctness 3 
"   Let ρi be the read(V) returned by ri (i=1..2). 
"   Claim 1: ρ1 precedes ρ2 

"  ρ1 ∈ r1 or some Read that precedes r1. 
"  If ρ2∉r2, then r2 returns in line 1: 
• Observe that ρ1≠ρ2. 
"  If ρ2→r1 then r1 does not change v 

"  r1 returns in line 1 and ρ1=ρ2 
"  If ρ2∈r1 then:  

"  ρ1 is a read(V) in line 2 or 4 of r1 or earlier. 
"  ρ2 is a read(V) in line 4 or 6 of r1 or later. 
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"   Claim 2: There is a change(V) operation by 
writer that started before ρ1 finished and 
finished after ρ2 started 

writer 

reader 

change V 

ρ1 ρ2 

Correctness 3 

change V 
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Correctness 3 
"   Claim 3: Every "Read(W)" operation by the 

reader between ρ1 and ρ2 returns the same 
value. 

"   Proof: The writer is busy changing V (Claim 2). 

writer 

reader 

change V V=b 

ρ1 ρ2 
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Correctness 3 
"   There are 3 exhaustive cases 
"   (i) ρ1 is x := read(V) (line 2) 

"  ρ1∈r1 and r1 returns in line 7 (**) 
"  2 subcases: 

"  (a) ρ2 is the read in line 4 of r1 
"  Then r1 does not execute line 6 
"  r1 returns in line 5 (contradicts (**))! 

"  (b) ρ2 is some later read 
"  By Claim 3, W=R in line 5 of r1 
"  r1 returns in line 5 (contradicts (**))! 



56 

Correctness 3 
"   There are 3 exhaustive cases 
"   (ii) ρ1 is v := read V (line 4) 

"  r1 must return in line 5 
"  After finding W=R 

"  By Claim 3, W is not changed before ρ2 (i.e., 
some read V) is invoked 

"  But there is no subsequent read of V, (nor 
change of R), before W≠R (line 1) 
"  i.e., there is no new read of v before W is 

changed ⇒ ρ1=ρ2 – a contradiction w. 
Claim 1, (*) 
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Correctness 3 
"   There are 3 exhaustive cases 
"   (iii) ρ1 is v := read V (line 6) 

"  r1 is a subsequent read that returns in line 1  
"  Otherwise v is overwritten in line 4 
"  r1 finds W=R in line 1 

"  By Claim 3, W is not changed before ρ2 (i.e., 
some read V) is invoked 

"  But there is no subsequent read of V, (nor 
change of R), before W≠R (line 1) 
"  i.e., as in case (ii) ⇒ ρ1=ρ2 – a 

contradiction w. Claim 1, (*) 
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Tromp’s algorithm 

Write(v)   
1: change(V)   
2: if (W=R) then 
3:  change(W) 

Read()   
1: if (W=R) then return(v) 
2: x := read(V) 

3: if (W≠R) then change(R) 
4: v := read V 

5: if (W=R) then return(v) 
6: v := read(V) 

7: return(x) 
- Handshaking   
W≠R ⇔ there is a new value 
W=R ⇔ no new values 
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Tromp’s algorithm 

Write(v)   
1: change(V)   
2: if (W=R) then 
3:  change(W) 

Read()   
1: if (W=R) then return(v) 
2: x := read(V) 

3: if (W≠R) then change(R) 
4: v := read V 

5: if (W=R) then return(v) 
6: v := read(V) 

7: return(x) 
- Handshaking   
W≠R ⇔ there is a new value 
W=R ⇔ no new values 
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Condition in line 3? 
"   There are 3 exhaustive cases 
"   (i) ρ1 is x := read V (line 2) 

"  ρ1∈r1 and r1 returns in line 7 (**) 
"  2 subcases: 

"  (a) ρ2 is the read in line 4 of r1 
"  Then r1 does not execute line 6 
"  r1 returns in line 5 (contradicts (**))! 

"  (b) ρ2 is some later read 
"  By Claim 3, W=R in line 5 of r1 
"  r1 returns in line 5 (contradicts (**))! 
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Condition in line 3? 

writer 

reader 

change V 

Write(1) 

change W 

R=0 

Read()->1 

R=1 

Read()->0 

W=0 

Write(0) 

change V = writeV(0) 

R=0 W<>R 

x=0 v=1 v=1 

W<>R 

Read()->1 

x=1 

R=1 

v=1 

V=1 W=1 

W=R 

V=0 
W=0 

R=0 

line 2 line 1 line 3 

W=R 

line 1 line 2 

line 3 

line 4 

line 5 

line 6 

line 1 

line 2 

line 3 

line 4 

line 5 

Would not be changed in case  
there was a condition in line 3 
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Tromp’s algorithm 

Write(v)   
1: change(V)   
2: if (W=R) then 
3:  change(W) 

Read()   
1: if (W=R) then return(v) 
2: x := read(V) 

3: if (W≠R) then change(R) 
4: v := read V 

5: if (W=R) then return(v) 
6: v := read(V) 

7: return(x) 
- Handshaking   
W≠R ⇔ there is a new value 
W=R ⇔ no new values 
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Removing line 6? 

writer 

reader 

change V 

Write(1) 

change W 

R=0 

Read()->0 

W=0 

Write(0) 

change V = writeV(0) 

W<>R 

x=0 v=1 

W=R 

Read()->1 

V=1 W=1 V=0 
W=0 

R=0 

line 2 line 1 line 3 

W=R 

line 1 line 2 line 4 

line 1 
W=R=1 

line 5 

R=1 
change W 

W=1 
line 1 

W=0 
line 5 

W=R 

W=1 

line 3 

Read()->1 

R=1 
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Removing line 6? 

writer 

reader 

change V 

Write(1) 

change W 

R=0 

Read()->0 

W=1 

Write(0) 

change V = writeV(0) 

W<>R 

x=0 v=1 

W=R 

Read()->1 

V=1 W=1 V=0 
W=0 

R=0 

line 2 line 1 line 3 

W=R 

line 1 line 2 line 4 

line 1 
W=R=1 

(change R) line 5 

R=1 
change W 

W=1 
line 1 

W=0 
line 5 

W=R 

W=1 

line 3 


