
 1 / 14

Transactional Memory
(design considerations primer)

Vasileios Trigonakis

 2 / 14

TM Correctness – Opacity

● Serializability

– equivalent to some serial execution
● Consistent memory view

– even aborted transactions have to observe a
consistent view of memory

T: 1 / (y - x)

 3 / 14

Transactional reads

● Visible reads

– Tx is reading object O

→ other txs can observe that Tx read O
● Invisible reads

– Tx is reading object O

→ other txs cannot observe that Tx read O
● Multiversioning

– Tx is reading object O

→ Tx finds the „correct“ version of O

 4 / 14

Visible reads –
Implementation

● tx_read(m): Inform the other txs that you read m

tx_read(m)

lockm = stm_find_lock(m);

if(!stm_read_lock(lockm))

tx_abort();

stm_read_set_add(m);

return *m; //finally read m

 5 / 14

Invisible reads –
Implementation

● tx_read(m): detect whether your reads are still
valid

tx_read(m)

for each l in stm_read_set():

if (l.version != stm_get_version(l.addr))

tx_abort();

versionm = stm_get_version(m);

stm_read_set_add(m, versionm);

return *m;

 6 / 14

Multiversioning –
Implementation

● tx_read(m): Your transaction has a version
assigned (in the beginning of the tx), find the value for
that version

tx_read(m)

my_v = stm_curr_tx_version();

(val, version) = stm_read_version(m, my_v);

if (version != my_v)

tx_abort(); // could not find correct v

stm_read_set_add(m, versionm);

return *m; If we keep the full history of objects, read-
only transctions can never be aborted!

not very suitable for
procedural languages (e.g., c)

 7 / 14

Transactional writes

● Eager writes

– grab the locks for writes directly
● Deferred (Lazy) writes

– grab all the locks together on commit time
● Undo log

– write directly to memory, keep the old values
● Buffered writes

– keep the new values in log, do not write to mem

 8 / 14

Eager writes – Implementation

● tx_write(m): grab the lock on time

tx_write(m, val)

lockm = stm_find_lock(m);

stm_write_lock(lockm);

stm_write_set_add(m);

// write or just log the write

 9 / 14

Lazy writes – Implementation

● tx_write(m): just log the write
synchronize on commit

(cannot write the value directly to memory)

tx_write(m, val)

stm_write_log_add(m, val);

 10 / 14

Undo log – Implementation

● tx_write(m): write the value to mem

(does not work with lazy writes)

tx_write(m, val)

// eager write synchronization

val_cur = stm_get_val(m);

stm_write_log_add(m, val_cur);

*m = val;

 11 / 14

Buffered writes –
Implementation

● tx_write(m): log the write, write the val to
 memory on commit

tx_write(m, val)

// eager synchornization or not

stm_write_log_add(m, val);

 12 / 14

On commit

● You might need to

– do synchronization for writes

– validate reads

– persist writes

– persist memory frees

– cleanup metadata
(locks, read/write sets, logs, allocations, etc.)

– …

 13 / 14

On abort

● You might need to

– revert memory values (writes)

– cleanup metadata
(release locks, empty read/write sets, etc.)

– revert memory allocations

– …

 14 / 14

Contention management

Who is going to be aborted on a conflict?

● Polite: abort self (the one that detected conflict)

● Aggressive: abort other(s)

● Greedy: abort newer

● …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

