
Concurrent programming:
From theory to practice

Concurrent Algorithms 2015
Vasileios Trigonakis

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

2

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs
 Correctness

Design
(pseudo-code)

3

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs
 Correctness

Design
(pseudo-code)

 System models
 shared memory
 message passing

 Finite memory
 Practicality issues

 re-usable objects
 Performance

Design
(pseudo-code,

prototype)
4

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs
 Correctness

Design
(pseudo-code)

 System models
 shared memory
 message passing

 Finite memory
 Practicality issues

 re-usable objects
 Performance

Design
(pseudo-code,

prototype)

 Hardware
 Which atomic ops
 Memory consistency
 Cache coherence
 Locality
 Performance
 Scalability

Implementation
(code)

5

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

6

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

7

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

Core

Disk
8

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

Core

Disk

Memory

9

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

 Cache

 Large = slow

 Medium = medium

 Small = fast

Core

Disk

Memory

Cache

10

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

 Cache

 Core → L3 = ~20ns

 Core → L2 = ~7ns

 Core → L1 = ~1ns

Core

Disk

Memory

L3

L2

L1

11

Typical server configurations

 Intel Xeon

 12 cores @ 2.4GHz

 L1: 32KB

 L2: 256KB

 L3: 24MB

 Memory: 256GB

 AMD Opteron

 8 cores @ 2.4GHz

 L1: 64KB

 L2: 512KB

 L3: 12MB

 Memory: 256GB

12

Experiment
Throughput of accessing some memory,

depending on the memory size

13

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

14

Until ~2004: Single-cores

 Core freq: 3+GHz

 Core → Disk

 Core → Memory

 Cache

 Core → L3

 Core → L2

 Core → L1

Core

Disk

Memory

L2

L1

15

After ~2004: Multi-cores

 Core freq: ~2GHz

 Core → Disk

 Core → Memory

 Cache

 Core → shared L3

 Core → L2

 Core → L1

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

16

Multi-cores with private caches

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

Private
=

multiple
copies

17

Cache coherence for consistency

Core 0 has X and Core 1

 wants to write on X

 wants to read X

 did Core 0 write or read X?

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

18

Cache-coherence principles

 To perform a write

 invalidate all readers, or

 previous writer

 To perform a read

 find the latest copy

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

19

Cache coherence with MESI

 A state diagram

 State (per cache line)

 Modified: the only dirty copy

 Exclusive: the only clean copy

 Shared: a clean copy

 Invalid: useless data

20

The ultimate goal for scalability

 Possible states

 Modified: the only dirty copy

 Exclusive: the only clean copy

 Shared: a clean copy

 Invalid: useless data

 Which state is our “favorite”?

21

The ultimate goal for scalability

 Possible states

 Modified: the only dirty copy

 Exclusive: the only clean copy

Shared: a clean copy
 Invalid: useless data

= threads can keep the data close (L1 cache)

= faster
22

Experiment
The effects of false sharing

23

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

24

Uniformity vs. non-uniformity

 Typical desktop machine

 Typical server machine

= Uniform
C C

CachesM
e

m
o

ry
M

e
m

o
ry

CachesM
e

m
o

ry C C C C

Caches

C

M
e

m
o

ry

C C C

= non-Uniform
(NUMA)

25

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

26

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

27

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

28

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

29

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

30

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

31

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

90

32

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

90 130

33

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

Conclusion: we need to take care of locality

1

7

40

80

90 130

20

34

Experiment
The effects of locality

35

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

36

Initial slides by

Tudor David

The Programmer’s Toolbox:
Hardware synchronization instructions

• Depends on the processor

• CAS generally provided

• TAS and atomic increment not always provided

• x86 processors (Intel, AMD):
– Atomic exchange, increment, decrement provided

– Memory barrier also available

• Intel as of 2014 provides transactional memory

37

Example: Atomic ops in GCC

type __sync_fetch_and_OP(type *ptr, type value);

type __sync_OP_and_fetch(type *ptr, type value);

// OP in {add,sub,or,and,xor,nand}

type __sync_val_compare_and_swap(type *ptr, type

oldval, type newval);

bool __sync_bool_compare_and_swap(type *ptr, type

oldval, type newval);

__sync_synchronize(); // memory barrier

38

Intel’s transactional synchronization
extensions (TSX)

1. Hardware lock elision (HLE)
• Instruction prefixes:

XACQUIRE

XRELEASE

Example (GCC):
__hle_{acquire,release}_compare_exchange_n{1,2,4,8}

• Try to execute critical sections without

acquiring/releasing the lock

• If conflict detected, abort and acquire the lock

before re-doing the work
39

Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

_xbegin();

_xabort();

_xtest();

_xend();

Limitations:

• Not starvation free

• Transactions can be aborted various reasons

• Should have a non-transactional back-up

• Limited transaction size

40

Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

Example:
if (_xbegin() == _XBEGIN_STARTED){

counter = counter + 1;

_xend();

} else {

__sync_fetch_and_add(&counter,1);

}

41

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

42

Concurrent algorithm correctness

• Designing correct concurrent algorithms:
1. Theoretical part
2. Practical part involves implementation

The processor and the compiler optimize
assuming no concurrency!

43

The memory consistency model

P1 P2

A = 1; B = 1;

r1 = B; r2 = A;

//A, B shared variables, initially 0;

//r1, r2 – local variables;

What values can r1 and r2 take?
(assume x86 processor)

Answer:
(0,1), (1,0), (1,1) and (0,0)

44

The memory consistency model

 The order in which memory instructions appear
to execute

What would the programmer like to see?

Sequential consistency

All operations executed in some sequential order;

Memory operations of each thread in program order;

Intuitive, but limits performance;

45

The memory consistency model

How can the processor reorder instructions
to different memory addresses?

x86 (Intel, AMD): TSO variant
• Reads not reordered w.r.t. reads
• Writes not reordered w.r.t writes
• Writes not reordered w.r.t. reads
• Reads may be reordered w.r.t.

writes to different memory
addresses

//A,B,C

//globals

…

int x,y,z;

x = A;

y = B;

B = 3;

A = 2;

y = A;

C = 4;

z = B;

… 46

The memory consistency model

• Single thread – reorderings transparent;

• Avoid reorderings: memory barriers

• x86 – implicit in atomic ops;

• “volatile” in Java;

• Expensive - use only when really necessary;

• Different processors – different memory models

• e.g., ARM – relaxed memory model (anything goes!);

• VMs (e.g. JVM, CLR) have their own memory models;

47

Beware of the compiler

• The compiler can:
• reorder instructions
• remove instructions
• not write values to memory

lock(&the_lock);

…

unlock(&the_lock);

void lock(int * some_lock) {

while (CAS(some_lock,0,1) != 0) {}

asm volatile(“” ::: “memory”); //compiler barrier

}

void unlock(int * some_lock) {

asm volatile(“” ::: “memory”); //compiler barrier

*some_lock = 0;

}

volatile int the_lock=0;

C ”volatile” !=
Java “volatile”

48

Outline

 CPU caches

 Cache coherence

 Placement of data

 Hardware synchronization instructions

 Correctness: Memory model & compiler

 Performance: Programming techniques

49

Concurrent Programming Techniques

• What techniques can we use to speed up our
concurrent application?

• Main idea: Minimize contention on cache lines

• Use case: Locks

• acquire() = lock()

• release() = unlock()

50

TAS – The simplest lock

Test-and-Set Lock

typedef volatile uint lock_t;

void acquire(lock_t * some_lock) {

while (TAS(some_lock) != 0) {}

asm volatile(“” ::: “memory”);

}

void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);

*some_lock = 0;

}

51

How good is this lock?

• A simple benchmark

• Have 48 threads continuously acquire a lock,
update some shared data, and unlock

• Measure how many operations we can do in a
second

Test-and-Set lock: 190K operations/second

52

How can we improve things?

Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

void acquire(lock_t * some_lock) {

while(1) {

while (*some_lock != 0) {}

if (TAS(some_lock) == 0) {

return;

}

}

asm volatile(“” ::: “memory”);

}

void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);

*some_lock = 0;

} 53

Performance comparison

0

50

100

150

200

250

300

350

400

Test-and-Set Test-and-Test-and-Set

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

54

But we can do even better

Avoid thundering herd:
Test-and-Test-and-Set with Back-off

void acquire(lock_t * some_lock) {

uint backoff = INITIAL_BACKOFF;

while(1) {

while (*some_lock != 0) {}

if (TAS(some_lock) == 0) {

return;

} else {

lock_sleep(backoff);

backoff=min(backoff*2,MAXIMUM_BACKOFF);

}

}

asm volatile(“” ::: “memory”);

}

void release(lock_t * some_lock) {

asm volatile(“” ::: “memory”);

*some_lock = 0;

}

55

Performance comparison

0

100

200

300

400

500

600

700

800

Test-and-Set Test-and-Test-and-Set Test-and-Test-and-Set w.

backoff

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

56

Are these locks fair?

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N
u

m
b

e
r

o
f

p
ro

c
e
ss

e
d

 r
e
q

u
e
st

s

Thread number

Processed requests per thread, Test-and-Set lock

57

What if we want fairness?

Use a FIFO mechanism:
Ticket Locks

typedef ticket_lock_t {

volatile uint head;

volatile uint tail;

} ticket_lock_t;

void acquire(ticket_lock_t * a_lock) {

uint my_ticket = fetch_and_inc(&(a_lock->tail));

while (a_lock->head != my_ticket) {}

asm volatile(“” ::: “memory”);

}

void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);

a_lock->head++;

} 58

What if we want fairness?

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N
u

m
b

e
r

o
f

p
ro

c
e
ss

e
d

 r
e
q

u
e
st

s

Thread number

Processed requests per thread, Ticket Locks

59

Performance comparison

0

100

200

300

400

500

600

700

800

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

60

Can we back-off here as well?

Yes, we can:
Proportional back-off

void acquire(ticket_lock_t * a_lock) {

uint my_ticket = fetch_and_inc(&(a_lock->tail));

uint distance, current_ticket;

while (1) {

current_ticket = a_lock->head;

if (current_ticket == my_ticket) break;

distance = my_ticket – current_ticket;

if (distance > 1)

lock_sleep(distance * BASE_SLEEP);

}

asm volatile(“” ::: “memory”);

}

void release(ticket_lock_t * a_lock) {

asm volatile(“” ::: “memory”);

a_lock->head++;

}

61

Performance comparison

0

200

400

600

800

1000

1200

1400

1600

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

62

Still, everyone is spinning on the same
variable….

Use a different address for each thread:
Queue Locks

1

run

2

spin

3

spin

4

arriving

4

spin

1

leaving

2

run

Use with care:
1. storage overheads
2. complexity 63

Performance comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

O
p

s/
se

c
o

n
d

 (
th

o
u

sa
n

d
s)

64

To summarize on locks

1. Reading before trying to write

2. Pausing when it’s not our turn

3. Ensuring fairness (does not always bring ++)

4. Accessing disjoint addresses (cache lines)

More than 10x performance gain!

65

Conclusion

• Concurrent algorithm design

• Theoretical design

• Practical design (may be just as important)

• Implementation

• You need to know your hardware

• For correctness

• For performance

66

