
Vasileios Trigonakis | 12.2015 1

Concurrent Data Structures
Concurrent Algorithms 2015

Vasileios Trigonakis

Vasileios Trigonakis | 12.2015 2CA

Data Structures (DSs)

• Software constructs for efficiently storing data

– Different types: lists, hash tables, trees, queues, …

• Accessed through the DS interface

– Depends on the DS type, but always includes

– Store an element

– Retrieve an element

• Element

– Set: just one value

– Map: key/value pair

Vasileios Trigonakis | 12.2015 3ASCY

Concurrent Data Structures (CDSs)

• Concurrently accessed by multiple threads

– Through the CDS interface linearizable operations!

• Really important on multi-cores

• Used in most software systems

Vasileios Trigonakis | 12.2015 4CA

DS Example: Linked List

• A sequence of elements (nodes)

• Interface

– search (aka contains)

– insert

– remove (aka delete)

1 2 3 5 6 8

struct node

{

value_t value;

struct node* next;

};

4insert(4)

delete(6)

Vasileios Trigonakis | 12.2015 5CA

Search Data Structures

• Interface

1. search

2. insert

3. remove

• Semantics

1. read-only

2. read-only

3. read-only

4. read-write

k
search(k)

modify(k)parse(k)
update(k)

updates

Vasileios Trigonakis | 12.2015 6OPTIK

Optimistic vs. Pessimistic Concurrency

(Lesson1) Optimistic concurrency is the only way to get scalability

20-core Xeon

1024 elements

0

2

4

6

8

10

12

1 10 20 30 40

T
hr

ou
gh

pu
t (

M
op

/s
)

Cores

"bad" linked list "good" linked list

pessimistic

traverse

traverse

Vasileios Trigonakis | 12.2015 7OPTIK

The Two Problems in Optimistic Concurrency

• Concurrency Control
How threads synchronize

their writes to the shared

memory (e.g., nodes)

– Locks

– CAS

– Transactional memory

• Memory Reclamation
How and when threads free

and reuse the shared

memory (e.g., nodes)

– Garbage collectors

– Hazard pointers

– RCU

– Quiescent states

Vasileios Trigonakis | 12.2015 8OPTIK

Tools for Optimistic Concurrency Control (OCC)

• RCU: slow in the presence of updates

– (also a memory reclamation scheme)

• STM: slow in general

• HTM: not ubiquitous, not very fast (yet)

• Wait-free algorithms: slow in general

• (Optimistic) Lock-free algorithms:

• Optimistic lock-based algorithms:

We either need a lock-free or an optimistic lock-based algorithm

Vasileios Trigonakis | 12.2015 9CA

Parenthesis: Target platform

2-socket Intel Xeon E5-2680 v2 Ivy Bridge

– 20 cores @ 2.8 GHz, 40 hyper-threads

– 25 MB LLC (per socket)

– 256GB RAM

c c cc

c c cc

c c

c c cc

c c cc

c c

Vasileios Trigonakis | 12.2015 10OPTIK

Concurrent Linked Lists – 1% Updates

STM is slow and non-scalable

0

2

4

6

8

10

12

14

16

1 10 20 30 40

T
hr

ou
gh

pu
t (

M
op

/s
)

Cores

lock-free lock-based TinySTM

1024 elements

1% updates

Vasileios Trigonakis | 12.2015 11OPTIK

Optimistic Concurrency in Data Structures

Validation plays a key role in concurrent data structures

operation

optimistic prepare

(non-synchronized)

perform

(synchronized)
Pattern

validate

(synchronized)
optimistic prepare perform

failed

find insertion spot validate

insert

Example

linked list

insert

detect conflicting

concurrent operations

Vasileios Trigonakis | 12.2015 12OPTIK

Validation in concurrent data structures

• Lock-free: atomic operations

– marking pointers, flags, helping, …

• Lock-based: lock validate

– flags, pointer reversal, parsing twice, …

Validation is what differentiates algorithms

validate & perform (atomic ops)optimistic prepare

failed

lockoptimistic prepare perform unlockvalidate

unlock
failed

Vasileios Trigonakis | 12.2015 13

Let’s design two concurrent linked lists:

A lock-free and a lock-based

Vasileios Trigonakis | 12.2015 14OPTIK

Lock-free Sorted Linked List: Naïve

Is this a correct (linearizable) linked list?

find modification spot CASInsert

find modification spot CASDelete

find spot returnSearch

Vasileios Trigonakis | 12.2015 15OPTIK

Lock-free Sorted Linked List: Naïve – Incorrect

• What is the problem?

– Insert involves one existing node;

– Delete involves two existing nodes

How can we fix the problem?

P0: find modification spot P0:CAS

x

y

P0: Insert(x)

P1: Delete(y)

P1: find modification spot P1:CAS

Lost update!

Vasileios Trigonakis | 12.2015 16OPTIK

Lock-free Sorted Linked List: Fix

• Idea! To delete a node, make it unusable first…

– Mark it for deletion so that

1. You fail marking if someone changes next pointer;

2. An insertion fails if the predecessor node is marked.

 In other words: delete in two steps

1. Mark for deletion; and then

2. Physical deletion

y

Delete(y) find modification spot 1. CAS(mark)

2. CAS(remove)

Vasileios Trigonakis | 12.2015 17OPTIK

1. Failing Deletion (Marking)

• Upon failure restart the operation

– Restarting is part of “all” state-of-the-art-data structures

P0: find modification spot P0:CAS

x

y

P0: Insert(x)

P1: Delete(y)

P1: find modification spot P1:CAS(mark) false

Vasileios Trigonakis | 12.2015 18OPTIK

1. Failing Insertion due to Marked Node

• Upon failure restart the operation

– Restarting is part of “all” state-of-the-art-data structures

How can we implement marking?

P0: find modification spot P0:CAS false

y

P0: Insert(x)

P1: Delete(y)

P1: find modification spot P1:CAS(mark)

P1:CAS(remove)

Vasileios Trigonakis | 12.2015 19OPTIK

Implementing Marking (C Style)

• Pointers in 64 bit architectures

– Word aligned - 8 bit aligned! (!! Remember TM class)

next pointer 000

boolean mark(node_t* n)

uintptr_t unmarked = n->next & ~0x1L;

uintptr_t marked = n->next | 0x1L;

return CAS(&n->next, unmarked, marked) == unmarked;

Vasileios Trigonakis | 12.2015 20OPTIK

Lock-free List: Putting Everything Together

• Traversal: traverse (requires unmarking nodes)

• Search: traverse

• Insert: traverse CAS to insert

• Delete: traverse CAS to mark CAS to remove

• Garbage (marked) nodes

– Cleanup while traversing

(helping in this course’s terms)

A pragmatic implementation of lock-free linked lists

What happers

if this CAS

fails??

Vasileios Trigonakis | 12.2015 21OPTIK

What is not Perfect with the Lock-free List?

1. Garbage nodes

– Increase path length; and

– Increase complexity

if (is_marked_node(n)) …

2. Unmarking every single pointer

– Increase complexity
curr = unmark_node(curr->next)

Can we simplify the design with locks?

Vasileios Trigonakis | 12.2015 22OPTIK

Lock-based Sorted Linked List: Naïve

Is this a correct (linearizable) linked list?

find modification spot lockInsert

find modification spot lock(predecessor)Delete

find spot returnSearch

lock(target)

Vasileios Trigonakis | 12.2015 23OPTIK

Lock-based List: Validate After Locking

find modification spot lockInsert

find modification spot lock(predecessor)Delete

find spot returnSearch

lock(curr)

validate !pred->marked && pred->next did not change

!pred->marked && !curr->marked && pred->next did not change

mark(curr)

Vasileios Trigonakis | 12.2015 24OPTIK

Concurrent Linked Lists – 0% updates

(Lesson2) Sequential complexity matters Simplicity

0

5

10

15

20

25

30

35

40

45

50

1 10 20 30 40

T
hr

ou
gh

pu
t (

M
op

/s
)

Cores

lock-free lock-based

1024 elements

0% updates

Just because the lock-

based is not unmarking!

Vasileios Trigonakis | 12.2015 25OPTIK

Optimistic Concurrency Control: Summary

• Lock-free: atomic operations

– marking pointers, flags, helping, …

• Lock-based: lock validate

– flags, pointer reversal, parsing twice, …

validate & perform (atomic ops)optimistic prepare

failed

lockoptimistic prepare perform unlockvalidate

unlock
failed

Vasileios Trigonakis | 12.2015 26OPTIK

Memory Reclamation: OCC’s Side Effect

• Delete a node free and reuse this memory

• Subset of the garbage collection problem

• Who is accessing that memory?

• Can we just directly do free(node)?

We cannot directly free the memory! Need memory reclamation

x

P0: search

P1: delete(x)

P1: free(x)

P0: pointer on x

Vasileios Trigonakis | 12.2015 27OPTIK

Memory Reclamation Schemes

1. Reference counting

– Count how many references exist on a node

2. Hazard pointers

– Tell to others what exactly you are reading

3. Quiescent states

– Wait until it is certain than no one holds references

4. Read-Copy Update (RCU)

– Quiescent states – The extreme approach

Vasileios Trigonakis | 12.2015 28OPTIK

1. Reference Counting

• Pointer + Counter

• Dereference:
rc_dereference(rc_pointer* rcp)

atomic_increment(&rcp->counter);

return *pointer;

• “Release”:
rc_release(rc_pointer* rcp)

atomic_decrement(&rcp->counter);

• Free: iff counter = 0

Bad bad bad idea: Readers write on shared nodes!

pointercounter

rc_pointer

(Lesson3) Readers cannot write on the shared nodes. Why?

Vasileios Trigonakis | 12.2015 29OPTIK

2. Hazard pointers (1/2)

• Reference counter property of the node

• Hazard pointer property of the thread

– A Multi-Reader Single-Writer (MRSW) register

• Protect:
hp_protect(node* n)

hazard_pointer* hp = hp_get(n);

hp->address = n;

• Release:

hp_release(hazard_pointer* hp)

hp->address = NULL;

address

hazard_pointer

Depends on

the data

structure type

Vasileios Trigonakis | 12.2015 30OPTIK

2. Hazard pointers (2/2)

• Free memory x

1. Collect all hazard pointers

2. Check if x is accessed by any thread

1. If yes, buffer the free for later

2. If not, free the memory

• Buffering the free is implementation specific

• + lock-free

• - not scalable

address

hazard_pointer

O(data structure size) hazard pointers hp_protect

Vasileios Trigonakis | 12.2015 31OPTIK

3. Quiescent States

• Keep the memory until it is certain it is not accessed

• Can be implemented in various ways

• Example implementation
search / insert / delete

qs_unsafe(); I’m accessing shared data

…

qs_safe(); I’m not accessing shared data

return …

The data written in qs_[un]safe must be local-mostly

Vasileios Trigonakis | 12.2015 32OPTIK

3. Quiescent States: qs_[un]safe Implementation

• List of “thread-local” (mostly) counters

• qs_state (initialized to 0)

– even : in safe mode (not accessing shared data)

– odd : in unsafe mode

• qs_safe / qs_unsafe

qs_state++;

How do we free memory?

(id = 0)

qs_state

(id = x)

qs_state

(id = y)

qs_state

Vasileios Trigonakis | 12.2015 33OPTIK

3. Quiescent States: Freeing memory

• List of “thread-local” (mostly) counters

• Upon qs_free: Timestamp memory (vector_ts)

– Can do this for batches of frees

• Safe to reuse the memory

vector_tsnow >> vector_tsmem

How do the schemes we have seen perform?

(id = 0)

qs_state

(id = x)

qs_state

(id = y)

qs_state

for t in thread_ids

if (vts_mem[t] is odd &&

vts_now[t] = vts_mem[t])

return false;

return true;

Vasileios Trigonakis | 12.2015 34ASCY

Hazard Pointers vs. Quiescent States

Quiescent-state reclamation is as fast as it gets

1024 elements

0% updates

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

M
op

/s
)

#Threads

None QSBR HP

Vasileios Trigonakis | 12.2015 35OPTIK

4. Read-Copy Update (RCU)

• Quiescent states at their extreme

– Deletions wait all readers to reach a safe state

• Introduced in the Linux kernel in ~2002

– More than 10000 uses in the kernel!

• (Example) Interface

– rcu_read_lock (= qs_unsafe)

– rcu_read_unlock (= qs_safe)

– synchronize_rcu wait all readers

Vasileios Trigonakis | 12.2015 36OPTIK

4. Using RCU

• Search / Traverse
rcu_read_lock()

…

rcu_read_unlock()

• + simple

• + read-only workloads

• - bad for writes

• Delete
… physical deletion of x
synchronize_rcu()

free(x)

Vasileios Trigonakis | 12.2015 37OPTIK

Memory Reclamation: Summary

• How and when to reuse freed memory

• Many techniques, no silver bullet

1. Reference counting

2. Hazard pointers

3. Quiescent states

4. Read-Copy Update (RCU)

Vasileios Trigonakis | 12.2015 38OPTIK

Summary

• Concurrent data structures are very important

• Optimistic concurrency necessary for scalability

– Only recently a lot of active work for CDSs

• Memory reclamation is

– Inherent to optimistic concurrency;

– A difficult problem;

– A potential performance/scalability bottleneck

Vasileios Trigonakis | 12.2015 39

(If time permits) Let’s design one of the

lists (array maps) of Java together!

