(i

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Goncurrent Data Structures
Concurrent Algorithms 2015

Vasileios Trigonakis

Vasileios Trigonakis | 12.2015

A

* Software constructs for efficiently storing data
— Different types: lists, hash tables, trees, queues, ...

* Accessed through the DS interface
— Depends on the DS type, but always includes
— Store an element
— Retrieve an element
* Element
— Set: just one value
— Map: key/value pair

.(l)ﬂ- Vasileios Trigonakis | 12.2015 2
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

A

 Concurrently accessed by multiple threads
— Through the CDS interface => linearizable operations!

* Really important on multi-cores
 Used in most software systems

ng_lll'X monetdb)
‘ LEVELDB . mongODB

.(l)ﬂ- Vasileios Trigonakis | 12.2015
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

| |
DS Example: Linked List
e

delete(6) ~ ‘ :

1 = 2 = 3 = 5 > 6 > 8

insert(4)

* Asequence of elements (nodes) ?truct node
* [nterface value_t value;
— search (aka contains) struct node™ next,

— Insert f

— remove (aka delete)

.(l)ﬂ- Vasileios Trigonakis | 12.2015 4
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Search Ilata SI"IGIIIIES

e e s
Interface search(k)
4
1. search . 't "
update .
2. Insert i parse(k) modify(k)
epdates ' b 4
remov d / / /
) II / // /
. Semanhcs ’ A !
/ _ o’ P ’ /
1. read-only =--~ - s L’
- _ P 4 2
2. read-only ----"" -~ _-7
3. read-only ==---"" .-
4. read-write = =---" -

.(l)ﬂ- Vasileios Trigonakis | 12.2015 5

FFFFFFFFFFFFFFFFF

Optimistic vs. Pessimistic Goncurrency
i

12

—
(@)

traverse

Throughput (Mop/s)

N

20-core Xeon
1024 elements

0 gy asap D ED SRS Mo, o eo oo @ @ @ @D @D @ @ - s a» a» > a» GD Gd E» P G G> @D @D @B

1 10 20 30

—="bad" linked list —"good" linked list

(Lesson,) Optimistic concurrency is the only way to get scalability

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Vasileios Trigonakis | 12.2015

A

* Concurrency Control + Memory Reclamation

How threads synchronize How and when threads free
their writes to the shared and reuse the shared
memory (e.g., nodes) memory (e.g., nodes)

— Locks — Garbage collectors

— CAS — Hazard pointers

— Transactional memory — RCU

— Quiescent states

.(l)ﬂ- Vasileios Trigonakis | 12.2015 7
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

A

« RCU: slow in the presence of updates
— (also a memory reclamation scheme)

« STM: slow in general
« HTM: not ubiquitous, not very fast (yet)

 Wait-free algorithms: slow in general
(Optimistic) Lock-free algorithms: ©

Optimistic lock-based algorithms: ©

We either need a lock-free or an optimistic lock-based algorithm

.(l)ﬂ- Vasileios Trigonakis | 12.2015 8
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

"
Parenthesis: Target platiorm
A

2-socket Intel Xeon E5-2680 v2 lvy Bridge
— 20 cores @ 2.8 GHz, 40 hyper-threads
— 25 MB LLC (per socket)
— 256GB RAM

.(Pﬂ- Vasileios Trigonakis | 12.2015 9
ECOLE POLYTECHNIQUE

EEEEEEEEEEEEEEEEE

GIIIIGII"BIII |.III|(B[| lISIS 1% llmlates [1024 elements

1% updates

e

Throughput (Mop/s)

1 10 20 30 40
Cores

-=|ock-free —lock-based —TinySTM

STM is slow and non-scalable ®
.(Pﬂ- Vasileios Trigonakis | 12.2015

FEDERALE DE LAUSANNE

A

Pattern | optimistic prepare I perform)

. (non-synchronized) (synchronized) .

optimistic prepare valldatg perform
failed detect conflicting
concurrent operations
Example find insertion spot validate
linked list (= = =~ =~)~ =~ P
insert .
Insert

Validation plays a key role in concurrent data structures
.P(IY)TﬂF Vasileios Trigonakis | 12.2015 11

EEEEEEEEEEEEEEEEE

Validation in concurrent data structures
A

* Lock-free: atomic operations
éoptimistic prepare I validate & perform (atomic ops) }

—

failed
— marking pointers, flags, helping, ...

* Lock-based: lock = validate

@)timistic prepareIIock validate performI unlock }
g :

I unlock

— flags, pointer reversal, parsing twice, ...
Validation is what differentiates algorithms

.(Pﬂ. Vasileios Trigonakis | 12.2015 12
FEDERALE DE LAUSANNE

(A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Vasileios Trigonakis | 12.2015 13

| |
Lock-free Sorted Linked List: Naive
e

Search find spot return
Insert find modification spot CAS
Delete find modification spot CAS

e e S— e e e e S— j — S—

Is this a correct (linearizable) linked list?
.ﬂlﬂ! Vasileios Trigonakis | 12.2015 14

EEEEEEEEEEEEEEEEE

n | |
Lock-free Sorted Linked List: Naive - Incorrect
e

P1: find modification spot P1:CAS
PO: Insert(x) —0- find modification spot PO:CAS

Lost update!

* What is the problem?

— Insert involves one existing node;
— Delete involves two existing nodes

How can we fix the problem?

.(I)ﬂ- Vasileios Trigonakis | 12.2015
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

15

n
Lock-free Sorted Linked List: Fix
A

* |dea! To delete a node, make it unusable first...

— Mark it for deletion so that
1. You fail marking if someone changes next pointer;
2. Aninsertion fails if the predecessor node is marked.

- In other words: delete in two steps
1. Mark for deletion; and then

2. Physical deletion 2. CAS(remove)

Delete(y) find modification spot 1. CAS(mark)

.(l)ﬂ- Vasileios Trigonakis | 12.2015 16
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

1. Failing Deletion (Marking)
A

P1: find modification spot P1:CAS(mark) = false
PO: Insert(x) PO: find modification spot P0:CAS

P1: Delete(y) V_.v_.v_.v_.v_.v_.v_.v_.y{-. 2a O e O s O
o/

 Upon failure = restart the operation
— Restarting is part of “all” state-of-the-art-data structures

.(Pﬂ- Vasileios Trigonakis | 12.2015 17
ECOLE POLYTECHNIQUE

EEEEEEEEEEEEEEEEE

1 Fﬂlllll!l |IISGI'IIOII (IIIG 10 Markell lee

G A

P1 CAS(remove)
P1: find modification spot P1:CAS(mark)

PO: Insert(x) PO: find modification spot PO:CAS - false
P1: Delete(y) ()~ ”v"v”v"v”v.”v"\/v"v"v."v

 Upon failure = restart the operation
— Restarting is part of “all” state-of-the-art-data structures

How can we implement marking?
.(I)ﬂ- Vasileios Trigonakis | 12.2015

FEDERALE DE LAUSANNE

A

* Pointers in 64 bit architectures
— Word aligned - 8 bit aligned!

| next pointer ‘ 0 ‘ 0 10

boolean mark (node t* n)
uintptr t unmarked = n->next & ~0x1L;
uintptr t marked = n->next | 0x1L;
return CAS (&n->next, unmarked, marked) == unmarked;

.(l)ﬂ- Vasileios Trigonakis | 12.2015 19
LAUSANNE

ECOLE POLYTECH
FEDERALE DE

u
Lock-free List: Putting Everything Together
A

* Traversal: traverse (requires unmarking nodes)

« Search: traverse

* Insert: traverse = CAS to insert

* Delete: traverse = CAS to mark - CAS to remove

» Garbage (marked) nodes

— Cleanup while traversing if this CAS
(helping in this course’s terms) fails??

What happers

A pragmatic implementation of lock-free linked lists
..(IY)TﬂF Vasileios Trigonakis | 12.2015 20

EEEEEEEEEEEEEEEEE

What is not Perfect with the Lock-free List?
A

1. Garbage nodes
— Increase path length; and
— Increase complexity
1f (1s marked node (n)) ..
2. Unmarking every single pointer

— Increase complexity
curr = unmark node (curr->next)

Can we simplify the design with locks?

.(l)ﬂ- Vasileios Trigonakis | 12.2015 21
FEDERALE DE LAUSANNE

| |
Llock-hased Sorted Linked List: Naive
e

Search find spot return
Insert find modification spot lock
| - IockStarget)
Delete find modification spot lock(predecessor)

Is this a correct (linearizable) linked list?
.ﬂlﬂ! Vasileios Trigonakis | 12.2015 22

EEEEEEEEEEEEEEEEE

Lock-hased List: Validate After Locking
i
find spot return

N _— - N - N _— - N N _— -

Search

validate !pred->marked && pred->next did not change
find modification spot lock

Insert
=~ mark(curr)
. o Iockgcurr)
Delete find modification spot lock(predecessor)

Ipred->marked && !curr->marked && pred->next did not change

.(l)ﬂ- Vasileios Trigonakis | 12.2015 23
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

GIIIIGII"GIII lmked lISlS 0% llmlates [1024 clements

0% updates

e

50

45
£ 40
S

Just because the lock-
based is not unmarking!

40

Cores

-=|ock-free =—lock-based

(Lesson,) Sequential complexity matters = Simplicity ©
.(l)ﬂ- Vasileios Trigonakis | 12.2015 24

u
Ontimistic Goncurrency Gontrol: Summary
A

* Lock-free: atomic operations
éoptimistic prepare I validate & perform (atomic ops) }

—

failed
— marking pointers, flags, helping, ...

* Lock-based: lock = validate

@)timistic preparellock validate performI unlock }
g :

A unlock

— flags, pointer reversal, parsing twice, ...

.(l)ﬂ- Vasileios Trigonakis | 12.2015 25
FEDERALE DE LAUSANNE

Memory Reclamation: 0GC’s Side Effect

A

* Delete a node -> free and reuse this memory
* Subset of the garbage collection problem

* Who is accessing that memory?
* Can we justdirectlydo free (node) ?

P1: free(x)

We cannot directly free the memory! Need memory reclamation

.(l)ﬂ- Vasileios Trigonakis | 12.2015 26
FEDERALE DE LAUSANNE

A

1. Reference counting
— Count how many references exist on a node

2. Hazard pointers
— Tell to others what exactly you are reading

3. Quiescent states
— Wait until it is certain than no one holds references

4. Read-Copy Update (RCU)

— Quiescent states — The extreme approach

.(l)ﬂ- Vasileios Trigonakis | 12.2015 27
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

1. Reference Gountin

A

rc_pointer

e Pointer + Counter
e Dereference:

rc_dereference (rc pointer* rcp)
atomic_increment(&rcp—>counter);
return *pointer;

e "Release™
rc _release(rc pointer* rcp)
atomic decrement (&rcp->counter);

* Free: iff counter =0

(Lesson,) Readers cannot write on the shared nodes. Why?
Bad bad bad idea: Readers write on shared nodes!

.(l)ﬂ- Vasileios Trigonakis | 12.2015 28
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

2. Hazard pointers 11/2)
e

 Reference counter > property of the node
 Hazard pointer = property of the thread |
hazard_pointer

— A Multi-Reader Single-Writer (MRSW) register -
address

* Protect:
hp protect (node* n)
hazard pointer* hp = hp get(n);
- _ @

hp->address = n; ..
Depends on

* Release: | the data
hp release (hazard pointer* hp)

hp->address = NULL;

structure type

.(I)ﬂ- Vasileios Trigonakis | 12.2015 29
ECOLE POLYTECHNIQUE

EEEEEEEEEEEEEEEEE

2. Hazard pointers 2/2)
e

* Free memory X

1. Collect all hazard pointers
hazard_pointer

2. Check if x is accessed by any thread
. o

If yes, buffer the free for later
2. If not, free the memory

 Buffering the free is implementation specific

e + |ock-free

* -not scalable
O(data structure size) hazard pointers hp protect

.(l)ﬂ- Vasileios Trigonakis | 12.2015 30
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

3. Quiescent States
e

« Keep the memory until it is certain it is not accessed
* Can be implemented in various ways

« Example implementation
search / insert / delete

gs unsafe () ; —I'maccessing shared data

as safe(); 'm not accessing shared data

return

The data written in gs [un] safe must be local-mostly

.(Pﬂ. Vasileios Trigonakis | 12.2015 31
FEDERALE DE LAUSANNE

n
3. Quiescent States: as_[unlisafe Implementation
A

* List of “thread-local” (mostly) counters

(id=0) | (id=x) | (id=y)
gs_state gs_state gs_state

* s_state (initialized to 0)
— even : in safe mode (not accessing shared data)

— odd : in unsafe mode

* gs safe / gs unsafe
ds state++;

How do we free memory?

.(l)ﬂ- Vasileios Trigonakis | 12.2015 32
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

"
3. Quiescent States: Freeing memory
A

* List of “thread-local” (mostly) counters

(id=0)
gs_state

(id = x)
gs_state

(id = y)
gs_state

* Upon gs free: Timestamp memory (vector_ts)
— Can do this for batches of frees —

* Safe to reuse the memory

vector ts_.. >> vector ts

for t 1n thread ids
if (vts mem[t] 1is odd &&
_— vts now[t] = vts mem[t])

mem return false;

return true;

—

How do the schemes we have seen perform?

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Vasileios Trigonakis | 12.2015 33

Hazard Pointers vs. Quiescent States
i

1024 elements

0% updates
12
B
g/ 8
3 6
S
3 4
=
2
. R ¢
0 5 10 15 20 25 30 35
#Threads

-B-None -A- OSBR -e-HP

Quiescent-state reclamation is as fast as it gets
..(ly)ﬂF Vasileios Trigonakis | 12.2015

34

4. Read-Copy Update (RCU)
e

e Quiescent states at their extreme
— Deletions wait all readers to reach a safe state

* |ntroduced in the Linux kernel in ~2002
— More than 10000 uses In the kernel!

 (Example) Interface
—rcu read lock(=gs unsafe)
—rcu read unlock(=gs safe)
— synchronize rcu -> waitall readers

.(l)ﬂ- Vasileios Trigonakis | 12.2015 35
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

4. Using RCU
A

« Search / Traverse * Delete
rcu read lock() ... physical deletion of x
synchronilize rcu()
rcu read unlock() free (x)
* +simple

* + read-only workloads
* - bad for writes

(PA

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Vasileios Trigonakis | 12.2015 36

"
ory Reclamation: Summary
A

* How and when to reuse freed memory

« Many techniques, no silver bullet
1. Reference counting
Hazard pointers

2
3. Quiescent states
4. Read-Copy Update (RCU)

.(l)ﬂ- Vasileios Trigonakis | 12.2015 37
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

A

* Concurrent data structures are very important

 Optimistic concurrency necessary for scalability
— Only recently a lot of active work for CDSs

* Memory reclamation is
— Inherent to optimistic concurrency;
— Adifficult problem:;
— A potential performance/scalability bottleneck

.(l)ﬂ- Vasileios Trigonakis | 12.2015 38
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

(A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Vasileios Trigonakis | 12.2015 39

