
Concurrent Algorithms 2016

Final Exam

February 1st, 2017

Time: 8h15 - 11h15 (3 hours)

Instructions:

• This exam is “closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variable represents which shared object (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• You are only allowed to use additional pages handed to you upon request by the TAs.

Good luck!

Problem Max Points Score
1 2

2 1

3 2

4 2

5 2

6 1

Total 10

1



2



Problem 1 (2 points)

Write an algorithm that implements a MRMW atomic multi-valued wait-free register using (any number
of) MRSW atomic multi-valued wait-free registers.

Solution

The transformation is given in the slides on Registers.

3



4



Problem 2 (1 point)

Recall that base objects are not always correct and they may fail. In this problem, we assume that at
most t base objects may fail. There are two types of object failures:

Responsive. The object only fails once; but when it fails, it fails forever. If a process calls an operation
on a responsive failed object, it will return a specified value (⊥) and announce the process that it is faulty.
Non-responsive. In this type of failure, if a process calls an operation on a non-responsive failed object,
the object will never reply to that process.

Your tasks:

1. Implement a failure-resilient SWMR register out of t + 1 SWMR base responsive failure-prone
registers.

2. Implement a failure-resilient SWSR register out of 2t + 1 SWSR base non-responsive failure-prone
registers.

Solution

The transformations are given in the slides on faulty base objects.

5



6



Problem 3 (2 points)

An (m, n)-assignment object, where n ≥ m > 1, has n fields (for instance, an n-element array) and
two operations: assign() and read(). The assign() operation takes as arguments m values v1, ..., vm
and m indices i1, ..., im and atomically assigns value vj to array element ij, for j = 1, ..., m. The read()
operation takes an index argument i and returns the ith array element.

Your task is to provide an algorithm that solves consensus in a system of 2 processes using only
atomic (2, 3)-assignment objects and atomic registers.

Solution

Please refer to Section 3.6 of the paper ”Wait-free Synchronization” by Maurice Herlihy:

https://cs.brown.edu/˜mph/Herlihy91/p124-herlihy.pdf

7

https://cs.brown.edu/~mph/Herlihy91/p124-herlihy.pdf


8



Problem 4 (2 points)

Consider the following incorrect implementation of an obstruction-free consensus object from atomic
multi-valued MRMW shared registers in a system of n processes. A process’ id is known to itself as i.

Using: an array of atomic multi-valued MRMW shared registers T[1, 2, ..., n],
initialized to 0;

Using: an array of atomic multi-valued MRMW shared registers V[1, 2, ..., n],
initialized to (⊥, 0);

propose(v) {
ts := i;
while (true) do{

T[i].write(ts);

maxts := 0;
val := ⊥;
for j = 1 to n do

(t, vt) := V[j].read();
if maxts < t then

maxts := t;
val := vt;

if val = ⊥ then val := v;

maxts := 0;
for j = 1 to n do

t := T[j].read();
if maxts < t then maxts := t;

if ts = maxts then
V[i].write(val, ts);
return(val);

ts := ts + n;
}

}

Recall that obstruction-free consensus ensures the property of obstruction-freedom instead of wait-
freedom. Your tasks:

1. Explain what is obstruction-freedom and what is the difference between obstruction-freedom,
lock-freedom and wait-freedom.

2. Answer whether the implementation satisfies obstruction-freedom. Justify your answer.

3. Answer which property of obstruction-free consensus the implementation violates. Give an
execution that shows the implementation indeed violates that property.

Solution

Let a correct process be a process that does not crash. Then obstruction-freedom stipulates the following:

9



• An implementation (of a shared object) is obstruction-free if any of its operations returns a
response if it is eventually executed without concurrency by a correct process.

Wait-freedom is stronger: any correct process that executes an operation eventually returns a response.
The difference is concurrency. Obstruction-freedom ensures termination in an obstruction-free execution,
i.e., assuming that eventually at most one process is taking steps. However, in other executions, an
obstruction-free implementation can never termiante.

The implementation is obstruction-free. Suppose that eventually only process P is taking steps. Then
eventually P finds its local timestamp ts is the highest among all the values in the registers in array T,
and then returns a value.

Now we give an example execution where the implementation violates agreement, which shows the
implementation is incorrect. Figure ?? illustrates the example execution. Assume two processes P1 and
P2.

1. P1 proposes some value v1. P1 executes until the condition ts = maxts. P1 checks the condition to
be true. Then P1 is suspended.

2. P2 proposes some value v2. P2 executes to the end. We note that in the first loop, P2 sees that each
cell of an array V is (⊥, 0) and thus P2 assigns v2 to val after the first loop. Then P2 decides v2.

3. P1 now continues and decides v1.

The example execution breaks agreement as P1 and P2 returns their own proposals, which can be
different.

Figure 1: Example execution of an incorrect implementation of obstruction-free consensus

10



11



Problem 5 (2 points)

Recall that a weak counter is a shared object that provides a single operation wInc which returns an
integer. Operation wInc has the following weak increment property:

• If one operation wInc1 precedes another wInc2 (i.e., wInc1 ends before wInc2 starts), the value
returned by the later operation wInc2 must be larger than the value returned by the earlier one
wInc1.

We note that two concurrent wInc operations may return the same value.
For this problem, we examine an incorrect implementation of the weak counter object with anony-

mous processes. The pseudocode is as follows.

Using: an infinite array of atomic binary MRMW shared registers R[1, 2, ...],
initialized to 0;

Using: an atomic multi-valued MRMW shared register L, initialized to 0;

wInc() {
k := 1;
l := L.read();
t := l;
while (R[k].read() 6= 0) do

if (L.read() 6= l) then
l := L.read();
t := max(t, l);
return(t);

k := k + 1;
R[k].write(1);
L.write(k);
return(k);

}

The number of processes is n and known to every process. Assume that n ≥ 2. Explain why the
implementation is incorrect. Your tasks:

1. Answer whether the implementation above is an anonymous implementation or not. Justify your
answer.

2. Answer which property of the weak counter shared object with anonymous processes the im-
plementation violates. Give an execution that shows the implementation indeed violates that
property.

Solution

The implementation violates weak increment. We show a counter-example later.
The pseudocode is an anonymous implementation. Recall that in an anonymous system, a collection

of n processes execute identical algorithms; in particular, the processes do not have identifiers.
Now we give an example execution where the implementation violates weak increment, which shows

the implementation is incorrect. Figure ?? illustrates the example execution. Assume two processes P1
and P2.

1. P1 reads R[1] and finds it 0. P1 skips the loop. Then P1 is suspended.

12



2. P2 reads R[1] and also finds it 0. P2 executes wInc to the end and returns 1.

3. P2 reads R[1], finds it 1, and then reads R[2] and finds it 0. P2 executes wInc to the end and returns
2.

4. P2 reads L to l and thus t = l = 2. P2 reads R[1] and finds it 1. P2 enters the loop. Then P2 is
suspended.

5. P1 now continues and writes 1 to R[1] and L.

6. P2 now continues. P2 checks the condition L.read() 6= l and finds it true. Then P2 reads L to l and
thus t = 2, l = 1. P2 returns 2.

The example execution breaks weak increment as P2 has two operations, one preceding the other, which
return the same value.

Figure 2: Example execution of an incorrect anonymous implementation of weak counter

13



14



Problem 6 (1 point)

Recall that consensus is a shared object that has a single operation propose and satisfies agreement,
validity, and termination. In this problem, we consider a shared object called weak agreement.

Weak agreement also has a single operation propose. Each process p proposes a value v. If the
operation returns d to p, then we say that p decides d and decision d consists of a pair (dec, val) where
dec can be either commit or suggest. Weak agreement satisfies the following properties:

• Validity: any val in a decision is a value proposed by some process.

• Weak agreement: if any process decides (commit, v), then every process (that does not crash)
decides (commit, v) or (suggest, v).

• Commitment: if every process proposes the same value v and every process decides, then at least
one process decides (commit, v).

• Termination: every process (that does not crash) eventually decides.

Your tasks:

1. Give the sequential specification of a snapshot shared object.

2. Give an algorithm that implements weak agreement using (any number of) snapshot shared
objects and (any number of) atomic multi-valued MRMW shared registers. Justify your answer.
(Hint: there is a solution using only two snapshot shared objects.)

Solution

A snapshot object can be seen as a vector of n elements. It has two operations: update(i, v) and snapshot().
Operation update takes a position i and a value v as arguments and updates the ith element of the vector
to v. Operation snapshot returns a vector of n values. The sequential specification of the snapshot object
is defined as a set of sequential histories of update and snapshot operations. In every such sequential
history, each position i of the vector returned by every snapshot operation contains the argument of last
preceding update operation (if any, or the initial value ⊥ otherwise).

Here is a possible algorithm that implements weak agreement using only two snapshot shared
objects.

Using two snapshot shared objects: S 1 and S 2 of size n, each element of which is initialized to ⊥;
Using two local array of registers: ai and bi of size n;

propose(v){
S 1.update(i, v);
ai := S 1.snapshot();
if every non-⊥ value in ai is v or every value in ai is ⊥ then

x := (commit, v);
else

x := (suggest, v);
S 2.update(i, x);
bi := S 2.snapshot();
if every value in bi is equal to (commit, v) then

return (commit, v);
if some value in bi is equal to (commit, v) then

15



return (suggest, v);
return (suggest, v);

}

It is easy to see that termination and validity are satisfied. For weak agreement, if some process P
decides (commit, v), then P finds that every value in bi is (commit, v), which means that every process
updates S2. Then for any other process Q, when Q decides, Q sees at least one (commit, v) in bi, which
is updated by Q itself into S2. Thus Q decides either (commit, v) or (suggest, v). For commitment, if
every process proposes the same value v and every process decides, then every process eventually
updates S1 with (commit, v). Then the process that checks the condition “every value in bi is equal to
(commit, v)” must find the condition to be true and thus returns (commit, v).

16



17



18



19


