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Problem Statement

Is it possible to wait-free implement a consensus
object from stacks and registers in a system of 2
processes?
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Consensus

A consensus object offers an operation propose(v) that returns a
value. It fulfills the following properties:

Termination Any invocation of propose by a correct process
terminates.

Agreement At most one value is decided.

Validity A decided value is a proposed value.
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Two Processes Consensus from a Stack and Registers

1: initialization
2: REG [0]← ⊥;REG [1]← ⊥
3: S .push(loser);S .push(winner)

4: operation propose(v)
5: REG [id ]← v
6: if S .pop() = winner then
7: return v
8: else
9: return REG [1− id ]
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The Case of Three Processes

• With 3 processes, the losers cannot easily know which value
to adopt.

• Even with several stacks and more registers, how to organize?
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Structure of the Proof

• Suppose that there exists an algorithm solving 3 processes
consensus from stacks and registers.

• Show that there is a schedule in which a process takes an
infinite number of steps but does not decide.

• This contradicts the termination property. Consequently, there
is no such algorithm.
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Bivalent Initial Configuration

Lemma 1

The initial configuration C (0, 1, 0) is bivalent.

• Starting from C (0, 1, 0), if p1 executes alone, it has to decide
0 because it cannot distinguish between this execution and
the one starting from C (0, 0, 0) where it executes alone.

• Starting from C (0, 1, 0), if p2 executes alone, it has to decide
1 because it cannot distinguish between this execution and
the one starting by C (1, 1, 1) where it executes alone.

• Consequently, C (0, 1, 0) is bivalent.
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Maximal Schedule Leading to a Bivalent Configuration

• Consider a schedule Σ such that

• Σ(C (0, 1, 0)) is bivalent;
• ∀i ∈ {1, 2, 3} : pi (Σ(C (0, 1, 0))) is monovalent.

• Necessarily, there are two processes pi and pj such that
pi (Σ(C (0, 1, 0))) is 0-valent while pj(Σ(C (0, 1, 0))) is
1-valent.

• Let opi (resp. opj) be the next step executed by pi (resp. pj)
in Σ(C (0, 1, 0)).

• If opi and opj commute, then processes cannot distinguish
between pi (pj(Σ(C (0, 1, 0)))) and pj(pi (Σ(C (0, 1, 0)))) while
one is 0-valent and the other is 1-valent. This is a
contradiction.
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Possible Values for opi and opj

• Since opi and opj do not commute, they are both invocations
of operations on the same stack or register.

• Two reads on the same register commute, so if opi and opj
are both accesses to the same register, at least one of them is
a write.

• If they are both writes to the same register, then pi cannot
distinguish between pi (Σ(C (0, 1, 0))) and
pi (pj(Σ(C (0, 1, 0)))), while one is 0-valent and the other
1-valent. This is a contradiction.

12 / 38



Possible Values for opi and opj

• Since opi and opj do not commute, they are both invocations
of operations on the same stack or register.

• Two reads on the same register commute, so if opi and opj
are both accesses to the same register, at least one of them is
a write.

• If they are both writes to the same register, then pi cannot
distinguish between pi (Σ(C (0, 1, 0))) and
pi (pj(Σ(C (0, 1, 0)))), while one is 0-valent and the other
1-valent. This is a contradiction.

12 / 38



Possible Values for opi and opj

• Since opi and opj do not commute, they are both invocations
of operations on the same stack or register.

• Two reads on the same register commute, so if opi and opj
are both accesses to the same register, at least one of them is
a write.

• If they are both writes to the same register, then pi cannot
distinguish between pi (Σ(C (0, 1, 0))) and
pi (pj(Σ(C (0, 1, 0)))), while one is 0-valent and the other
1-valent. This is a contradiction.

12 / 38



Possible Values for opi and opj

• If opi is a write to a register and opj a read to the same
register, then pi cannot distinguish between
pi (pj(Σ(C (0, 1, 0)))) and pi (Σ(C (0, 1, 0))) while the former is
1-valent and the latter is 0-valent. This is a contradiction.

• Symmetric arguments apply when inverting the valence of
pi (Σ(C (0, 1, 0))) and pj(Σ(C (0, 1, 0))) or when opi and opj
are respectively a read and a write to the same register.

• It follows that opi and opj are necessarily invocations of
operations on the same stack.

13 / 38



Possible Values for opi and opj

• If opi is a write to a register and opj a read to the same
register, then pi cannot distinguish between
pi (pj(Σ(C (0, 1, 0)))) and pi (Σ(C (0, 1, 0))) while the former is
1-valent and the latter is 0-valent. This is a contradiction.

• Symmetric arguments apply when inverting the valence of
pi (Σ(C (0, 1, 0))) and pj(Σ(C (0, 1, 0))) or when opi and opj
are respectively a read and a write to the same register.

• It follows that opi and opj are necessarily invocations of
operations on the same stack.

13 / 38



Possible Values for opi and opj

• If opi is a write to a register and opj a read to the same
register, then pi cannot distinguish between
pi (pj(Σ(C (0, 1, 0)))) and pi (Σ(C (0, 1, 0))) while the former is
1-valent and the latter is 0-valent. This is a contradiction.

• Symmetric arguments apply when inverting the valence of
pi (Σ(C (0, 1, 0))) and pj(Σ(C (0, 1, 0))) or when opi and opj
are respectively a read and a write to the same register.

• It follows that opi and opj are necessarily invocations of
operations on the same stack.

13 / 38



Possible Values for opi and opj

• If both opi and opj are pop operations on the same stack,
then pk , k ∈ {1, 2, 3} \ {i , j} cannot distinguish between
pi (pj(Σ(C (0, 1, 0)))) and pj(pi (Σ(C (0, 1, 0)))) while one is
0-valent and the other 1-valent. This is a contradiction.

• If opi is a push operation and opj a pop operation on the
same stack, then we have two cases:

• If in Σ(C (0, 1, 0)) the stack is empty, then pk cannot
distinguish between pj(pi (Σ(C (0, 1, 0)))) and
pj(Σ(C (0, 1, 0)))) while the former is 0-valent and the latter is
1-valent. This is a contradiction.

• If in Σ(C (0, 1, 0)) the stack is not empty, then we need a
further analysis.
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Possible Values for opi and opj

In this case opi is a push operation and opj a pop operation on the
same stack that is not empty in Σ(C (0, 1, 0)).

• If pi runs alone from pj(pi (Σ(C (0, 1, 0)))), it necessarily
eventually pops the item z that was on top of the stack in
Σ(C (0, 1, 0)) or it would not distinguish between the situation
when it runs alone from pi (pj(Σ(C (0, 1, 0)))) while it has to
decide 0 in the first situation and 1 in the second.

• Let Σi be the schedule in which pi executes solo from
pj(pi (Σ(C (0, 1, 0)))) until just after it pops the item z .

• Since until this pop operation pi cannot distinguish if it
started from pj(pi (Σ(C (0, 1, 0)))) or pi (pj(Σ(C (0, 1, 0)))), it
also takes the same steps while running alone from the later
configuration. The only difference is the value it pops at the
last step of Σi .
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Possible Values for opi and opj

• pk cannot distinguish between Σi (pj(pi (Σ(C (0, 1, 0))))) and
Σi (pi (pj(Σ(C (0, 1, 0))))) because the stack is in the same
state in both configurations. The former configuration being
0-valent while the latter is 1-valent, this is a contradiction.

• The same reasoning applies if the roles of pi and pj swapped.
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Possible Values for opi and opj

• If opi and opj are both push operations on the same stack,
then, when running alone from pi (pj(Σ(C (0, 1, 0)))), pi
necessarily eventually pops the item it pushed at opi or it
would not be able to distinguish this execution from the one
when it runs alone from pj(pi (Σ(C (0, 1, 0)))).

• Let Σ′
i be the schedule in which pi executes alone from

pi (pj(Σ(C (0, 1, 0)))) until just after it pops the value pushed
by opi .

• With the same reasoning, starting from
Σ′
i (pi (pj(Σ(C (0, 1, 0))))) or from Σ′

i (pj(pi (Σ(C (0, 1, 0))))), pj
necessarily take the same steps until it eventually pops the
value pushed by opj (in the first situation) or by opi (in the
second one). Let us denote Σ′

j its steps until just after this
pop.
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Possible Values for opi and opj

• pk is not able to distinguish between
Σ′
j(Σ′

i (pi (pj(Σ(C (0, 1, 0)))))) and
Σ′
j(Σ′

i (pi (pj(Σ(C (0, 1, 0)))))). This is a contradiction because
the former is 1-valent while the latter is 0-valent.

• In all cases we reach a contradiction. It follows that there
exists a schedule such that a process takes an infinite number
of steps without deciding, which concludes the proof.
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It is impossible to wait-free
implement consensus among 3
processes from stacks and

registers.
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Immediate Snapshot Specification

An immediate snapshot object offers an operation
write-snapshot(v) that can be invoked at most once by each
process. It returns a set view of pairs (j , vj) where j is a process
identifier and vj a value. If we denote by viewi the set returned to
process i , we have the following properties:

Termination Any invocation of write-snapshot by a correct
process terminates.

Validity If (j , vj) ∈ viewi , then process j invoked
write-snapshot(vj).

Self-Inclusion (id , vid) ∈ viewid .

Containment ∀i , j : viewi ⊆ viewj ∨ viewj ⊆ viewi .

Immediacy ∀i , j : (j , vj) ∈ viewi =⇒ viewj ⊆ viewi .

21 / 38



Immediate Snapshot Specification

An immediate snapshot object offers an operation
write-snapshot(v) that can be invoked at most once by each
process. It returns a set view of pairs (j , vj) where j is a process
identifier and vj a value. If we denote by viewi the set returned to
process i , we have the following properties:

Termination Any invocation of write-snapshot by a correct
process terminates.

Validity If (j , vj) ∈ viewi , then process j invoked
write-snapshot(vj).

Self-Inclusion (id , vid) ∈ viewid .

Containment ∀i , j : viewi ⊆ viewj ∨ viewj ⊆ viewi .

Immediacy ∀i , j : (j , vj) ∈ viewi =⇒ viewj ⊆ viewi .

21 / 38



Immediate Snapshot Specification

An immediate snapshot object offers an operation
write-snapshot(v) that can be invoked at most once by each
process. It returns a set view of pairs (j , vj) where j is a process
identifier and vj a value. If we denote by viewi the set returned to
process i , we have the following properties:

Termination Any invocation of write-snapshot by a correct
process terminates.

Validity If (j , vj) ∈ viewi , then process j invoked
write-snapshot(vj).

Self-Inclusion (id , vid) ∈ viewid .

Containment ∀i , j : viewi ⊆ viewj ∨ viewj ⊆ viewi .

Immediacy ∀i , j : (j , vj) ∈ viewi =⇒ viewj ⊆ viewi .

21 / 38



Immediate Snapshot Specification

An immediate snapshot object offers an operation
write-snapshot(v) that can be invoked at most once by each
process. It returns a set view of pairs (j , vj) where j is a process
identifier and vj a value. If we denote by viewi the set returned to
process i , we have the following properties:

Termination Any invocation of write-snapshot by a correct
process terminates.

Validity If (j , vj) ∈ viewi , then process j invoked
write-snapshot(vj).

Self-Inclusion (id , vid) ∈ viewid .
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Set Linarizability

Theorem

((i , vi ) ∈ viewj ∧ (j , vj) ∈ viewi ) =⇒ viewi = viewj

Consequence

The calls to an immediate snapshot object can be set-linearized by
ordering the processes according to the size of their views.
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Set-Linearization: Examples

One by one:
view1 = {(1, v1)} ( view2 = {(1, v1), (2, v2)} ( view3 =
{(1, v1), (2, v2), (3, v3)}

Two then one:
view1 = view2 = {(1, v1), (2, v2)} ( view3 =
{(1, v1), (2, v2), (3, v3)}

Three together:
view1 = view2 = view3 = {(1, v1), (2, v2), (3, v3)}
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Immediate Snapshot Algorithm

1: initialization
2: REG [1, . . . , n][1, . . . , n]← [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]]

3: operation write-snapshot(v)
4: return rec write-snapshot(n, v)

5: operation rec write-snapshot(x,v)
6: REG [x ][id ]← v
7: for i ∈ {1, . . . , n} do scan[j ]← REG [x ][j ] end for
8: view ← {(j , scan[j ]) | scan[j ] 6= ⊥}
9: if |view | = x then

10: return view
11: else
12: return rec write-snapshot(x − 1, v)
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The Iterated Immediate Snapshot Model

• Processes execute a sequence of asynchronous rounds.

• During each round, a process that has not crashed invokes
write-snapshot(s) to write its current state in the
immediate snapshot object IS [r ] associated to the round, and
to collect the states of other processes.

• It then updates its state to include the knowledge it has
gained on the state of other processes and proceeds to the
next round.

• After a predetermined number of rounds R, a process that
does not crash decides a value by applying a deterministic
function decide of its final state.
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The Iterated Immediate Snapshot Model

1: initialization
2: s ← {〈0, input of the process〉}
3: r ← 1
4: while r ≤ R do
5: view ← IS [r ].write-snapshot(s)
6: s ← s ∪ {〈r , view〉}
7: r ← r + 1

8: decide(s)
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The Read/Write Wait-free Model vs. IIS

• As shown before, IIS can be simulated in the read/write
wait-free model.

• Any one-shot colorless task that can be solved in the
read/write wait-free model can be solved in IIS.

• One-shot tasks: processes decide and it stops (e.g.
consensus), as opposed to long-lived objects like stacks or
queues that keep a separate state in shared memory.

• Colorless tasks: in any execution, if a process decides, its
decision value can be adopted by any other process as its own
(e.g. consensus, k-set agreement but not renaming).

A one-shot colorless task can be solved in the read/write wait-free
model iff it can be solved in IIS.
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Solving Consensus is impossible in IIS with Two
Processes

• The possible executions of an algorithm in IIS between two
processes can be seen as a subdivision of the initial
configuration.
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• The possible executions of an algorithm in IIS between two
processes can be seen as a subdivision of the initial
configuration.

• The processes have to decide in a finite number of rounds R,
the subdivision is consequently finite.

• The states can be tagged with the corresponding decided
values.

• Impossibility result comes from Sperner’s Lemma.
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The k-Set Agreement Problem

A k-set agreement object offers an operation propose(v) that
returns a value. It fulfills the following properties:

Termination Any invocation of propose by a correct process
terminates.

Agreement At most k different values are decided in the system.

Validity All decided values are proposed values.
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2-Set Agreement from Registers Among 3 Processes

The possible executions of an algorithm in IIS between three
processes can be seen as a subdivision of the initial configuration.

p1 p2

p3

(p1), (p2, p3)
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2-Set Agreement from Registers Among 3 Processes

If a process runs alone, it has to decide its input.
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2-Set Agreement from Registers Among 3 Processes

If two processes run without seeing the third one, they have to
decide on one of their two values.
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2-Set Agreement from Registers Among 3 Processes
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2-Set Agreement from Registers Among 3 Processes

By Sperner’s Lemma, any completion of this type of coloring...
has at least one configuration where processes decide on 3 different
values.
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2-Set Agreement from Registers Among 3 Processes

2-set agreement is consequently impossible in one round of IIS
between 3 processes, but the same argument applies for any finite
number R of rounds.
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k-Set Agreement from Registers Among k + 1 Processes

• Using the same principles with k + 1 processes:

• starting from an initial configuration where k + 1 different
values are proposed;

• the set of possible configurations after R iterations of IIS is a
triangulation of the initial (k-dimensional) configuration;

• the possible final states have to be associated with decision
values;

• the processes can only decide on values they have seen, these
constrains impose that their decision in their final state forms
a Sperner’s coloring of the possible final states;

• Sperner’s Lemma states that their is at least one final
configuration that has the k + 1 colors.

• Consequently, k-set agreement cannot be wait-free
implemented in IIS in a system of k + 1 processes.

• It follows that k-set agreement cannot be wait-free
implemented from registers in a system of k + 1 processes.
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BG-Simulation

BG-Simulation

Any one-shot colorless task that we can solve with n
processes and t crashes, we can solve it with t + 1

processes and t crashes.

BG-Simulation

The study of decision tasks computability can be
reduced to the n − 1-resilient case.
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k-Set Agreement is Impossible with k crashes or more.

• k-set agreement is impossible to solve among k + 1 processes
with k crashes.

• For any n > k , suppose we have a k-resilient algorithm for
k-set agreement.

• We can then build a k-resilient algorithm for k + 1
processes/simulators.

• Use the BG-simulation with n simulators to simulate k + 1
processes.

• Simulate the protocol.
• Decide any value decided by a simulated process.

• This solves k-set agreement between our k + 1 simulators.

• Contradiction, so there is no such algorithm.
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Wrap-Up

• Implementing a consensus object from stacks and
registers is possible for 2 processes but not for 3.

• The Iterated Immediate Snapshot model and the
read/write wait-free model can compute the same tasks.

• The possible configurations after R rounds of IIS have a
regular geometric structure.

• Sperner’s Lemma allows to prove that k-set agreement is
impossible in a system of k + 1 processes.

• BG-simulation allows to simulate larger systems while
preserving the number of crashes.

• Combining the two results, we show that k-set agreement
is impossible from registers in a system prone to k crashes
or more.
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preserving the number of crashes.

• Combining the two results, we show that k-set agreement
is impossible from registers in a system prone to k crashes
or more.
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