Concurrent programming:.
From theory to practice

Concurrent Algorithms 2015
Vasilelos Trigonakis

From theory to practice
Theoretical Practical Practical

From theory to practice

Theoretical Practical Practical
(design) (design) (Implementation)

« Impossibilities

« Upper/Lower bounds
« Technigues

« System models

« Correctness proofs

. Correctness

4

Design
(pseudo-code)

From theory to practice

Theoretical Practical Practical
(design) (design) (Implementation)

« Impossibilities « System models

« Upper/Lower bounds « shared memory

« Techniques « Message passing
« System models Finite memory

« Correctness proofs Practicality issues
« Correctness re-usable objects

« Performance

1 2 1 2

Design Design
(pseudo-code) (pseudo-code,

prototype)

From theory to practice

Theoretical Practical
(design) (design)

Practical
(iImplementation)

« Impossibilities « System models « Hardware
« Upper/Lower bounds « shared memory « Which atomic ops
« Technigues « Message passing « Memory consistency
« System models Finite memory « Cache coherence
« Correctness proofs « Practicality issues « Locality
« Correctness re-usable objects . Performance
. Performance . Scalability
Design Design Implementation
(pseudo-code) (pseudo-code, (code)

prototype)

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

Why do we use caching?

. Core freq: 2GHz = 0.5 ns / instr
« Core — Disk = ~ms

Why do we use caching?

Core o

« Core —» Memory =~100ns

Why do we use caching?

« Cache
- Large = slow
- Medium = medium
- Small = fast

10

Why do we use caching?

=l

« Cache

- Core —- L3 =~20ns
_ Core - L2 =~7ns

_ Core - L1 =~1ns

11

Typical server configurations

o Intel Xeon

12 cores @ 2.4GHz
| 1: 32KB

| 2. 256KB

| 3: 24MB

Memory: 256GB

(In tel® inside”

« AMD Opteron

8 cores @ 2.4GHz
| 1: 64KB

| 2: 512KB

| 3: 12MB
Memory: 256GB

OPTERON

PROCESSOR

AMDZ

12

Experiment
Throughput of accessing some memory,
depending on the memory size

13

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

14

Until ~2004: Single-cores

» Core freq: 3+GHz
T « Core — Disk
« Core —» Memory
C L2) « Cache

- Core — L2
— Core — L1

15

After ~2004: Multi-cores

m . Core freq: ~2GHz

o« Core — Disk

« Core —» Memory

« Cache

~ Core — shared L3
- Core — L2
—~ Core — L1

16

Multi-cores with private caches

Private multiple
=l ~ copies

v

L3

17

Cache coherence for consistency

Qan m — wants to write on

— wants to read

Core 0 has < and Core 1

— did Core 0 write or read <?

18

Cache-coherence principles

Core0 J} Corel
Ijﬂ - Invalidate all readers, or

— previous writer
« To perform a read

« To perform a write

- find the latest copy

19

Cache

A state diagram

. State (per cache line)
- Modified: the only dirty copy

— Exclusive: t
—~ Shared: ac
— Invalid: use

coherence with MESI

Bu Rd/l sh

d/I sh

ne only clean copy “*™
ean copy \’ oo

ess data

20

The ultimate goal for scalabllity

o Possible states

Modified: the only dirty copy

Exclusive: t
Shared: a c
Invalid: use

ne only clean copy
ean copy

ess data

« Which state is our “favorite”?

21

The ultimate goal for scalabllity

o Possible states

- Modified: the only dirty copy
- Exclusive: the only clean copy

~-Shared: a clean copy

— |Invalid: useless data

= threads can keep the data close (L1 cache)
= faster

22

Experiment
The effects of false sharing

23

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

24

Uniformity vs. non-uniformity

« Typical desktop machine

= Uniform
« Typical server machine
= non-Uniform
N

25

Latency (ns) to access data

26

Latency (ns) to access data

27

Latency (ns) to access data

28

Latency (ns) to access data

29

Latency (ns) to access data

30

Latency (ns) to access data

31

Latency (ns) to access data

32

Latency (ns) to access data

Latency (ns) to access data

Experiment
The effects of locality

35

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

Initial slides by
Tudor David

36

The Programmer’s Toolbox:
Hardware synchronization instructions

Depends on the processor
CAS generally provided ©
TAS and atomic increment not always provided

X86 processors (Intel, AMD):
— Atomic exchange, increment, decrement provided
— Memory barrier also available

Intel as of 2014 provides transactional memory

37

Example: Atomic ops In GCC

type sync fetch and OP(type *ptr, type value);
type sync OP and fetch (type *ptr, type value);
// OP in {add, sub, or,and, xor, nand}

type sync val compare and swap (type *ptr, type
oldval, type newval);
bool sync bool compare and swap (type *ptr, type

oldval, type newval) ;

__sync_synchronize(); // memory barrier

38

Intel’s transactional synchronization
extensions (TSX)

1. Hardware lock elision (HLE)

* Instruction prefixes:
XACQUIRE
XRELEASE

Example (GCC):

~_hle {acquire,release} compare exchange n{l,2,4,8}

* Try to execute critical sections without
acquiring/releasing the lock

* |If conflict detected, abort and acquire the lock
before re-doing the work

39

Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

xbegin () ;
xabort () ;
xtest () ;
xend () ;

Limitations:

Not starvation free

Transactions can be aborted various reasons
Should have a non-transactional back-up
Limited transaction size

40

Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

Example:
if (xbegin() == XBEGIN STARTED) {
counter = counter + 1;
_xend() ;
} else {

__sync fetch and add(&counter,1);

}

41

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

42

Concurrent algorithm correctness

* Designing correct concurrent algorithms:
1. Theoretical part
2. Practical part = involves implementation

The processor and the compliler optimize
assuming no concurrency!

®

43

The memory consistency model

//A, B shared variables, initially 0;

//rl, r2 — local variables;
Pl P2

A= 1; B = 1;

rl = B; r2 = A;

What values can rl and r2 take?

(assume x86 processor)

Answer:
(0,1), (1,0), (1,1) and (0,0)

44

The memory consistency model

- The order in which memory instructions appear
to execute

What would the programmer like to see?
Sequential consistency

All operations executed in some seqguential order;
Memory operations of each thread in program order,
Intuitive, but limits performance,;

45

The memory consistency model

How can the processor reorder instructions
to different memory addresses?

//A,B,C
x86 (Intel, AMD): TSO variant I/ eeloille
 Reads not reordered w.r.t. reads . ,

_ _ int xX,v,2z;
* \Writes not reordered w.r.t writes x = A
* Writes not reordered w.r.t. reads v = B;
 Reads may be reordered w.r.t. B = 3;
writes to different memory A = 2;
addresses = B
C = 4;
<z = B;

46

The memory consistency model

Single thread — reorderings transparent;

Avoid reorderings: memory barriers

e Xx86 — implicit in atomic ops;

« ‘“volatile” in Java;

 EXxpensive - use only when really necessary;

Different processors — different memory models

« e.g., ARM - relaxed memory model (anything goes!);

« VMs (e.g. JVM, CLR) have their own memory models;

47

Beware of the compller

void lock (int * some lock)
while (CAS (some lock,0,1) != 0) {}
asm volatile(“” ::: “memory”); //compiler barrier

}

void unlock (int * some lock) {
asm volatile(“” ::: “memory”); //compiler barrier
*some lock = 0;

} C "volatile” 1=

kc -)
volatile int the lock=0; Java “volatile

 The compiler can:
lock (&the lock) ; e reorder Instructions
* remove Instructions

lock (sthe lock) ; .
untock(athe_lLock) * not write values to memory *

Outline

CPU caches
Cache coherence
Placement of data

Hardware synchronization instructions
Correctness: Memory model & compiler
Performance: Programming techniques

49

Concurrent Programming Technigues

What techniques can we use to speed up our
concurrent application?

Main idea: Minimize contention on cache lines

Use case: Locks
* acquire () = lock()

unlock ()

* release()

50

TAS — The simplest lock

Test-and-Set Lock

typedef volatile uint lock t;

void acquire(lock t * some lock)
while (TAS (some lock) != 0) {}

\\ /77 o

asm volatile (:: “memory”) ;

}

void release(lock t * some lock)

A\ W/

asm volatile (:: “memory”) ;

*some lock = 0;

o1

How good Is this lock?

* A simple benchmark

 Have 48 threads continuously acquire a lock,
update some shared data, and unlock

 Measure how many operations we can do Iin a
second

Test-and-Set lock: 190K operations/second

52

How can we improve things?

Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

volid acquire(lock t * some lock) {

while (1) {
while (*some lock != 0) {}
1f (TAS (some lock) == 0) {
return;

}
}

asm volatile (™ ::: “memory”);

}

void release(lock t * some lock) {
asm volatile (" ::: “memory”);

*some lock = 0;

53

400

Ops/second (thousands)
_ _— N N w w
U o v o (& o U
o o o o o o o

o

Performance comparison

Test-and-Set

Test-and-Test-and-Set

54

But we can do even better

Avoid thundering herd:
Test-and- Test-and-Set with Back-off

void acquire(lock t * some lock) {
uint backoff = INITIAL BACKOFF;
while (1) {
while (*some lock != 0) {}
1f (TAS (some lock) == 0)
return;
} else {
lock sleep (backoff);
backoff=min (backoff*2,MAXIMUM BACKOFF) ;
}
}

asm volatile (

A\ W/

:: “memory”);

}

volid release(lock t * some lock) {
asm volatile (%’ ::: “memory”);
*some lock = 0;

800
700

v o
o O
o O

o
o

Ops/second (thousands)
N w 5N
S o
o o

100 -

Performance comparison

.

Test-and-Set

Test-and-Test-and-Set Test-and-Test-and-Set w.

backoff

56

Are these locks fair?

Processed requests per thread, Test-and-Set lock

35000

30000

25000

20000

15000

10000

Number of processed requests

5000

I 23 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Thread number

57

What If we want fairness?

Use a FIFO mechanism:

Ticket Locks
typedef ticket lock t {

volatile uint head;
volatile uint tail;

} ticket lock t;

vold acquire (ticket lock t * a lock) {

uint my ticket

fetch and inc(&(a lock->tail));

while (a lock->head != my ticket) {}

\\ 77

asm volatile (

}

“memory”) ;

void release(ticket lock t * a lock) {

asm volatile (%
a lock->head++;

“memory”) ;

58

What If we want fairness?

Processed requests per thread, Ticket Locks

35000

sysanbau passasoud jo saquunpn

I 2 3 45 6 7 8 910111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Thread number

59

Performance comparison

Can we back-off here as well?

Yes, we can:
Proportional back-off

volid acquire (ticket lock t * a lock) {

uint my ticket = fetch and inc(&(a lock->tail));

uint distance, current ticket;
while (1) {

current ticket = a lock->head;
1f (current ticket == my ticket) break;
distance = my ticket - current ticket;

1f (distance > 1)
lock sleep(distance * BASE SLEEP);
}

asm volatile (™ ::: “memory”);

}

vold release(ticket lock t * a lock) {
asm volatile (VY “memory”) ;
a lock->head++;

61

1600

Performance comparison

" 1400

c
& 1200
=
2 1000

800

600
400

Ops/second (th

N
o
o

o
|

62

Still, everyone Is spinning on the same
variable....

Use a different address for each thread:
Queue Locks

uy - SENER
run U U

leaving f
run arriving
spin spin

Use with care:
1. storage overheads
2. complexity 63

Performance comparison

64

_
o
OOOOOOON

(spuesnoyy) puodas;sdo

To summarize on locks

1. Reading before trying to write

2. Pausing when it's not our turn

3. Ensuring fairness (does not always bring ++)
4. Accessing disjoint addresses (cache lines)

More than 10x performance gain!

65

Conclusion

 Concurrent algorithm design

« Theoretical design
* Practical design (may be just as important)
* Implementation

* You need to know your hardware

* For correctness
* For performance

66

