Exercise 1
04 Oct. 2016



Problem 1.a

Safe: any READ that does not overlap a WRITE returns the most recently written
value.
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Problem 1.a

Regular: any READ that overlaps a WRITE returns the value written by the last
preceding WRITE, or any of the values written by overlapping WRITEs.
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Problem 1.a

Atomic: READs and WRITEs have a linearization order.

=> NOT atomic!
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Problem 1.b

None of the above (not safe
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Problem 1.c

Atomic
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Problem 2.a

The transformation works for multi-valued registers and regular registers.

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

Use an array of SRSW multi-valued
registers
Use an array of SRSW regular registers




Problem 2.a

For regular registers:

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

If Pi.Read is concurrent with some Write
- Either Reg[i].read is concurrent with
Regl[i].write
- Or Regqli].read is not concurrent with
Reg[i].write
If concurrent
- Regli].read returns as a regular register
If not
- Either Regq[i] has been written by WRITE
- Ornot




Problem 2.b

The transformation does NOT work for atomic registers.

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

Use an array of SRSW atomic registers




Problem 2.b

For atomic registers:

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

If Pi.Read is concurrent with some Write
- Either Reg[i].read is concurrent with
Regl[i].write
- Or Regqli].read is not concurrent with
Reg[i].write
If concurrent
- Regli].read returns as a regular register
If not
- Either Regq[i] has been written by WRITE
- Ornot
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Problem 2.b

The transformation does NOT work for atomic registers.

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);
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Problem 3.a

The transformation does NOT work for multi-valued registers.

We use one MRSW safe register
Read()

return(Reg.read());

e Write(v)
if old # v then
Reg.write(v);
old :=v;

Use one MRSW safe
multi-valued register
Reg.read may return
arbitrarily when being
concurrent with Reg.write




Problem 3.b

The resulting register is NOT (binary MRSW) atomic.

We use one MRSW safe register
Read()

return(Reg.read());

e Write(v)
if old # v then
Reg.write(v);
old :=v;

Reg.write(0)

Write(1)

\@tew)

o

Read() =0

]

Read() = 1

Reg.read() =0

] L

Reg.read() = 1




