
Concurrent Algorithms 2016

Midterm Exam

November 29th, 2016

Time: 1h45

Instructions:

• This midterm is “closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you upon request by the TAs.

• Read through each problem before starting to solve it.

Good luck!

Problem Max Points Score
1 3

2 4

3 3

Total 10

1

,

2

,

Problem 1 (3 points)

Your tasks:

1. Explain the difference between a regular register and an atomic register. Provide an example
execution that is allowed for a regular register but not allowed for an atomic register.

2. Write an algorithm that implements an SRSW atomic register using (any number of) SRSW regular
registers.

3. In your algorithm, if you replace the base registers (SRSW regular registers) by MRSW regular
registers, does your algorithm yield an MRSW atomic register? Justify your answer. (I.e., give a
counterexample if your algorithm does not work, or prove the correctness if it does.)

Solution

1. When using a regular register, a read that is concurrent with a write returns either the value being
written or the previous value; a read that is not concurrent with a write returns the most recently
written value. When using an atomic register, every operation appears to execute instantaneously
at some point between the operation invocation and response. Figure 1 shows an execution that is
regular but not atomic.

2. The transformation is given in slide 17 of the lecture on Registers.

3. The transformation does not work for multiple readers (the result is not an atomic register). The
non-atomic execution in Figure 1 is possible in this case. Since the register is regular, the read by
R1 may read the value 2 being concurrently written by W. Since this is R1’s first read operation,
the timestamp it obtains for value 2 is higher than its local timestamp. Later, the read by R2 (also
concurrent with Write(2)) may read the previous value of the register (1). Since this is R2’s first
read operation, the timestamp it obtains for value 1 is also higher than its local timestamp.

3

,

Read: 1

Read: 2

Write(1) Write(2)
W

R1

R2

Figure 1: An execution that is possible with a regular register but not with an atomic register. There
are three processes: a writer (W) and two readers (R1 and R2). The two reads are concurrent with the
second write. The read by R1 completely precedes the read by R2. The execution is not atomic because
it is impossible to assign linearization points to all operations: if the linearization point of Write(2) is
before that of the read by R1, then the read by R2 cannot have a linearization point; if the linearization
point of Write(2) is after that of the read by R1, then that read cannot have a linearization point.

4

,

Problem 2 (4 points)

A LIFO stack is a shared object that provides the following atomic operations:

• push(e) that pushes element e at the beginning of the stack, and

• pop() that returns the element from the beginning of the stack and removes it from the beginning.
If the stack is empty, then pop() returns ⊥. (Symbol ⊥ can only be returned if the stack is empty.)

A consensus shared object has a single operation propose that takes a value v as an argument, and
returns a value d. When a process pi invokes propose(v), we say that pi proposes value v. When pi has
returned value d from propose(v), we say that pi decides value d (notice that d does not have to be equal
to v). A consensus object satisfies the following properties:

• Agreement: No two processes decide different values.

• Validity: The value decided is one of the values proposed.

Your tasks:

1. Devise an algorithm that implements a wait-free consensus object using (any number of) atomic
stacks that are initially empty (uninitialized) and atomic registers in a system of 2 processes.

2. Explain why your algorithm satisfies the Agreement and Validity properties.

Solution

The main idea is to use the algorithm that implements a consensus in a system of 2 processes using
initialized stacks and to add a new “initialization” phase.

The algorithm (denoted by Algorithm 1 later) that implements a consensus in a system of 2 processes
using initialized stacks works as follows.

Using an atomic shared stack S, initialized to {loser, winner}.
Using two atomic shared registers R[2], initialized to 0.

cons(val)

R[i] = val;

s = S.pop();

if s = winner then return val

else return R[3-i]

Now we use the cons method of Algorithm 1 as a procedure cons in our algorithm (denoted by
Algorithm 2 later). As a procedure in Algorithm 2, cons takes an atomic shared stack S and two atomic
shared registers R[2] as an argument.

Using two atomic shared stacks S[2], initially empty.
Using two atomic shared registers R[2], initialized to 0.
Using two atomic shared registers ready[2], initialized to f alse.

propose(val)

S[i].push(loser);

S[i].push(winner);

5

,
ready[i] = true;

for k = 1, 2 do

if ready[k] = true then val = cons(S[k], R, val);

return val

In Algorithm 2, both processes first “initialize” their stacks and then they execute Algorithm 1 on all
stacks that have been initialized using the last decided value.

Validity is clearly satisfied, because local variable val is only assigned with a value proposed.
Agreement can be shown by contradiction. Suppose two processes do not agree. Clearly, if they both
find ready[2] = true, then they agree on the same value; if they both find ready[1] = true, they also
agree on the same value (as the value they use as an argument in cons for k = 2 is a result of k = 1).
Then the only possibility is that (1) when P1 returns, P1 finds ready[1] = true, ready[2] = f alse, and (2)
when P2 returns, P2 finds ready[1] = f alse, ready[2] = true. This means that before P2 enters the loop,
P1 has already invoked procedure cons at least once and has assigned true to ready[1]. As a result, when
doing the loop, P2 would find ready[1] = true, a contradiction.

6

,

Problem 3 (3 points)

A FIFO queue is a shared object that provides the following atomic operations:

• enq(e) that puts element e at the end of the queue, and

• deq() that returns the element from the beginning of the queue and removes it from the beginning.
If the queue is empty, then deq() returns ⊥. (Symbol ⊥ can only be returned if the queue is empty.)

For this problem we will examine a queue implementation whose enqueue method does not have a
linearization point. The implementation uses the following shared objects:

• tail, an atomic fetch&increment shared object, initially equal to 0.

• items, an infinite array of atomic swap shared objects, all initially equal to ⊥.

An atomic fetch&increment object stores an integer value x and provides two methods, read and
fetch&increment, with the following sequential specification:

read() {
return x

}

fetch&increment() {
oldVal = x

x = x+1

return oldVal

}

An atomic swap object stores an integer value x and provides two methods, write and swap, with the
following sequential specification:

write(v) {
x = v

}

swap(v) {
oldVal = x

x = v

return oldVal

}

(please see next page)

7

,
The pseudocode for the queue is as follows:

enq(x) {
i = tail.fetch&increment()

items[i].write(x)

}

deq() {
while (true) {
range = tail.read()

for i = 0 to range {
value = items[i].swap(⊥)
if (value != ⊥) {
return value

}
}

}
}

Your tasks:

1. Give an example execution showing that the linearization point for enq cannot be the
fetch&increment on the first line (i = tail.fetch&increment()). Hint: give an execution where
two enq calls are not linearized in the order they execute this line.

2. Give another example execution showing that the linearization point for enq cannot occur at the
write on the second line (items[i].write(x)).

3. Since these are the only two shared memory accesses in enq, we must conclude that enq has no
single linearization point. Does this mean enq is not linearizable? Justify your answer.

Solution

Here is an execution where two enq() calls are not linearized in the order they execute the first line. See
also Figure 2.

1. P calls fetch&increment and returns 0.

2. Q calls fetch&increment and returns 1.

3. Q stores item q at array index 1.

4. R finds array index 0 empty.

5. R finds array index 1 full and dequeues q.

6. P stores item p at array index 0.

7. R finds array index 0 full and dequeues p.

Here is an execution where two enq() calls are not linearized in the order they execute the second line.
See also Figure 3.

1. P calls fetch&increment and returns 0.

2. Q calls fetch&increment and returns 1.

3. Q stores item q at array index 1.

8

,
4. P stores item p at array index 0.

5. R finds array index 0 full and dequeues p.

6. R finds array index 1 full and dequeues q.

These examples do not mean the method is not linearizable, they just illustrate that we cannot define
a single linearization point that works for all method calls.

P

Q

R
deq: q deq: p

f&i

f&i

write

write

enq(q)

enq(p)

Figure 2: Execution showing that the first line of the enq() method cannot be its linearization point.

P

Q

R
deq: p deq: q

f&i

f&i

write

write

enq(q)

enq(p)

Figure 3: Execution showing that the second line of the enq() method cannot be its linearization point.

9

,

10

