Exercise 1
04 Oct. 2016

Problem 1.a

Safe: any READ that does not overlap a WRITE returns the most recently written
value.

, _gwa[TE(o) ?WRITEQ) | ./\;R]Tb(-

p3 —— 4% >

Problem 1.a

Regular: any READ that overlaps a WRITE returns the value written by the last
preceding WRITE, or any of the values written by overlapping WRITEs.

WRITE(1) WRITE(2) WRITE()

bl — k>
READ() = 2 SRR i Overlapping WRITEs

p3 —— 4% >

Problem 1.a

Atomic: READs and WRITEs have a linearization order.

=> NOT atomic!

WRITE(] WRITE(2) WRITE(])

— U LI >
READ() =1
P2 /7
Linearization points?
READ() = 2 READ() =1 7?7

p3 ——n. k% >

Problem 1.b

None of the above (not safe

WRITE(I WRITE(2)

)-
|
|
i
|
|

o —Y I —
> —— Y —>
|

| READ() =2

s — NN >

|
IREAD(]:2 ’)')’)
|

Tk >

Problem 1.c

Atomic

WRITE(1) WRITE(2) WRITE(]) i

o — s —
p2 77 o
l:QF,AD() =2

p3 >

Problem 2.a

The transformation works for multi-valued registers and regular registers.

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

Use an array of SRSW multi-valued
registers
Use an array of SRSW regular registers

Problem 2.a

For regular registers:

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

If Pi.Read is concurrent with some Write
- Either Reg[i].read is concurrent with
Regl[i].write
- Or Regqli].read is not concurrent with
Reg[i].write
If concurrent
- Regli].read returns as a regular register
If not
- Either Regq[i] has been written by WRITE
- Ornot

Problem 2.b

The transformation does NOT work for atomic registers.

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

Use an array of SRSW atomic registers

Problem 2.b

For atomic registers:

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

If Pi.Read is concurrent with some Write
- Either Reg[i].read is concurrent with
Regl[i].write
- Or Regqli].read is not concurrent with
Reg[i].write
If concurrent
- Regli].read returns as a regular register
If not
- Either Regq[i] has been written by WRITE
- Ornot

??77?

Problem 2.b

The transformation does NOT work for atomic registers.

We use an array of SRSW registers
Reg[1,..,N]
Read()

return (Reg[i].read());

Write(v)
forj=1 toN
Regl[j].write(v);

Reg[2].write(2) Reg[3].write(2)
Write(1) Write(2)
] 1 F
Read() = 2
[]
Read() = 1
] |

Reg[2].read() = 2

Reg[3].read() = 1

Problem 3.a

The transformation does NOT work for multi-valued registers.

We use one MRSW safe register
Read()

return(Reg.read());

e Write(v)
if old # v then
Reg.write(v);
old :=v;

Use one MRSW safe
multi-valued register
Reg.read may return
arbitrarily when being
concurrent with Reg.write

Problem 3.b

The resulting register is NOT (binary MRSW) atomic.

We use one MRSW safe register
Read()

return(Reg.read());

e Write(v)
if old # v then
Reg.write(v);
old :=v;

Reg.write(0)

Write(1)

\@tew)

o

Read() =0

]

Read() = 1

Reg.read() =0

] L

Reg.read() = 1

