
Concurrent programming:
From theory to practice

Concurrent Algorithms 2015
Vasileios Trigonakis

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

2

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs
 Correctness

Design
(pseudo-code)

3

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs
 Correctness

Design
(pseudo-code)

 System models
 shared memory
 message passing

 Finite memory
 Practicality issues

 re-usable objects
 Performance

Design
(pseudo-code,

prototype)
4

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs
 Correctness

Design
(pseudo-code)

 System models
 shared memory
 message passing

 Finite memory
 Practicality issues

 re-usable objects
 Performance

Design
(pseudo-code,

prototype)

 Hardware
 Which atomic ops
 Memory consistency
 Cache coherence
 Locality
 Performance
 Scalability

Implementation
(code)

5

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

6

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

7

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

Core

Disk
8

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

Core

Disk

Memory

9

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

 Cache

 Large = slow

 Medium = medium

 Small = fast

Core

Disk

Memory

Cache

10

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

 Cache

 Core → L3 = ~20ns

 Core → L2 = ~7ns

 Core → L1 = ~1ns

Core

Disk

Memory

L3

L2

L1

11

Typical server configurations

 Intel Xeon

 12 cores @ 2.4GHz

 L1: 32KB

 L2: 256KB

 L3: 24MB

 Memory: 256GB

 AMD Opteron

 8 cores @ 2.4GHz

 L1: 64KB

 L2: 512KB

 L3: 12MB

 Memory: 256GB

12

Experiment
Throughput of accessing some memory,

depending on the memory size

13

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

14

Until ~2004: Single-cores

 Core freq: 3+GHz

 Core → Disk

 Core → Memory

 Cache

 Core → L3

 Core → L2

 Core → L1

Core

Disk

Memory

L2

L1

15

After ~2004: Multi-cores

 Core freq: ~2GHz

 Core → Disk

 Core → Memory

 Cache

 Core → shared L3

 Core → L2

 Core → L1

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

16

Multi-cores with private caches

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

Private
=

multiple
copies

17

Cache coherence for consistency

Core 0 has X and Core 1

 wants to write on X

 wants to read X

 did Core 0 write or read X?

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

18

Cache-coherence principles

 To perform a write

 invalidate all readers, or

 previous writer

 To perform a read

 find the latest copy

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

19

Cache coherence with MESI

 A state diagram

 State (per cache line)

 Modified: the only dirty copy

 Exclusive: the only clean copy

 Shared: a clean copy

 Invalid: useless data

20

The ultimate goal for scalability

 Possible states

 Modified: the only dirty copy

 Exclusive: the only clean copy

 Shared: a clean copy

 Invalid: useless data

 Which state is our “favorite”?

21

The ultimate goal for scalability

 Possible states

 Modified: the only dirty copy

 Exclusive: the only clean copy

Shared: a clean copy
 Invalid: useless data

= threads can keep the data close (L1 cache)

= faster
22

Experiment
The effects of false sharing

23

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

24

Uniformity vs. non-uniformity

 Typical desktop machine

 Typical server machine

= Uniform
C C

CachesM
e

m
o

ry
M

e
m

o
ry

CachesM
e

m
o

ry C C C C

Caches

C

M
e

m
o

ry

C C C

= non-Uniform
(NUMA)

25

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

26

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

27

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

28

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

29

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

30

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

31

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

90

32

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

90 130

33

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

Conclusion: we need to take care of locality

1

7

40

80

90 130

20

34

Experiment
The effects of locality

35

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

36

Initial slides by

Tudor David

The Programmer’s Toolbox:
Hardware synchronization instructions

• Depends on the processor

• CAS generally provided 

• TAS and atomic increment not always provided

• x86 processors (Intel, AMD):
– Atomic exchange, increment, decrement provided

– Memory barrier also available

• Intel as of 2014 provides transactional memory

37

Example: Atomic ops in GCC

type __sync_fetch_and_OP(type *ptr, type value);

type __sync_OP_and_fetch(type *ptr, type value);

// OP in {add,sub,or,and,xor,nand}

type __sync_val_compare_and_swap(type *ptr, type

oldval, type newval);

bool __sync_bool_compare_and_swap(type *ptr, type

oldval, type newval);

__sync_synchronize(); // memory barrier

38

Intel’s transactional synchronization
extensions (TSX)

1. Hardware lock elision (HLE)
• Instruction prefixes:

XACQUIRE

XRELEASE

Example (GCC):
__hle_{acquire,release}_compare_exchange_n{1,2,4,8}

• Try to execute critical sections without

acquiring/releasing the lock

• If conflict detected, abort and acquire the lock

before re-doing the work
39

Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

_xbegin();

_xabort();

_xtest();

_xend();

Limitations:

• Not starvation free

• Transactions can be aborted various reasons

• Should have a non-transactional back-up

• Limited transaction size

40

Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

Example:
if (_xbegin() == _XBEGIN_STARTED){

counter = counter + 1;

_xend();

} else {

__sync_fetch_and_add(&counter,1);

}

41

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

42

Concurrent algorithm correctness

• Designing correct concurrent algorithms:
1. Theoretical part
2. Practical part  involves implementation

The processor and the compiler optimize
assuming no concurrency!



43

The memory consistency model

P1 P2

A = 1; B = 1;

r1 = B; r2 = A;

//A, B shared variables, initially 0;

//r1, r2 – local variables;

What values can r1 and r2 take?
(assume x86 processor)

Answer:
(0,1), (1,0), (1,1) and (0,0)

44

The memory consistency model

 The order in which memory instructions appear
to execute

What would the programmer like to see?

Sequential consistency

All operations executed in some sequential order;

Memory operations of each thread in program order;

Intuitive, but limits performance;

45

The memory consistency model

How can the processor reorder instructions
to different memory addresses?

x86 (Intel, AMD): TSO variant
• Reads not reordered w.r.t. reads
• Writes not reordered w.r.t writes
• Writes not reordered w.r.t. reads
• Reads may be reordered w.r.t.

writes to different memory
addresses

//A,B,C

//globals

…

int x,y,z;

x = A;

y = B;

B = 3;

A = 2;

y = A;

C = 4;

z = B;

… 46

The memory consistency model

• Single thread – reorderings transparent;

• Avoid reorderings: memory barriers

• x86 – implicit in atomic ops;

• “volatile” in Java;

• Expensive - use only when really necessary;

• Different processors – different memory models

• e.g., ARM – relaxed memory model (anything goes!);

• VMs (e.g. JVM, CLR) have their own memory models;

47

Beware of the compiler

• The compiler can:
• reorder instructions
• remove instructions
• not write values to memory

lock(&the_lock);

…

unlock(&the_lock);

void lock(int * some_lock) {

while (CAS(some_lock,0,1) != 0) {}

asm volatile(“” ::: “memory”); //compiler barrier

}

void unlock(int * some_lock) {

asm volatile(“” ::: “memory”); //compiler barrier

*some_lock = 0;

}

volatile int the_lock=0;

C ”volatile” !=
Java “volatile”

48

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

49

Concurrent Programming Techniques

• What techniques can we use to speed up our
concurrent application?

• Main idea: Minimize contention on cache lines

• Use case: Locks

• acquire() = lock()

• release() = unlock()

50

TAS – The simplest lock

Test-and-Set Lock

typedef volatile uint lock_t;

void acquire(lock_t * some_lock) {

while (TAS(some_lock) != 0) {}

asm volatile(“” ::: “memory”);

}

void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);

*some_lock = 0;

}

51

How good is this lock?

• A simple benchmark

• Have 48 threads continuously acquire a lock,
update some shared data, and unlock

• Measure how many operations we can do in a
second

Test-and-Set lock: 190K operations/second

52

How can we improve things?

Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

void acquire(lock_t * some_lock) {

while(1) {

while (*some_lock != 0) {}

if (TAS(some_lock) == 0) {

return;

}

}

asm volatile(“” ::: “memory”);

}

void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);

*some_lock = 0;

} 53

Performance comparison

0

50

100

150

200

250

300

350

400

Test-and-Set Test-and-Test-and-Set

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

54

But we can do even better

Avoid thundering herd:
Test-and-Test-and-Set with Back-off

void acquire(lock_t * some_lock) {

uint backoff = INITIAL_BACKOFF;

while(1) {

while (*some_lock != 0) {}

if (TAS(some_lock) == 0) {

return;

} else {

lock_sleep(backoff);

backoff=min(backoff*2,MAXIMUM_BACKOFF);

}

}

asm volatile(“” ::: “memory”);

}

void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);

*some_lock = 0;

}

55

Performance comparison

0

100

200

300

400

500

600

700

800

Test-and-Set Test-and-Test-and-Set Test-and-Test-and-Set w.

backoff

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

56

Are these locks fair?

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N
u

m
b

e
r

o
f

p
ro

c
e
ss

e
d

 r
e
q

u
e
st

s

Thread number

Processed requests per thread, Test-and-Set lock

57

What if we want fairness?

Use a FIFO mechanism:
Ticket Locks

typedef ticket_lock_t {

volatile uint head;

volatile uint tail;

} ticket_lock_t;

void acquire(ticket_lock_t * a_lock) {

uint my_ticket = fetch_and_inc(&(a_lock->tail));

while (a_lock->head != my_ticket) {}

asm volatile(“” ::: “memory”);

}

void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);

a_lock->head++;

} 58

What if we want fairness?

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N
u

m
b

e
r

o
f

p
ro

c
e
ss

e
d

 r
e
q

u
e
st

s

Thread number

Processed requests per thread, Ticket Locks

59

Performance comparison

0

100

200

300

400

500

600

700

800

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

60

Can we back-off here as well?

Yes, we can:
Proportional back-off

void acquire(ticket_lock_t * a_lock) {

uint my_ticket = fetch_and_inc(&(a_lock->tail));

uint distance, current_ticket;

while (1) {

current_ticket = a_lock->head;

if (current_ticket == my_ticket) break;

distance = my_ticket – current_ticket;

if (distance > 1)

lock_sleep(distance * BASE_SLEEP);

}

asm volatile(“” ::: “memory”);

}

void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);

a_lock->head++;

}

61

Performance comparison

0

200

400

600

800

1000

1200

1400

1600

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

62

Still, everyone is spinning on the same
variable….

Use a different address for each thread:
Queue Locks

1

run

2

spin

3

spin

4

arriving

4

spin

1

leaving

2

run

Use with care:
1. storage overheads
2. complexity 63

Performance comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

64

To summarize on locks

1. Reading before trying to write

2. Pausing when it’s not our turn

3. Ensuring fairness (does not always bring ++)

4. Accessing disjoint addresses (cache lines)

More than 10x performance gain!

65

Conclusion

• Concurrent algorithm design

• Theoretical design

• Practical design (may be just as important)

• Implementation

• You need to know your hardware

• For correctness

• For performance

66

