The Limitations of Registers (cont'd)

Julien Stainer

Concurrent Algorithms

$$
\begin{aligned}
& \text { Distributed Programming Laboratory } \\
& \text { julien.stainer@epfl.ch }
\end{aligned}
$$

LPD Distributed Programming Laboratory

Outline

(1) Consensus from Stacks and Registers
(2) Immediate Snapshots
(3) The Iterated Immediate Snapshot Model
(4) Set Agreement in $\mathcal{I I S}$
(5) k-Set Agreement from Registers

Table of Contents

(1) Consensus from Stacks and Registers

Problem Statement
The Case of Two Processes
The Case of Three Processes
(2) Immediate Snapshots
(3) The Iterated Immediate Snapshot Model
(4) Set Agreement in IIS
(5) k-Set Agreement from Registers

Problem Statement

Is it possible to wait-free implement a consensus object from stacks and registers in a system of 2 processes?

Consensus

A consensus object offers an operation $\operatorname{PrOPOSE}(v)$ that returns a value. It fulfills the following properties:

Termination Any invocation of PROPOSE by a correct process terminates.

Consensus

A consensus object offers an operation $\operatorname{PrOPOSE}(v)$ that returns a value. It fulfills the following properties:
Termination Any invocation of Propose by a correct process terminates.

Agreement At most one value is decided.

Consensus

A consensus object offers an operation $\operatorname{PrOPOSE}(v)$ that returns a value. It fulfills the following properties:
Termination Any invocation of Propose by a correct process terminates.

Agreement At most one value is decided.
Validity A decided value is a proposed value.

Two Processes Consensus from a Stack and Registers

```
1: initialization
2: \(\quad R E G[0] \leftarrow \perp ; R E G[1] \leftarrow \perp\)
3: \(\quad\) S.push(loser); S.push(winner)
4: operation PROPOSE( \(v\) )
5: \(\quad R E G[i d] \leftarrow v\)
6: \(\quad\) if \(S \cdot p o p()=\) winner then
7: return \(v\)
8: else
9: return \(R E G[1-i d]\)
```


The Case of Three Processes

- With 3 processes, the losers cannot easily know which value to adopt.

The Case of Three Processes

- With 3 processes, the losers cannot easily know which value to adopt.
- Even with several stacks and more registers, how to organize?

Problem Statement

Is it possible to wait-free implement a consensus object from stacks and registers in a system of 3 processes?

Structure of the Proof

- Suppose that there exists an algorithm solving 3 processes consensus from stacks and registers.

Structure of the Proof

- Suppose that there exists an algorithm solving 3 processes consensus from stacks and registers.
- Show that there is a schedule in which a process takes an infinite number of steps but does not decide.

Structure of the Proof

- Suppose that there exists an algorithm solving 3 processes consensus from stacks and registers.
- Show that there is a schedule in which a process takes an infinite number of steps but does not decide.
- This contradicts the termination property. Consequently, there is no such algorithm.

Bivalent Initial Configuration

Lemma 1
The initial configuration $C(0,1,0)$ is bivalent.

Bivalent Initial Configuration

Lemma 1
The initial configuration $C(0,1,0)$ is bivalent.

- Starting from $C(0,1,0)$, if p_{1} executes alone, it has to decide 0 because it cannot distinguish between this execution and the one starting from $C(0,0,0)$ where it executes alone.

Bivalent Initial Configuration

Lemma 1

The initial configuration $C(0,1,0)$ is bivalent.

- Starting from $C(0,1,0)$, if p_{1} executes alone, it has to decide 0 because it cannot distinguish between this execution and the one starting from $C(0,0,0)$ where it executes alone.
- Starting from $C(0,1,0)$, if p_{2} executes alone, it has to decide 1 because it cannot distinguish between this execution and the one starting by $C(1,1,1)$ where it executes alone.

Bivalent Initial Configuration

Lemma 1

The initial configuration $C(0,1,0)$ is bivalent.

- Starting from $C(0,1,0)$, if p_{1} executes alone, it has to decide 0 because it cannot distinguish between this execution and the one starting from $C(0,0,0)$ where it executes alone.
- Starting from $C(0,1,0)$, if p_{2} executes alone, it has to decide 1 because it cannot distinguish between this execution and the one starting by $C(1,1,1)$ where it executes alone.
- Consequently, $C(0,1,0)$ is bivalent.

Maximal Schedule Leading to a Bivalent Configuration

- Consider a schedule Σ such that

Maximal Schedule Leading to a Bivalent Configuration

- Consider a schedule Σ such that
- $\Sigma(C(0,1,0))$ is bivalent;

Maximal Schedule Leading to a Bivalent Configuration

- Consider a schedule Σ such that
- $\Sigma(C(0,1,0))$ is bivalent;
- $\forall i \in\{1,2,3\}: p_{i}(\Sigma(C(0,1,0)))$ is monovalent.

Maximal Schedule Leading to a Bivalent Configuration

- Consider a schedule Σ such that
- $\Sigma(C(0,1,0))$ is bivalent;
- $\forall i \in\{1,2,3\} \quad: p_{i}(\Sigma(C(0,1,0)))$ is monovalent.
- Necessarily, there are two processes p_{i} and p_{j} such that $p_{i}(\Sigma(C(0,1,0)))$ is 0 -valent while $p_{j}(\Sigma(C(0,1,0)))$ is 1 -valent.

Maximal Schedule Leading to a Bivalent Configuration

- Consider a schedule Σ such that
- $\Sigma(C(0,1,0))$ is bivalent;
- $\forall i \in\{1,2,3\} \quad: p_{i}(\Sigma(C(0,1,0)))$ is monovalent.
- Necessarily, there are two processes p_{i} and p_{j} such that $p_{i}(\Sigma(C(0,1,0)))$ is 0 -valent while $p_{j}(\Sigma(C(0,1,0)))$ is 1 -valent.
- Let $o p_{i}\left(\right.$ resp. $\left.o p_{j}\right)$ be the next step executed by p_{i} (resp. p_{j}) in $\Sigma(C(0,1,0))$.

Maximal Schedule Leading to a Bivalent Configuration

- Consider a schedule Σ such that
- $\Sigma(C(0,1,0))$ is bivalent;
- $\forall i \in\{1,2,3\} \quad: p_{i}(\Sigma(C(0,1,0)))$ is monovalent.
- Necessarily, there are two processes p_{i} and p_{j} such that $p_{i}(\Sigma(C(0,1,0)))$ is 0 -valent while $p_{j}(\Sigma(C(0,1,0)))$ is 1-valent.
- Let $o p_{i}\left(\right.$ resp. $\left.o p_{j}\right)$ be the next step executed by p_{i} (resp. p_{j}) in $\Sigma(C(0,1,0))$.
- If $o p_{i}$ and $o p_{j}$ commute, then processes cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ while one is 0 -valent and the other is 1 -valent. This is a contradiction.

Possible Values for $o p_{i}$ and $o p_{j}$

- Since $o p_{i}$ and $o p_{j}$ do not commute, they are both invocations of operations on the same stack or register.

Possible Values for $o p_{i}$ and $o p_{j}$

- Since $o p_{i}$ and $o p_{j}$ do not commute, they are both invocations of operations on the same stack or register.
- Two reads on the same register commute, so if $o p_{i}$ and $o p_{j}$ are both accesses to the same register, at least one of them is a write.

Possible Values for $o p_{i}$ and $o p_{j}$

- Since $o p_{i}$ and $o p_{j}$ do not commute, they are both invocations of operations on the same stack or register.
- Two reads on the same register commute, so if $o p_{i}$ and $o p_{j}$ are both accesses to the same register, at least one of them is a write.
- If they are both writes to the same register, then p_{i} cannot distinguish between $p_{i}(\Sigma(C(0,1,0)))$ and $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$, while one is 0 -valent and the other 1 -valent. This is a contradiction.

Possible Values for $o p_{i}$ and $o p_{j}$

- If $o p_{i}$ is a write to a register and $o p_{j}$ a read to the same register, then p_{i} cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{i}(\Sigma(C(0,1,0)))$ while the former is 1 -valent and the latter is 0 -valent. This is a contradiction.

Possible Values for $o p_{i}$ and $o p_{j}$

- If $o p_{i}$ is a write to a register and $o p_{j}$ a read to the same register, then p_{i} cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{i}(\Sigma(C(0,1,0)))$ while the former is 1 -valent and the latter is 0 -valent. This is a contradiction.
- Symmetric arguments apply when inverting the valence of $p_{i}(\Sigma(C(0,1,0)))$ and $p_{j}(\Sigma(C(0,1,0)))$ or when op p_{i} and $o p_{j}$ are respectively a read and a write to the same register.

Possible Values for $o p_{i}$ and $o p_{j}$

- If $o p_{i}$ is a write to a register and $o p_{j}$ a read to the same register, then p_{i} cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{i}(\Sigma(C(0,1,0)))$ while the former is 1 -valent and the latter is 0 -valent. This is a contradiction.
- Symmetric arguments apply when inverting the valence of $p_{i}(\Sigma(C(0,1,0)))$ and $p_{j}(\Sigma(C(0,1,0)))$ or when op p_{i} and $o p_{j}$ are respectively a read and a write to the same register.
- It follows that $o p_{i}$ and $o p_{j}$ are necessarily invocations of operations on the same stack.

Possible Values for $o p_{i}$ and $o p_{j}$

- If both $o p_{i}$ and $o p_{j}$ are pop operations on the same stack, then $p_{k}, k \in\{1,2,3\} \backslash\{i, j\}$ cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ while one is 0 -valent and the other 1 -valent. This is a contradiction.

Possible Values for $o p_{i}$ and $o p_{j}$

- If both $o p_{i}$ and $o p_{j}$ are pop operations on the same stack, then $p_{k}, k \in\{1,2,3\} \backslash\{i, j\}$ cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ while one is 0 -valent and the other 1 -valent. This is a contradiction.
- If $o p_{i}$ is a push operation and $o p_{j}$ a pop operation on the same stack, then we have two cases:

Possible Values for $o p_{i}$ and $o p_{j}$

- If both $o p_{i}$ and $o p_{j}$ are pop operations on the same stack, then $p_{k}, k \in\{1,2,3\} \backslash\{i, j\}$ cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ while one is 0 -valent and the other 1 -valent. This is a contradiction.
- If $o p_{i}$ is a push operation and $o p_{j}$ a pop operation on the same stack, then we have two cases:
- If in $\Sigma(C(0,1,0))$ the stack is empty, then p_{k} cannot distinguish between $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ and $\left.p_{j}(\Sigma(C(0,1,0)))\right)$ while the former is 0 -valent and the latter is 1 -valent. This is a contradiction.

Possible Values for $o p_{i}$ and $o p_{j}$

- If both $o p_{i}$ and $o p_{j}$ are pop operations on the same stack, then $p_{k}, k \in\{1,2,3\} \backslash\{i, j\}$ cannot distinguish between $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ and $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ while one is 0 -valent and the other 1 -valent. This is a contradiction.
- If $o p_{i}$ is a push operation and $o p_{j}$ a pop operation on the same stack, then we have two cases:
- If in $\Sigma(C(0,1,0))$ the stack is empty, then p_{k} cannot distinguish between $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ and $\left.p_{j}(\Sigma(C(0,1,0)))\right)$ while the former is 0 -valent and the latter is 1 -valent. This is a contradiction.
- If in $\Sigma(C(0,1,0))$ the stack is not empty, then we need a further analysis.

Possible Values for $o p_{i}$ and $o p_{j}$

In this case $o p_{i}$ is a push operation and $o p_{j}$ a pop operation on the same stack that is not empty in $\Sigma(C(0,1,0))$.

- If p_{i} runs alone from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$, it necessarily eventually pops the item z that was on top of the stack in $\Sigma(C(0,1,0))$ or it would not distinguish between the situation when it runs alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ while it has to decide 0 in the first situation and 1 in the second.

Possible Values for $o p_{i}$ and $o p_{j}$

In this case $o p_{i}$ is a push operation and $o p_{j}$ a pop operation on the same stack that is not empty in $\Sigma(C(0,1,0))$.

- If p_{i} runs alone from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$, it necessarily eventually pops the item z that was on top of the stack in $\Sigma(C(0,1,0))$ or it would not distinguish between the situation when it runs alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ while it has to decide 0 in the first situation and 1 in the second.
- Let Σ_{i} be the schedule in which p_{i} executes solo from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ until just after it pops the item z.

Possible Values for $o p_{i}$ and $o p_{j}$

In this case $o p_{i}$ is a push operation and $o p_{j}$ a pop operation on the same stack that is not empty in $\Sigma(C(0,1,0))$.

- If p_{i} runs alone from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$, it necessarily eventually pops the item z that was on top of the stack in $\Sigma(C(0,1,0))$ or it would not distinguish between the situation when it runs alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ while it has to decide 0 in the first situation and 1 in the second.
- Let Σ_{i} be the schedule in which p_{i} executes solo from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ until just after it pops the item z.
- Since until this pop operation p_{i} cannot distinguish if it started from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$ or $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$, it also takes the same steps while running alone from the later configuration. The only difference is the value it pops at the last step of Σ_{i}.

Possible Values for $o p_{i}$ and $o p_{j}$

- p_{k} cannot distinguish between $\Sigma_{i}\left(p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)\right)$ and $\Sigma_{i}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)$ because the stack is in the same state in both configurations. The former configuration being 0 -valent while the latter is 1 -valent, this is a contradiction.

Possible Values for $o p_{i}$ and $o p_{j}$

- p_{k} cannot distinguish between $\Sigma_{i}\left(p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)\right)$ and $\Sigma_{i}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)$ because the stack is in the same state in both configurations. The former configuration being 0 -valent while the latter is 1 -valent, this is a contradiction.
- The same reasoning applies if the roles of p_{i} and p_{j} swapped.

Possible Values for $o p_{i}$ and $o p_{j}$

- If $o p_{i}$ and $o p_{j}$ are both push operations on the same stack, then, when running alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$, p_{i} necessarily eventually pops the item it pushed at op or it would not be able to distinguish this execution from the one when it runs alone from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$.

Possible Values for $o p_{i}$ and $o p_{j}$

- If $o p_{i}$ and $o p_{j}$ are both push operations on the same stack, then, when running alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$, p_{i} necessarily eventually pops the item it pushed at $o p_{i}$ or it would not be able to distinguish this execution from the one when it runs alone from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$.
- Let Σ_{i}^{\prime} be the schedule in which p_{i} executes alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ until just after it pops the value pushed by $o p_{i}$.

Possible Values for $o p_{i}$ and $o p_{j}$

- If $o p_{i}$ and $o p_{j}$ are both push operations on the same stack, then, when running alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$, p_{i} necessarily eventually pops the item it pushed at $o p_{i}$ or it would not be able to distinguish this execution from the one when it runs alone from $p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)$.
- Let Σ_{i}^{\prime} be the schedule in which p_{i} executes alone from $p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)$ until just after it pops the value pushed by $o p_{i}$.
- With the same reasoning, starting from $\Sigma_{i}^{\prime}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)$ or from $\Sigma_{i}^{\prime}\left(p_{j}\left(p_{i}(\Sigma(C(0,1,0)))\right)\right), p_{j}$ necessarily take the same steps until it eventually pops the value pushed by $o p_{j}$ (in the first situation) or by $o p_{i}$ (in the second one). Let us denote Σ_{j}^{\prime} its steps until just after this pop.

Possible Values for $o p_{i}$ and $o p_{j}$

- p_{k} is not able to distinguish between
$\Sigma_{j}^{\prime}\left(\Sigma_{i}^{\prime}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)\right)$ and
$\Sigma_{j}^{\prime}\left(\Sigma_{i}^{\prime}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)\right)$. This is a contradiction because the former is 1 -valent while the latter is 0 -valent.

Possible Values for $o p_{i}$ and $o p_{j}$

- p_{k} is not able to distinguish between
$\Sigma_{j}^{\prime}\left(\Sigma_{i}^{\prime}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)\right)$ and
$\Sigma_{j}^{\prime}\left(\Sigma_{i}^{\prime}\left(p_{i}\left(p_{j}(\Sigma(C(0,1,0)))\right)\right)\right)$. This is a contradiction because the former is 1 -valent while the latter is 0 -valent.
- In all cases we reach a contradiction. It follows that there exists a schedule such that a process takes an infinite number of steps without deciding, which concludes the proof.

It is impossible to wait-free
implement consensus among 3
processes from stacks and registers.

Table of Contents

(1) Consensus from Stacks and Registers
(2) Immediate Snapshots

Immediate Snapshot Specification Set-Linearizability Immediate Snapshot Algorithm
(3) The Iterated Immediate Snapshot Model
(4) Set Agreement in IIS
(5) k-Set Agreement from Registers

Immediate Snapshot Specification

An immediate snapshot object offers an operation WRITE-SNAPSHOT(v) that can be invoked at most once by each process. It returns a set view of pairs $\left(j, v_{j}\right)$ where j is a process identifier and v_{j} a value. If we denote by $v i e w_{i}$ the set returned to process i, we have the following properties:
Termination Any invocation of WRITE-SNAPSHOT by a correct process terminates.

Immediate Snapshot Specification

An immediate snapshot object offers an operation WRITE-SNAPSHOT(v) that can be invoked at most once by each process. It returns a set view of pairs $\left(j, v_{j}\right)$ where j is a process identifier and v_{j} a value. If we denote by $v_{i e w}$ the set returned to process i, we have the following properties:
Termination Any invocation of WRITE-SNAPSHOT by a correct process terminates.
Validity If $\left(j, v_{j}\right) \in v i e w_{i}$, then process j invoked WRITE-SNAPSHOT $\left(v_{j}\right)$.

Immediate Snapshot Specification

An immediate snapshot object offers an operation WRITE-SNAPSHOT(v) that can be invoked at most once by each process. It returns a set view of pairs $\left(j, v_{j}\right)$ where j is a process identifier and v_{j} a value. If we denote by $v_{i e w}$ the set returned to process i, we have the following properties:
Termination Any invocation of WRITE-SNAPSHOT by a correct process terminates.
Validity If $\left(j, v_{j}\right) \in v i e w_{i}$, then process j invoked WRITE-SNAPSHOT $\left(v_{j}\right)$.
Self-Inclusion $\left(i d, v_{i d}\right) \in$ view $_{i d}$.

Immediate Snapshot Specification

An immediate snapshot object offers an operation WRITE-SNAPSHOT(v) that can be invoked at most once by each process. It returns a set view of pairs $\left(j, v_{j}\right)$ where j is a process identifier and v_{j} a value. If we denote by $v_{i e w}$ the set returned to process i, we have the following properties:
Termination Any invocation of WRITE-SNAPSHOT by a correct process terminates.
Validity If $\left(j, v_{j}\right) \in v i e w_{i}$, then process j invoked WRITE-SNAPSHOT $\left(v_{j}\right)$.
Self-Inclusion $\left(i d, v_{i d}\right) \in$ view $_{i d}$.
Containment $\forall i, j: v i e w_{i} \subseteq \operatorname{view}_{j} \vee$ view $_{j} \subseteq$ view $_{i}$.

Immediate Snapshot Specification

An immediate snapshot object offers an operation WRITE-SNAPSHOT(v) that can be invoked at most once by each process. It returns a set view of pairs $\left(j, v_{j}\right)$ where j is a process identifier and v_{j} a value. If we denote by $v_{i e w}$ the set returned to process i, we have the following properties:
Termination Any invocation of WRITE-SNAPSHOT by a correct process terminates.
Validity If $\left(j, v_{j}\right) \in$ view $_{i}$, then process j invoked WRITE-SNAPSHOT $\left(v_{j}\right)$.
Self-Inclusion $\left(i d, v_{i d}\right) \in$ view $_{i d}$.
Containment $\forall i, j: v i e w_{i} \subseteq$ view $_{j} \vee$ view $_{j} \subseteq$ view $_{i}$. Immediacy $\forall i, j:\left(j, v_{j}\right) \in$ view $_{i} \Longrightarrow$ view $_{j} \subseteq$ view $_{i}$.

Set Linarizability

Theorem

$$
\left(\left(i, v_{i}\right) \in \operatorname{view}_{j} \wedge\left(j, v_{j}\right) \in \operatorname{view}_{i}\right) \Longrightarrow \operatorname{view}_{i}=\operatorname{view}_{j}
$$

Set Linarizability

Theorem

$$
\left(\left(i, v_{i}\right) \in \operatorname{view}_{j} \wedge\left(j, v_{j}\right) \in \operatorname{view}_{i}\right) \Longrightarrow \operatorname{view}_{i}=\operatorname{view}_{j}
$$

Consequence
The calls to an immediate snapshot object can be set-linearized by ordering the processes according to the size of their views.

Set-Linearization: Examples

One by one:
view $_{1}=\left\{\left(1, v_{1}\right)\right\} \subsetneq$ view $_{2}=\left\{\left(1, v_{1}\right),\left(2, v_{2}\right)\right\} \subsetneq$ view $_{3}=$ $\left\{\left(1, v_{1}\right),\left(2, v_{2}\right),\left(3, v_{3}\right)\right\}$

Two then one:
view $_{1}=$ view $_{2}=\left\{\left(1, v_{1}\right),\left(2, v_{2}\right)\right\} \subsetneq$ view $_{3}=$ $\left\{\left(1, v_{1}\right),\left(2, v_{2}\right),\left(3, v_{3}\right)\right\}$

Three together:
view $_{1}=$ view $_{2}=$ view $_{3}=\left\{\left(1, v_{1}\right),\left(2, v_{2}\right),\left(3, v_{3}\right)\right\}$

Immediate Snapshot Algorithm

1: initialization
2: $\quad \operatorname{REG}[1, \ldots, n][1, \ldots, n] \leftarrow[[\perp, \ldots, \perp], \ldots,[\perp, \ldots, \perp]]$
3: operation WRITE-SNAPSHOT(v)
4: return REC_WRITE-SNAPSHOT (n, v)
5: operation REC_WRITE-SNAPSHOT (x, v)
6: $\quad \operatorname{REG}[x][i d] \leftarrow v$
7: \quad for $i \in\{1, \ldots, n\}$ do $\operatorname{scan}[j] \leftarrow R E G[x][j]$ end for
8: \quad view $\leftarrow\{(j, \operatorname{scan}[j]) \mid \operatorname{scan}[j] \neq \perp\}$
9: \quad if $|v i e w|=x$ then
10: return view
11: else
12: return REC_WRITE-SNAPSHOT $(x-1, v)$

Table of Contents

(1) Consensus from Stacks and Registers
(2) Immediate Snapshots
(3) The Iterated Immediate Snapshot Model

Computation Model
Equivalence Theorem
(4) Set Agreement in IIS
(5) k-Set Agreement from Registers

The Iterated Immediate Snapshot Model

- Processes execute a sequence of asynchronous rounds.

The Iterated Immediate Snapshot Model

- Processes execute a sequence of asynchronous rounds.
- During each round, a process that has not crashed invokes WRITE-SNAPSHOT(s) to write its current state in the immediate snapshot object $I S[r]$ associated to the round, and to collect the states of other processes.

The Iterated Immediate Snapshot Model

- Processes execute a sequence of asynchronous rounds.
- During each round, a process that has not crashed invokes WRITE-SNAPSHOT(s) to write its current state in the immediate snapshot object $I S[r]$ associated to the round, and to collect the states of other processes.
- It then updates its state to include the knowledge it has gained on the state of other processes and proceeds to the next round.

The Iterated Immediate Snapshot Model

- Processes execute a sequence of asynchronous rounds.
- During each round, a process that has not crashed invokes WRITE-SNAPSHOT(s) to write its current state in the immediate snapshot object $I S[r]$ associated to the round, and to collect the states of other processes.
- It then updates its state to include the knowledge it has gained on the state of other processes and proceeds to the next round.
- After a predetermined number of rounds R, a process that does not crash decides a value by applying a deterministic function DECIDE of its final state.

The Iterated Immediate Snapshot Model

1: initialization
2: $\quad s \leftarrow\{\langle 0$, input of the process $\rangle\}$
3: $\quad r \leftarrow 1$
4: while $r \leq R$ do
5: \quad view $\leftarrow I S[r]$.WRITE-SNAPSHOT (s)
6: $\quad s \leftarrow s \cup\{\langle r$, view $\rangle\}$
7: $\quad r \leftarrow r+1$
8: DECIDE(s)

The Read/Write Wait-free Model vs. IIS

- As shown before, $\mathcal{I I S}$ can be simulated in the read/write wait-free model.

The Read/Write Wait-free Model vs. IIS

- As shown before, $\mathcal{I I S}$ can be simulated in the read/write wait-free model.
- Any one-shot colorless task that can be solved in the read/write wait-free model can be solved in $\mathcal{I I S}$.

The Read/Write Wait-free Model vs. IIS

- As shown before, $\mathcal{I I S}$ can be simulated in the read/write wait-free model.
- Any one-shot colorless task that can be solved in the read/write wait-free model can be solved in $\mathcal{I I S}$.
- One-shot tasks: processes decide and it stops (e.g. consensus), as opposed to long-lived objects like stacks or queues that keep a separate state in shared memory.

The Read/Write Wait-free Model vs. IIS

- As shown before, $\mathcal{I I S}$ can be simulated in the read/write wait-free model.
- Any one-shot colorless task that can be solved in the read/write wait-free model can be solved in $\mathcal{I I S}$.
- One-shot tasks: processes decide and it stops (e.g. consensus), as opposed to long-lived objects like stacks or queues that keep a separate state in shared memory.
- Colorless tasks: in any execution, if a process decides, its decision value can be adopted by any other process as its own (e.g. consensus, k-set agreement but not renaming).

The Read/Write Wait-free Model vs. IIS

- As shown before, $\mathcal{I I S}$ can be simulated in the read/write wait-free model.
- Any one-shot colorless task that can be solved in the read/write wait-free model can be solved in $\mathcal{I I S}$.
- One-shot tasks: processes decide and it stops (e.g. consensus), as opposed to long-lived objects like stacks or queues that keep a separate state in shared memory.
- Colorless tasks: in any execution, if a process decides, its decision value can be adopted by any other process as its own (e.g. consensus, k-set agreement but not renaming).

A one-shot colorless task can be solved in the read/write wait-free model iff it can be solved in $\mathcal{I I S}$.

Table of Contents

(1) Consensus from Stacks and Registers
(2) Immediate Snapshots
(3) The Iterated Immediate Snapshot Model
4) Set Agreement in IIS
(5) k-Set Agreement from Registers

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.
- p_{1}
- p_{2}

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.
- The processes have to decide in a finite number of rounds R, the subdivision is consequently finite.

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.
- The processes have to decide in a finite number of rounds R, the subdivision is consequently finite.
- The states can be tagged with the corresponding decided values.

Solving Consensus is impossible in $\mathcal{I I S}$ with Two Processes

- The possible executions of an algorithm in $\mathcal{I I S}$ between two processes can be seen as a subdivision of the initial configuration.
- The processes have to decide in a finite number of rounds R, the subdivision is consequently finite.
- The states can be tagged with the corresponding decided values.
- Impossibility result comes from Sperner's Lemma.

The k-Set Agreement Problem

A k-set agreement object offers an operation Propose (v) that returns a value. It fulfills the following properties:
Termination Any invocation of PROPOSE by a correct process terminates.

The k-Set Agreement Problem

A k-set agreement object offers an operation Propose (v) that returns a value. It fulfills the following properties:
Termination Any invocation of Propose by a correct process terminates.
Agreement At most k different values are decided in the system.

The k-Set Agreement Problem

A k-set agreement object offers an operation Propose (v) that returns a value. It fulfills the following properties:
Termination Any invocation of PROPOSE by a correct process terminates.
Agreement At most k different values are decided in the system.
Validity All decided values are proposed values.

2-Set Agreement from Registers Among 3 Processes

The possible executions of an algorithm in $\mathcal{I I S}$ between three processes can be seen as a subdivision of the initial configuration.

2-Set Agreement from Registers Among 3 Processes

If a process runs alone, it has to decide its input.

2-Set Agreement from Registers Among 3 Processes

If two processes run without seeing the third one, they have to decide on one of their two values.

2-Set Agreement from Registers Among 3 Processes

By Sperner's Lemma, any completion of this type of coloring...

2-Set Agreement from Registers Among 3 Processes

By Sperner's Lemma, any completion of this type of coloring... has at least one configuration where processes decide on 3 different values.

2-Set Agreement from Registers Among 3 Processes

2-set agreement is consequently impossible in one round of $\mathcal{I I S}$ between 3 processes, but the same argument applies for any finite number R of rounds.

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;
- the set of possible configurations after R iterations of $\mathcal{I I S}$ is a triangulation of the initial (k-dimensional) configuration;

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;
- the set of possible configurations after R iterations of $\mathcal{I I S}$ is a triangulation of the initial (k-dimensional) configuration;
- the possible final states have to be associated with decision values;

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;
- the set of possible configurations after R iterations of $\mathcal{I I S}$ is a triangulation of the initial (k-dimensional) configuration;
- the possible final states have to be associated with decision values;
- the processes can only decide on values they have seen, these constrains impose that their decision in their final state forms a Sperner's coloring of the possible final states;

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;
- the set of possible configurations after R iterations of $\mathcal{I I S}$ is a triangulation of the initial (k-dimensional) configuration;
- the possible final states have to be associated with decision values;
- the processes can only decide on values they have seen, these constrains impose that their decision in their final state forms a Sperner's coloring of the possible final states;
- Sperner's Lemma states that their is at least one final configuration that has the $k+1$ colors.

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;
- the set of possible configurations after R iterations of $\mathcal{I I S}$ is a triangulation of the initial (k-dimensional) configuration;
- the possible final states have to be associated with decision values;
- the processes can only decide on values they have seen, these constrains impose that their decision in their final state forms a Sperner's coloring of the possible final states;
- Sperner's Lemma states that their is at least one final configuration that has the $k+1$ colors.
- Consequently, k-set agreement cannot be wait-free implemented in $\mathcal{I I S}$ in a system of $k+1$ processes.

k-Set Agreement from Registers Among $k+1$ Processes

- Using the same principles with $k+1$ processes:
- starting from an initial configuration where $k+1$ different values are proposed;
- the set of possible configurations after R iterations of $\mathcal{I I S}$ is a triangulation of the initial (k-dimensional) configuration;
- the possible final states have to be associated with decision values;
- the processes can only decide on values they have seen, these constrains impose that their decision in their final state forms a Sperner's coloring of the possible final states;
- Sperner's Lemma states that their is at least one final configuration that has the $k+1$ colors.
- Consequently, k-set agreement cannot be wait-free implemented in $\mathcal{I I S}$ in a system of $k+1$ processes.
- It follows that k-set agreement cannot be wait-free implemented from registers in a system of $k+1$ processes.

Table of Contents

(1) Consensus from Stacks and Registers
(2) Immediate Snapshots
(3) The Iterated Immediate Snapshot Model
4) Set Agreement in IIS
(5) k-Set Agreement from Registers

BG-Simulation

BG-Simulation

Any one-shot colorless task that we can solve with n processes and t crashes, we can solve it with $t+1$ processes and t crashes.

BG-Simulation

BG-Simulation

Any one-shot colorless task that we can solve with n processes and t crashes, we can solve it with $t+1$ processes and t crashes.

BG-Simulation

The study of decision tasks computability can be reduced to the $n-1$-resilient case.
k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.

k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.
- We can then build a k-resilient algorithm for $k+1$ processes/simulators.

k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.
- We can then build a k-resilient algorithm for $k+1$ processes/simulators.
- Use the BG -simulation with n simulators to simulate $k+1$ processes.

k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.
- We can then build a k-resilient algorithm for $k+1$ processes/simulators.
- Use the BG-simulation with n simulators to simulate $k+1$ processes.
- Simulate the protocol.

k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.
- We can then build a k-resilient algorithm for $k+1$ processes/simulators.
- Use the BG-simulation with n simulators to simulate $k+1$ processes.
- Simulate the protocol.
- Decide any value decided by a simulated process.

k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.
- We can then build a k-resilient algorithm for $k+1$ processes/simulators.
- Use the BG-simulation with n simulators to simulate $k+1$ processes.
- Simulate the protocol.
- Decide any value decided by a simulated process.
- This solves k-set agreement between our $k+1$ simulators.

k-Set Agreement is Impossible with k crashes or more.

- k-set agreement is impossible to solve among $k+1$ processes with k crashes.
- For any $n>k$, suppose we have a k-resilient algorithm for k-set agreement.
- We can then build a k-resilient algorithm for $k+1$ processes/simulators.
- Use the BG -simulation with n simulators to simulate $k+1$ processes.
- Simulate the protocol.
- Decide any value decided by a simulated process.
- This solves k-set agreement between our $k+1$ simulators.
- Contradiction, so there is no such algorithm.
- Implementing a consensus object from stacks and registers is possible for 2 processes but not for 3 .
- Implementing a consensus object from stacks and registers is possible for 2 processes but not for 3 .
- The Iterated Immediate Snapshot model and the read/write wait-free model can compute the same tasks.

Wrap-Up

- Implementing a consensus object from stacks and registers is possible for 2 processes but not for 3 .
- The Iterated Immediate Snapshot model and the read/write wait-free model can compute the same tasks.
- The possible configurations after R rounds of $\mathcal{I I S}$ have a regular geometric structure.

Wrap-Up

- Implementing a consensus object from stacks and registers is possible for 2 processes but not for 3 .
- The Iterated Immediate Snapshot model and the read/write wait-free model can compute the same tasks.
- The possible configurations after R rounds of $\mathcal{I I S}$ have a regular geometric structure.
- Sperner's Lemma allows to prove that k-set agreement is impossible in a system of $k+1$ processes.

Wrap-Up

- Implementing a consensus object from stacks and registers is possible for 2 processes but not for 3 .
- The Iterated Immediate Snapshot model and the read/write wait-free model can compute the same tasks.
- The possible configurations after R rounds of $\mathcal{I I S}$ have a regular geometric structure.
- Sperner's Lemma allows to prove that k-set agreement is impossible in a system of $k+1$ processes.
- BG-simulation allows to simulate larger systems while preserving the number of crashes.

Wrap-Up

- Implementing a consensus object from stacks and registers is possible for 2 processes but not for 3 .
- The Iterated Immediate Snapshot model and the read/write wait-free model can compute the same tasks.
- The possible configurations after R rounds of $\mathcal{I I S}$ have a regular geometric structure.
- Sperner's Lemma allows to prove that k-set agreement is impossible in a system of $k+1$ processes.
- BG-simulation allows to simulate larger systems while preserving the number of crashes.
- Combining the two results, we show that k-set agreement is impossible from registers in a system prone to k crashes or more.

Bibliography

雷 Borowsky E．and Gafni E．，Immediate atomic snapshots and fast renaming．Proc．12th ACM Symposium on Principles of Distributed Computing（PODC＇93），pp．41－51， 1993.
围 Borowsky E．and Gafni E．，A simple algorithmically reasoned characterization of wait－free computations．Proc．16th ACM Symposium on Principles of Distributed Computing（PODC＇97），pp． 189－198， 1997.

目 Herlihy M．and Shavit N．，The topological structure of asynchronous computability．Journal of the ACM，46（6）：858－923， 1999.
國 Herlihy M．P．，Kozlov D．N．and Rajsbaum S．，Distributed computing through combinatorial topology．Morgan Kaufmann， 2014 （ISBN 978－0－12－404578－1）．

