
Exercise 1
04 Oct. 2016



Problem 1.a
Safe: any READ that does not overlap a WRITE returns the most recently written 
value.



Problem 1.a
Regular: any READ that overlaps a WRITE returns the value written by the last 
preceding WRITE, or any of the values written by overlapping WRITEs.

Overlapping WRITEs



Problem 1.a
Atomic: READs and WRITEs have a linearization order.

=> NOT atomic !

Linearization points?
???



Problem 1.b
None of the above (not safe).

???



Problem 1.c
Atomic



Problem 2.a
The transformation works for multi-valued registers and regular registers.

- Use an array of SRSW multi-valued 
registers

- Use an array of SRSW regular registers



Problem 2.a
For regular registers:

If Pi.Read is concurrent with some Write
- Either Reg[i].read is concurrent with 

Reg[i].write
- Or Reg[i].read is not concurrent with 

Reg[i].write
If concurrent

- Reg[i].read returns as a regular register
If not

- Either Reg[i] has been written by WRITE
- Or not
- ...



Problem 2.b
The transformation does NOT work for atomic registers.

- Use an array of SRSW atomic registers



Problem 2.b
For atomic registers:

If Pi.Read is concurrent with some Write 
- Either Reg[i].read is concurrent with 

Reg[i].write
- Or Reg[i].read is not concurrent with 

Reg[i].write
If concurrent

- Reg[i].read returns as a regular register
If not

- Either Reg[i] has been written by WRITE
- Or not
- ... ???



Problem 2.b
The transformation does NOT work for atomic registers.

Write(1) Write(2)

Read() = 2

Read() = 1

P3

P2

Reg[2].write(2) Reg[3].write(2)

Reg[2].read() = 2 Reg[3].read() = 1

P1



Problem 3.a
The transformation does NOT work for multi-valued registers.

- Use one MRSW safe 
multi-valued register

- Reg.read may return 
arbitrarily when being 
concurrent with Reg.write



Problem 3.b
The resulting register is NOT (binary MRSW) atomic.

Write(1) Write(0)

Read() = 0

Read() = 1

P3

P2

Reg.write(0)

Reg.read() = 0 Reg.read() = 1

P1


