Immediate Snapshot Algorithm

(a) Prove that, in the Algorithm of Slide 24, if at most x processes invoke REC_WRITE-SNAPSHOT(x, -), then at most x-1 invoke REC_WRITE-SNAPSHOT(x-1,-) at Line 12 and at least one returns a view at Line 10.

(b) Prove that the Algorithm of Slide 24 fulfills the termination, self-inclusion, containment and immediacy properties.

(c) Compute the complexity of the Algorithm of Slide 24 in terms of number of shared memory accesses.

Consensus Algorithm for 2 Processes

Suppose that 2 processes run the following algorithm:

1:	function PROPOSE(v)
2:	$est \leftarrow v$
3:	$r \leftarrow 1$
4:	while true do
5:	$view \leftarrow IS[r]$.WRITE-SNAPSHOT (s)
6:	$\mathbf{if} view = 2 \mathbf{then}$
7:	$est \leftarrow v_j$ such that $(j, v_j) \in view$ and $j \neq id$
8:	$r \leftarrow r+1$
9:	else
10:	return <i>est</i>

(a) Show that this algorithm doesn't solve consensus.

(b) Suppose that in any execution, there is a round such that the invocations of WRITE-SNAPSHOT by the two processes are not set-linearized together. Prove that this algorithm then solves consensus between the two processes.

(c) Draw the subdivided segment representing the possible states of the system after a few rounds. Then, tag the possible state of the processes with their decision values.

k-Set Agreement with Less than k crashes

Find and prove an algorithm solving the k-set agreement among n > k processes in presence of at most k-1 crashes.