
1 © R. Guerraoui, M. Vukolic, S. Gilbert

Writing while reading
registers

R. Guerraoui
Distributed Programming Laboratory

2

When readers need to write?

Register Implementation (readers don’t write):

Read()
1: x := read(…)
2: y := read(…)

3: return(x)
Atomic Register

Regular Register

Regular Register

Regular Register

Regular Register

Read
Operation

3

SRSW regular ⇒ SRSW atomic

Read()
1.  (t’, x’) = Reg.read()
2.  if (t’ > t) then t:=t’ ; x:=x’
3.  return(x)

•  Reg : SRSW register
•  t, x : local variables

Write(v)
1.  t := t+1
2. Reg.write(v,t);

4

"   Not for multiple readers…

"   Not without timestamps…
•  variable t representing logical time

"   What is behind these limitations?

SRSW regular ⇒ SRSW atomic

5

Bound on SWSR atomic register implementations

"   Theorem 1:
There is no wait-free algorithm that:
•  Implements a SWSR atomic register.
•  Uses a finite number of SWSR regular registers.
•  The registers can be written only by the writer (of

the atomic register).
Atomic Register

Regular Register

Regular Register

Regular Register

Regular Register

WRITE Read

6

The proof
"   Assume an algorithm… show contradiction

"   Replace any number of SWSR regular registers
with a single one (w.l.o.g) - reg

Atomic Register

Regular Register
reg

Atomic Register

Regular Register

Regular Register

Regular Register

Regular Register

7

The Proof (cont’d)
"   Consider an execution in which the writer

alternates writing 0 and 1 infinitely many times.
•  reg can assume finite number of values.
•  There is a value v0 that appears infinitely

many times in reg after a Write(0).

writer

Write(1) Write(0) Write(1) Write(0) Write(1) Write(0)

8

The Proof (cont’d)
"   Consider the subset of Write(1) ops starting

when reg is in state v0.
•  reg can assume finite number of values after

Write(1).
•  There is a value vn that appears infinitely many

times in reg after a Write(1).

"   The state of reg changes infinitely many times
from v0 to vn when Write(1) occurs.

writer

Write(1) Write(0) Write(1) Write(0) Write(1) Write(0)

9

The Proof (cont’d)
Similarily (generalization):
There must exist values v0, v1, … vn, such that

a)  v0 is the value of reg before infinite Write(1) ops.
b)  vn is the value of reg after infinite Write(1) ops.
c)  ∀i<n: reg changes infinitely many times

 from vi to vi+1 during infinite Write(1) ops.

writer

Write(0) Write(1)

…
write(v1) write(v2)

Write(0) Write(1)

…
write(v1) write(v2) write(vn) write(vn)

10

The Proof (cont’d)

writer

reader

Write(0) Write(1)

reg

… …
write(v1) write(v2) write(vi) write(vn)

v0 v1

vi

vi vn v0 v1 v2 vi vn

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

read() read()
vi

v2 … … … …

Execution 1

11

The Proof (cont’d)

writer

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

v0
reader

read() read()
v0

writer

Write(0)

v0
read() read()

v0 reader

Read() returns 0

12

The Proof (cont’d)

writer

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

vn
reader

read() read()
vn

writer

Write(1)

vn
read() read()

vn reader

Read() returns 1

Write(0)

13

The Proof (cont’d)

writer

reader

Write(0) Write(1)

reg

…
write(v1) write(v2) write(vi)

vi

read() read()
vi

vi

Execution 2

14

The Proof (cont’d)
"   There is a minimum i (0<i<=n) such that:

If the reader always reads vi, then:
•  The reader returns 1.

If the reader always reads vi-1, then:
•  The reader returns 0.

15

The Proof (end)

writer

reader

Write(0) Write(1)

reg

…
write(v1) write(v2) write(vi)

vi

read() read()
vi

?

vi-1

read() read()
vi-1

Read() -> 1 Read() -> 0

16

The Proof (cont’d)

writer

reader

Write(0) Write(1)

reg

… …
write(v1) write(v2) write(vi) write(vn)

…

vi

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

read() read()
vi

If readers write (and writers read), executions 1 and 2 do not have to be
indistinguishable to the reader. Execution 1 (shown in this slide) has an infinite
no. of writes. We could imagine the algorithm in which the reader writes something
(say a bit) before the first low-level read. This is read by writer at the end of
Write(1). The reader does not change this bit before next Read.

Then, the writer simply writes some aditional bit at the begining of the next change
from 0 to 1. Hence, reader reads this in the second low-level read along with vi.
This makes the reader distinguish execution 1 from execution 2.

17

Summary
"   The reader needs to write in order to reduce the

space complexity:
"  Reduce space from unbounded to bounded.
"  Key requirement: reader–writer communication

"   The (bounded) algorithm will come a bit later

18

Single to Multi Reader:
SRSW atomic to MRSW atomic

Write(v)
1.  t1 := t1+1
2.  for j = 1 to N
3.  WReg.write(v,t1)

19

Read()
1.  for j = 1 to N do
2.  (t[j], x[j]) := RReg[i, j].read()
3.  (t[0], x[0]) = WReg[i].read()
4.  (t, x) := highest(t[..], x[..])
5.  for j = 1 to N do
6.  RReg[j, i].write(t, x)
7.  return(x)

Single to Multi Reader:
SRSW atomic to MRSW atomic

20

"   The transformation would not work for
multiple writers

"   The transformation would not work if the
readers do not communicate (i.e., if a reader
does not write)

Single to Multi Reader:
SRSW atomic to MRSW atomic

21

Bound on SWMR atomic
register implementations

"   Theorem 2:
"  There is no wait-free algorithm that

implements a (SWMR) atomic register using
any number of (SWSR) atomic registers that
can all be written by the writer (of the SWMR
atomic register).

22

Bound on SWMR atomic register implementations

"   Theorem 2:
There is no wait-free algorithm that:
•  Implements a SWMR atomic register.
•  Uses any number of SWSR atomic registers.
•  The registers can be written only by the writer (of

the atomic register).
Atomic Register

Atomic Register

Atomic Register

Atomic Register

Atomic Register

WRITE

Read

Read

23

The proof
"   We assume such an algorithm and show

contradiction
"  Denote the SWMR register by reg*

"   We assume 2 readers p1 and p2.
"  The writer is pw.

24

The proof
"   We replace all atomic registers read by p1 by a

single one – reg1.
"   We replace all atomic registers read by p2 by a

single one – reg2

Atomic Register

Atomic Register

Atomic Register

WRITE

Read

Read

25

The proof (cont’d)
"   Consider the first write of 1 into reg*

"   This consists of a number of low-level writes w1
to wk into reg1/reg2

pw

Write(1)

… …

wj+1 wk wj w1

pi

Read() -> vj
i

26

The proof (cont’d)
"   ∀i∈{1,2}, ∃ ji: 1≤ji≤k:

∀j<ji: vj
i=0 and ∀j≥ji: vj

i=1
"   Observe that j1 does not equal j2

"  wji must write to regi

pw

Write(1)

… …

wj+1 wk wj w1

pi

Read() -> vj
i

27

The proof (end)
"   w.l.o.g. assume j1<j2

pw

Write(1)

… …
wj1+1

wk wj1 w1

p1

Read() -> 1

p2

Read() -> 0

28

The proof (end)
"   w.l.o.g. assume j1<j2

pw

Write(1)

… …
wj1+1

wk wj1 w1

p1

Read() -> 1

p2

Read() -> 0

If readers write, the proof is simple to break. Assume that the writer writes a
timestamp along the value. The reader p1 would simply writeback the
timestamp/value pair to a dedicated SWSR atomic register read by p2 (as in
the transformation seen in the class).

29

Summary
"   The readers need to write in implementations of:
•  multi-reader
•  wait-free
•  atomic

 (out of weaker base objects)

"   Even when the available space is unbounded

"   Same idea:
•  Implementing SWMR atomic from SWMR regular

"   We can implement SWMR regular from SWSR atomic

30

From safe to atomic: one bit
 Wait-free implementation one SWSR atomic bit

"   Brute force (the reader does not write):
1.  SWSR safe to SWSR regular bit

"   Simple
2.  SWSR regular bit to SWMR multivalued

"   O(N) in space and time
3.  SWMR regular to SWSR atomic

"   Timestamps (unbounded space)

31

Wait-free implementation of one SWSR atomic bit

"  Something different:

The reader should write!

"  Aim for O(1) complexity in space and in time

From safe to atomic: one bit

32

How many safe bits?
"   A single one will not be enough (Theorem 1)

"  We need at least:
•  one for writer to write value
•  one for reader will write

"   Can we do it with only 2 SWSR safe bits?
"  No…

"   Assume two bits
•  V, written by the writer and read by the reader
•  R, written by the reader and read by the writer

33

2 safe bits are not enough
Write(1)

1

read() read()
1

writer

reader

V=0

Read()

read()
1 0

read() read()
0

Read()

read()
0

Write(0)

Read()->1

Writer must change something!
Cannot change R must change V

"   After Write(1) V must equal 1
"  Assuming that the initial value is 0
"  Dual if the initial value is 1

"   After Write(0) V must equal 0

Read()->0

34

2 safe bits are not enough
Write(1)

write(1) (into V)

1

read() read()
1

writer

reader

V=0

Read()

read()
1 0

read() read()
0

Read()

read()
0

"   The proof holds regardless of the number of bits
in which the reader writes

"   The writer needs (at least) 2 bits for himself

35

3 bits are enough
(Tromp’s algorithm)

"   2 bits owned (written) by the writer
"  V (for a value) and W (control flag)

"   1 bit owned by the reader (R – control flag)
"   When the writer executes:

"   if W=R then { … }
"   We mean:

1) r :=read(R)
2) if (W=r) then …

"   r is a local variable
"   A copy of W is stored localy

36

Tromp’s algorithm
Write(v)
1: if old ≠ v then
2: change(V)
2: if (W=R) then
3: change(W)
4: old := v

37

Tromp’s algorithm
Write(v)
0: (if old ≠ v then)
1: change(V)
2: if (W=R) then
3: change(W)
4: (old := v)

38

Tromp’s algorithm

Write(v)
1: change(V)
2: if (W=R) then
3: change(W)

Read()
1: if (W=R) then return(v)
2: x := read(V)

3: if (W≠R) then change(R)
4: v := read V

5: if (W=R) then return(v)
6: v := read(V)

7: return(x)
- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

39

Correctness
"   Liveness – straigthforward

"   Safety – a bit more difficult

40

Atomicity (review)

For every execution:
•  We can assign a serialization point for each operation.
•  Each operation takes place instantaneously at its

serialization point.

p1

p2

 write(1)

read()=1

 write(0)

read()=0

41

Atomicity (conditions)
For every execution:

There exists a partial order of operations such that:
1.  All Write operations are ordered.
2.  Each Read operation is ordered with respect to all write ops.
3.  Each Read operation returns the value of the immediately

preceding Write operation.
4.  If op1 precedes op2, then not(op2 < op1) in the ordering.

42

Atomicity (conditions)

Define ordering:
1.  Writes are ordered as they are issued.
2.  Reads:

•  Find last “Read(V)” that precedes return for Read.
•  Find “Write(V)” that wrote that value.
•  Write that contains “Write(V)” ordered before Read.

For every execution:
There exists a partial order of operations such that:
1.  All Write operations are ordered.
2.  Each Read operation is ordered with respect to all write ops.
3.  Each Read operation returns the value of the immediately

preceding Write operation.
4.  If op1 precedes op2, then not(op2 < op1) in the ordering.

43

Atomicity (conditions)
For every execution:

There exists a partial order of operations such that:
1.  All Write operations are ordered.
2.  Each Read operation is ordered with respect to all Write ops.
3.  Each Read operation returns the value of the immediately

preceding Write operation.
4.  If op1 precedes op2, then not(op2 < op1) in the ordering.

Define ordering:
1.  Writes are (trivially) ordered.
2.  Reads:

•  Find last “Read(V)” that precedes return for Read.
•  Find “Write(V)” that wrote that value.
•  Write that contains “Write(V)” ordered before Read.

44

Correctness 1 (Safety)
"   Each Read operation returns the value of the

immediately preceding Write operation.

45

Correctness 1
"   Each Read operation returns the value of the

immediately preceding Write operation.

•  Assume for the sake of contradiction…

writer

reader
read V

change V change V

46

Correctness 1
"   Case 1: Read op returns on line 5 or 7
•  Returns v or x read during Read op.
•  V acts like a regular register.
•  read(V) can not return old value.
Contradiction…

writer

reader
read V

change V change V

47

Correctness 1
"   Case 2: Read op returns on line 1.
•  Returns v from previous Read op: (R=W)
•  But, after write operation, (R≠W).
•  So there must have been a previous Read.
•  And that Read must have "Read(V)"
Contradiction…

writer

reader
(R=W)

change V change V

read V change(R)

(R≠W) read R
(if W=R)

read(V)

48

Correctness 2 (Regularity)
"   A Read returns the value of the concurrent

Write or a previous Write.

"   The writer is only allowed to access the shared
memory to change the value of the implemented
register. If a read operation is concurrent with a write
that changes the value, it is allowed to return both 0
and 1

49

Correctness 3 (Atomicity)
"   Lemma: If Read r1 precedes r2 and ri returns

the value written by the Write vi (i=1..2), then
v1=v2 or v1 precedes v2

"   Proof: Suppose v2 precedes v1 (*)
"   r1 does not return the initial value (no Write

precedes the initial Write)
"   r2 returns some value read by some low-level

read from V
"  Otherwise r2 returns the same value as r1

(the initial value)
"  See line 1 of reader’s code

50

Correctness 3
"   If Read r1 precedes Read r2, then not(r2< r1).

•  Assume for the sake of contradiction…

writer

reader
read V = ρ2

change V change V

read V = ρ1

r2 r1

51

Correctness 3
"   Let ρi be the read(V) returned by ri (i=1..2).
"   Claim 1: ρ1 precedes ρ2

"  ρ1 ∈ r1 or some Read that precedes r1.
"  If ρ2∈r2, then Claim 1 is trivial (since r1→r2).

writer

reader
read V = ρ2

change V change V

read V = ρ1

r2 r1

52

Correctness 3
"   Let ρi be the read(V) returned by ri (i=1..2).
"   Claim 1: ρ1 precedes ρ2

"  ρ1 ∈ r1 or some Read that precedes r1.
"  If ρ2∉r2, then r2 returns in line 1:
• Observe that ρ1≠ρ2.
"  If ρ2→r1 then r1 does not change v

"  r1 returns in line 1 and ρ1=ρ2
"  If ρ2∈r1 then:

"  ρ1 is a read(V) in line 2 or 4 of r1 or earlier.
"  ρ2 is a read(V) in line 4 or 6 of r1 or later.

53

"   Claim 2: There is a change(V) operation by
writer that started before ρ1 finished and
finished after ρ2 started

writer

reader

change V

ρ1 ρ2

Correctness 3

change V

54

Correctness 3
"   Claim 3: Every "Read(W)" operation by the

reader between ρ1 and ρ2 returns the same
value.

"   Proof: The writer is busy changing V (Claim 2).

writer

reader

change V V=b

ρ1 ρ2

55

Correctness 3
"   There are 3 exhaustive cases
"   (i) ρ1 is x := read(V) (line 2)

"  ρ1∈r1 and r1 returns in line 7 (**)
"  2 subcases:

"  (a) ρ2 is the read in line 4 of r1
"  Then r1 does not execute line 6
"  r1 returns in line 5 (contradicts (**))!

"  (b) ρ2 is some later read
"  By Claim 3, W=R in line 5 of r1
"  r1 returns in line 5 (contradicts (**))!

56

Correctness 3
"   There are 3 exhaustive cases
"   (ii) ρ1 is v := read V (line 4)

"  r1 must return in line 5
"  After finding W=R

"  By Claim 3, W is not changed before ρ2 (i.e.,
some read V) is invoked

"  But there is no subsequent read of V, (nor
change of R), before W≠R (line 1)
"  i.e., there is no new read of v before W is

changed ⇒ ρ1=ρ2 – a contradiction w.
Claim 1, (*)

57

Correctness 3
"   There are 3 exhaustive cases
"   (iii) ρ1 is v := read V (line 6)

"  r1 is a subsequent read that returns in line 1
"  Otherwise v is overwritten in line 4
"  r1 finds W=R in line 1

"  By Claim 3, W is not changed before ρ2 (i.e.,
some read V) is invoked

"  But there is no subsequent read of V, (nor
change of R), before W≠R (line 1)
"  i.e., as in case (ii) ⇒ ρ1=ρ2 – a

contradiction w. Claim 1, (*)

58

Tromp’s algorithm

Write(v)
1: change(V)
2: if (W=R) then
3: change(W)

Read()
1: if (W=R) then return(v)
2: x := read(V)

3: if (W≠R) then change(R)
4: v := read V

5: if (W=R) then return(v)
6: v := read(V)

7: return(x)
- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

59

Tromp’s algorithm

Write(v)
1: change(V)
2: if (W=R) then
3: change(W)

Read()
1: if (W=R) then return(v)
2: x := read(V)

3: if (W≠R) then change(R)
4: v := read V

5: if (W=R) then return(v)
6: v := read(V)

7: return(x)
- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

60

Condition in line 3?
"   There are 3 exhaustive cases
"   (i) ρ1 is x := read V (line 2)

"  ρ1∈r1 and r1 returns in line 7 (**)
"  2 subcases:

"  (a) ρ2 is the read in line 4 of r1
"  Then r1 does not execute line 6
"  r1 returns in line 5 (contradicts (**))!

"  (b) ρ2 is some later read
"  By Claim 3, W=R in line 5 of r1
"  r1 returns in line 5 (contradicts (**))!

61

Condition in line 3?

writer

reader

change V

Write(1)

change W

R=0

Read()->1

R=1

Read()->0

W=0

Write(0)

change V = writeV(0)

R=0 W<>R

x=0 v=1 v=1

W<>R

Read()->1

x=1

R=1

v=1

V=1 W=1

W=R

V=0
W=0

R=0

line 2 line 1 line 3

W=R

line 1 line 2

line 3

line 4

line 5

line 6

line 1

line 2

line 3

line 4

line 5

Would not be changed in case
there was a condition in line 3

62

Tromp’s algorithm

Write(v)
1: change(V)
2: if (W=R) then
3: change(W)

Read()
1: if (W=R) then return(v)
2: x := read(V)

3: if (W≠R) then change(R)
4: v := read V

5: if (W=R) then return(v)
6: v := read(V)

7: return(x)
- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

63

Removing line 6?

writer

reader

change V

Write(1)

change W

R=0

Read()->0

W=0

Write(0)

change V = writeV(0)

W<>R

x=0 v=1

W=R

Read()->1

V=1 W=1 V=0
W=0

R=0

line 2 line 1 line 3

W=R

line 1 line 2 line 4

line 1
W=R=1

line 5

R=1
change W

W=1
line 1

W=0
line 5

W=R

W=1

line 3

Read()->1

R=1

64

Removing line 6?

writer

reader

change V

Write(1)

change W

R=0

Read()->0

W=1

Write(0)

change V = writeV(0)

W<>R

x=0 v=1

W=R

Read()->1

V=1 W=1 V=0
W=0

R=0

line 2 line 1 line 3

W=R

line 1 line 2 line 4

line 1
W=R=1

(change R) line 5

R=1
change W

W=1
line 1

W=0
line 5

W=R

W=1

line 3

