
1

© R. Guerraoui

Computing with
anonymous processes

Prof R. Guerraoui
Distributed Programming Laboratory

2

Counter (sequential spec)
  A counter has two operations inc() and
read() and maintains an integer x init to 0

  read():
  return(x)

  inc():
  x := x + 1;
  return(ok)

3

  The processes share an array of SWMR
registers Reg[1,..,n] ; the writer of register
Reg[i] is pi

  inc():

  temp := Reg[i].read() + 1;
  Reg[i].write(temp);
  return(ok)

Counter (atomic implementation)

4

  read():

  sum := 0;
  for j = 1 to n do

  sum := sum + Reg[j].read();
 return(sum)

Counter (atomic implementation)

5

Weak Counter

  A weak counter has one operation wInc()
  wInc():

  x := x + 1;
  return(x)

•  Correctness: if an operation precedes another,
then the second returns a value that is larger
than the first one

6

Weak counter execution

p1

p2

p3

 wInc() - 1

wInc() - 2

wInc() - 2

7

  The processes share an (infinite) array of
MWMR registers Reg[1,..,n,..,], init to 0
  wInc():

  i := 0;
  while (Reg[i].read() ≠ 0) do

  i := i + 1;
  Reg[i].write(1);
  return(i);

Weak Counter
(lock-free implementation)

8

Weak counter execution

p1

p2

p3

 wInc() - 1 wInc() - 2 wInc() -

wInc() -

9

  The processes also use a MWMR register L
  wInc():

  i : = 0;
  while (Reg[i].read() ≠ 0) do
  if L has been updated n times then

  return the largest value seen in L
  i := i + 1;

  L.write(i);
  Reg[i].write(1);
  return(i);

Weak Counter
(wait-free implementation)

10

  wInc():
  t := l := L.read(); i := k:= 0;
  while (Reg[i].read() ≠ 0) do
  i : = i + 1;
  if L.read() ≠ l then

  l := L.read(); t := max(t,l); k :=k+1;
  if k = n then return(t);

 L.write(i);
  Reg[i].write(1);
  return(i);

Weak Counter
(wait-free implementation)

11

Snapshot (sequential spec)

  A snapshot has operations update() and
scan() and maintains an array x of size n
  scan():

  return(x)
  NB. No component is devoted to a process
  update(i,v):

  x[i] := v;
  return(ok)

12

Key idea for atomicity
& wait-freedom

  The processes share a Weak Counter:
Wcounter, init to 0;
  The processes share an array of registers
Reg[1,..,N] that contains each:
  a value,
  a timestamp, and
  a copy of the entire array of values

13

Key idea for atomicity
& wait-freedom (cont’d)

  To scan, a process keeps collecting and
returns a collect if it did not change, or some
collect returned by a concurrent scan
  Timestamps are used to check if a scan
has been taken in the meantime

•  To update, a process scans and writes the

value, the new timestamp and the result of
the scan

14

Snapshot implementation
Every process keeps a local timestamp ts

  update(i,v):

  ts := Wcounter.wInc();
  Reg[i].write(v,ts,self.scan());
  return(ok)

15

Snapshot implementation

  scan():
  ts := Wcounter.wInc();
  while(true) do

  If some Reg[j] contains a collect with a
higher timestamp than ts, then return
that collect
  If n+1 sets of reads return identical
results then return that one

16

Consensus (obstruction-free)
  We consider binary consensus

  The processes share two infinite arrays of
registers: Reg0[i] and Reg1[i]

  Every process holds an integer i init to 1

  Idea: to impose a value v, a process needs to
be fast enough to fill in registers Regv[i]

17

Consensus (obstruction-free)

  propose(v):
  while(true) do

  if Reg1-v[i] = 0 then
  Regv[i] := 1;
  if i > 1 and Reg1-v[i-1] = 0 then
return(v);
 else v:= 1-v;
  i := i+1;

end

18

Consensus (solo process)

q(1)

 Reg1(1):=1

 Reg0(1)=0

 Reg0(2)=0

 Reg1(2):=1

 Reg0(1)=0

19

Consensus (lock-step)
q(1)

 Reg1(1):=1

 Reg0(1)=0

 Reg0(2)=0

 Reg1(2):=1

 Reg0(1)=1

p(0)

 Reg0(1):=1

 Reg1(1)=0

 Reg1(2)=0

 Reg0(2):=1

 Reg0(1)=1

20

Consensus (binary)

  propose(v):
  while(true) do

  If Reg1-v[i] = 0 then
  Regv[i] := 1;
  if i > 1 and Reg1-v[i-1] = 0 then
return(v);
 else if Regv[i] = 0 then v:= 1-v;
  if v = 1 then wait(2i)
  i := i+1;

end

