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Why do we use caching?

. Core freq: 2GHz = 0.5 ns / instr
« Core — Disk = ~ms
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Why do we use caching?

« Cache
- Large = slow
- Medium = medium
- Small = fast
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Why do we use caching?

=l

« Cache

- Core —- L3 =~20ns
_ Core - L2 =~7ns

_ Core - L1 =~1ns
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Typical server configurations

o Intel Xeon

12 cores @ 2.4GHz
| 1: 32KB

| 2. 256KB

| 3: 24MB

Memory: 256GB

( In tel® inside”

« AMD Opteron

8 cores @ 2.4GHz
| 1: 64KB

| 2: 512KB

| 3: 12MB
Memory: 256GB

OPTERON

PROCESSOR

AMDZ
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Experiment
Throughput of accessing some memory,
depending on the memory size
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Until ~2004: Single-cores

» Core freq: 3+GHz
T « Core — Disk
« Core —» Memory
C L2 ) « Cache

- Core — L2
— Core — L1
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After ~2004: Multi-cores

m . Core freq: ~2GHz

o« Core — Disk

« Core —» Memory

« Cache

~ Core — shared L3
- Core — L2
—~ Core — L1
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Multi-cores with private caches

Private multiple
=l ~ copies

v

L3
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Cache coherence for consistency

Qan m — wants to write on

— wants to read

Core 0 has < and Core 1

— did Core 0 write or read <?
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Cache-coherence principles

Core0 J} Corel
Ijﬂ - Invalidate all readers, or

— previous writer
« To perform a read

« To perform a write

- find the latest copy
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Cache

A state diagram

. State (per cache line)
- Modified: the only dirty copy

— Exclusive: t
—~ Shared: ac
— Invalid: use

coherence with MESI

Bu Rd/l sh

d/I sh

ne only clean copy “*™
ean copy \’ oo

ess data
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The ultimate goal for scalabllity

o Possible states

Modified: the only dirty copy

Exclusive: t
Shared: a c
Invalid: use

ne only clean copy
ean copy

ess data

« Which state is our “favorite”?
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The ultimate goal for scalabllity

o Possible states

- Modified: the only dirty copy
- Exclusive: the only clean copy

~-Shared: a clean copy

— |Invalid: useless data

= threads can keep the data close (L1 cache)
= faster

22



Experiment
The effects of false sharing
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Uniformity vs. non-uniformity

« Typical desktop machine

= Uniform
« Typical server machine
= non-Uniform
N
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Latency (ns) to access data
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Experiment
The effects of locality
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The Programmer’s Toolbox:
Hardware synchronization instructions

Depends on the processor
CAS generally provided ©
TAS and atomic increment not always provided

X86 processors (Intel, AMD):
— Atomic exchange, increment, decrement provided
— Memory barrier also available

Intel as of 2014 provides transactional memory
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Example: Atomic ops In GCC

type  sync fetch and OP(type *ptr, type value);
type  sync OP and fetch (type *ptr, type value);
// OP in {add, sub, or,and, xor, nand}

type  sync val compare and swap (type *ptr, type
oldval, type newval);
bool  sync bool compare and swap (type *ptr, type

oldval, type newval) ;

__sync_synchronize(); // memory barrier
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Intel’s transactional synchronization
extensions (TSX)

1. Hardware lock elision (HLE)

* Instruction prefixes:
XACQUIRE
XRELEASE

Example (GCC):

~_hle {acquire,release} compare exchange n{l,2,4,8}

* Try to execute critical sections without
acquiring/releasing the lock

* |If conflict detected, abort and acquire the lock
before re-doing the work
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Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

xbegin () ;
xabort () ;
xtest () ;
xend () ;

Limitations:

Not starvation free

Transactions can be aborted various reasons
Should have a non-transactional back-up
Limited transaction size
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Intel’s transactional synchronization
extensions (TSX)

2. Restricted Transactional Memory (RTM)

Example:
if ( xbegin() == XBEGIN STARTED) {
counter = counter + 1;
_xend() ;
} else {

__sync fetch and add(&counter,1);

}
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Concurrent algorithm correctness

* Designing correct concurrent algorithms:
1. Theoretical part
2. Practical part = involves implementation

The processor and the compliler optimize
assuming no concurrency!

®
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The memory consistency model

//A, B shared variables, initially 0;

//rl, r2 — local variables;
Pl P2

A= 1; B = 1;

rl = B; r2 = A;

What values can rl and r2 take?

(assume x86 processor)

Answer:
(0,1), (1,0), (1,1) and (0,0)
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The memory consistency model

- The order in which memory instructions appear
to execute

What would the programmer like to see?
Sequential consistency

All operations executed in some seqguential order;
Memory operations of each thread in program order,
Intuitive, but limits performance,;
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The memory consistency model

How can the processor reorder instructions
to different memory addresses?

//A,B,C
x86 (Intel, AMD): TSO variant I/ eeloille
 Reads not reordered w.r.t. reads . ,

_ _ int xX,v,2z;
* \Writes not reordered w.r.t writes x = A
* Writes not reordered w.r.t. reads v = B;
 Reads may be reordered w.r.t. B = 3;
writes to different memory A = 2;
addresses = B
C = 4;
<z = B;
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The memory consistency model

Single thread — reorderings transparent;

Avoid reorderings: memory barriers

e Xx86 — implicit in atomic ops;

« ‘“volatile” in Java;

 EXxpensive - use only when really necessary;

Different processors — different memory models

« e.g., ARM - relaxed memory model (anything goes!);

« VMs (e.g. JVM, CLR) have their own memory models;
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Beware of the compller

void lock (int * some lock)
while (CAS (some lock,0,1) != 0) {}
asm volatile(“” ::: “memory”); //compiler barrier

}

void unlock (int * some lock) {
asm volatile(“” ::: “memory”); //compiler barrier
*some lock = 0;

} C "volatile” 1=

kc - )
volatile int the lock=0; Java “volatile

 The compiler can:
lock (&the lock) ; e reorder Instructions
* remove Instructions

lock (sthe lock) ; .
untock(athe_lLock) * not write values to memory *
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Concurrent Programming Technigues

What techniques can we use to speed up our
concurrent application?

Main idea: Minimize contention on cache lines

Use case: Locks
* acquire () = lock()

unlock ()

* release()
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TAS — The simplest lock

Test-and-Set Lock

typedef volatile uint lock t;

void acquire(lock t * some lock)
while (TAS (some lock) != 0) {}

\\ /77 o

asm volatile ( :: “memory”) ;

}

void release(lock t * some lock)

A\ W/

asm volatile ( :: “memory”) ;

*some lock = 0;

o1



How good Is this lock?

* A simple benchmark

 Have 48 threads continuously acquire a lock,
update some shared data, and unlock

 Measure how many operations we can do Iin a
second

Test-and-Set lock: 190K operations/second
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How can we improve things?

Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

volid acquire(lock t * some lock) {

while (1) {
while (*some lock != 0) {}
1f (TAS (some lock) == 0) {
return;

}
}

asm volatile (™ ::: “memory”);

}

void release(lock t * some lock) {
asm volatile (" ::: “memory”);

*some lock = 0;
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But we can do even better

Avoid thundering herd:
Test-and- Test-and-Set with Back-off

void acquire(lock t * some lock) {
uint backoff = INITIAL BACKOFF;
while (1) {
while (*some lock != 0) {}
1f (TAS (some lock) == 0)
return;
} else {
lock sleep (backoff);
backoff=min (backoff*2,MAXIMUM BACKOFF) ;
}
}

asm volatile (

A\ W/

:: “memory”);

}

volid release(lock t * some lock) {
asm volatile (%’ ::: “memory”);
*some lock = 0;
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Are these locks fair?

Processed requests per thread, Test-and-Set lock
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What If we want fairness?

Use a FIFO mechanism:

Ticket Locks
typedef ticket lock t {

volatile uint head;
volatile uint tail;

} ticket lock t;

vold acquire (ticket lock t * a lock) {

uint my ticket

fetch and inc(&(a lock->tail));

while (a lock->head != my ticket) {}

\\ 77

asm volatile (

}

“memory”) ;

void release(ticket lock t * a lock) {

asm volatile (%
a lock->head++;

“memory”) ;
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What If we want fairness?

Processed requests per thread, Ticket Locks
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Can we back-off here as well?

Yes, we can:
Proportional back-off

volid acquire (ticket lock t * a lock) {

uint my ticket = fetch and inc(&(a lock->tail));

uint distance, current ticket;
while (1) {

current ticket = a lock->head;
1f (current ticket == my ticket) break;
distance = my ticket - current ticket;

1f (distance > 1)
lock sleep(distance * BASE SLEEP);
}

asm volatile (™ ::: “memory”);

}

vold release(ticket lock t * a lock) {
asm volatile (VY “memory”) ;
a lock->head++;
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Still, everyone Is spinning on the same
variable....

Use a different address for each thread:
Queue Locks

uy - SENER
run U U

leaving f
run arriving
spin spin

Use with care:
1. storage overheads
2. complexity 63



Performance comparison
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To summarize on locks

1. Reading before trying to write

2. Pausing when it's not our turn

3. Ensuring fairness (does not always bring ++)
4. Accessing disjoint addresses (cache lines)

More than 10x performance gain!
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Conclusion

 Concurrent algorithm design

« Theoretical design
* Practical design (may be just as important)
* Implementation

* You need to know your hardware

* For correctness
* For performance
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