
Transactional Memory

R. Guerraoui, EPFL

Locking is ’’history’’

Lock-freedom is difficult

Wanted

A concurrency control abstraction
that is simple, robust and efficient

 Transactions

Historical perspective
  Eswaran et al (CACM’76) Databases
  Papadimitriou (JACM’79) Theory
  Liskov/Sheifler (TOPLAS’82) Language
  Knight (ICFP’86) Architecture
  Herlihy/Moss (ISCA’93) Hardware
  Shavit/Touitou (PODC’95) Software
  Herlihy et al (PODC’03) Software – Dynamic

  accessing object 1;
  accessing object 2;

Back to the sequential level

  accessing object 1;
  accessing object 2;

Back to the sequential level

atomic {

}

 Semantics

Every transaction appears to execute

at an indivisible point in time

Double-ended queue

Enqueue Dequeue

  class Queue {
  QNode head;
  QNode tail;
  public enq(Object x) {
  atomic {
  QNode q = new QNode(x);
  q.next = head;
  head = q;
  }
  }
  ... }

Queue composition

Dequeue

Enqueue

  class Queue {
  …
  public transfer(Queue q) {
  atomic {
  Qnode n = this.dequeue();
  q.enqueue(n) }
  }
  ... }

 Simple example
 (consistency invariant)

 0 < x < y

 T: x := x+1 ; y:= y+1

 Simple example
 (transaction)

  accessing object 1;
  accessing object 2;

The illusion of a critical section

atomic {

}

  “It is better for Intel to get involved in this
[Transactional Memory] now so when we get to the
point of having …tons… of cores we will have the
answers”
  Justin Rattner, Intel Chief Technology Officer

  “…we need to explore new techniques like
transactional memory that will allow us to get the
full benefit of all those transistors and map that
into higher and higher performance.”

 Bill Gates, Businessman

  “…manual synchronization is intractable…
transactions are the only plausible
solution….”

 Tim Sweeney, Epic Games

  Sun/Oracle, Intel, AMD, IBM, MSR

  Fortress (Sun); X10 (IBM); Chapel (Cray)

The TM Topic has been a
VERY HOT topic

  begin() returns ok

  read() returns a value or abort
  write() returns an ok or abort

  commit() returns ok or abort
  abort() returns ok

The TM API
(a simple view)

Two-phase locking

  To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

  At the end, T releases all its locks

Two-phase locking
(more details)

  Every object O, with state s(O) (a register), is
protected by a lock l(O) (a c&s)

  Every transaction has local variables wSet and wLog

  Initially: l(O) = unlocked, wSet = wLog = ∅

Two-phase locking

Upon op = read() or write(v) on object O
if O wSet then

 wait until unlocked= l(O).c&s(unlocked,locked)
 wSet = wSet U O
 wLog = wLog U S(O).read()
if op = read() then return S(O).read()
S(O).write(v)
return ok

€

∉

Two-phase locking (cont’d)

Upon commit()
cleanup()
return ok

Upon abort()
rollback()
cleanup()
return ok

Two-phase locking (cont’d)

Upon rollback()
for all O ∈ wSet do S(O).write(wLog(O))
wLog = ∅

Upon cleanup()
for all O ∈ wSet do l(O).write(unlocked)
wSet = ∅

Why two phases?
(what if?)

  To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

 

  T releases the lock on O when it is done with O

Why two phases?

T1

T2

read(0) write(1)

O1 O2

read(0) write(1)

O2 O1

Two-phase locking
(read-write lock)

  To write O, T requires a write-lock on O;
T waits if some T’ acquired a lock on O

  To read O, T requires a read-lock on O;

T waits if some T’ acquired a write-lock on O

  Before committing, T releases all its locks

Two-phase locking
- better dead than wait -

  To write O, T requires a write-lock on O;
T aborts if some T’ acquired a lock on O

  To read O, T requires a read-lock on O;

T aborts if some T’ acquired a write-lock on O

  Before committing, T releases all its locks
  A transaction that aborts restarts again

Two-phase locking
- better kill than wait -

  To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

  To read O, T requires a read-lock on O;

T aborts T’ if some T’ acquired a write-lock on O

  Before committing, T releases all its locks
  A transaction that is aborted restarts again

Two-phase locking
- better kill than wait -

  To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

  To read O, T requires a read-lock on O;

T waits if some T’ acquired a write-lock on O

  Before committing, T releases all its locks
  A transaction that is aborted restarts again

Visible Read
(SXM, RSTM, TLRW)

 Write is mega killer: to write an object,
a transaction aborts any live one which
has read or written the object

 Visible but not so careful read: when a
transaction reads an object, it says so

Visible Read

  A visible read invalidates cache lines

  For read-dominated workloads, this means a
lot of traffic on the bus between processors
 - This reduces the throughput
 - Not a big deal with single-CPU, but with
many core machines (e.g. SPART T2 Niagara)

Two-phase locking
with invisible reads

  To write O, T requires a write-lock on O;
T waits if some T’ acquired a write-lock on O

  To read O, T checks if all objects read remain
valid - else T aborts

  Before committing, T checks if all objects read
remain valid and releases all its locks

Invisible reads
(more details)

  Every object O, with state s(O) (register), is protected
by a lock l(O) (c&s)

  Every transaction maintains, besides wSet and wLog:

  - a local variable rset(O) for every object

Invisible reads

Upon write(v) on object O
if O wSet then
 wait until unlocked= l(O).c&s(unlocked,locked)
 wSet = wSet U O
 wLog = wLog U S(O).read()
(*,ts) = S(O).read()
S(O).write(v,ts)
return ok

€

∉

Invisible reads

Upon read() on object O
(v,ts) = S(O).read()
if O ∈ wSet then return v
if l(O) = locked or not validate() then abort()
if rset(O) = 0 then rset(O) = ts
return v

Invisible reads

Upon validate()
for all O s.t rset(O) > 0 do
 (v,ts) = S(O).read()
 if ts ≠ rset(O) or
 (O wset and l(O) = locked)
then return false
else return true

€

∉

Invisible reads

Upon commit()
if not validate() then abort()
for all O ∈ wset do
 (v,ts) = S(O).read()
S(O).write(v,ts+1)
cleanup()

Invisible reads

Upon rollback()
for all O ∈ wSet do S(O).write(wLog(O))
wLog = ∅

Upon cleanup()
for all O ∈ wset do l(O).write(unlocked)
wset = ∅
rset(O) = 0 for all O

DSTM (SUN)

  To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a write-lock on O

  To read O, T checks if all objects read remain
valid - else abort
  Before committing, T releases all its locks

DSTM

 Killer write (ownership)

 Careful read (validation)

More efficient algorithm?

Apologizing versus asking permission

 Killer write
 Optimistic read

  validity check only at commit time

Example

Invariant: 0 < x < y
Initially: x := 1; y := 2

Division by zero

 T1: x := x+1 ; y:= y+1

 T2: z := 1 / (y - x)

 T1: x := 3; y:= 6

Infinite loop

 T2: a := y; b:= x;
 repeat b:= b + 1 until a = b

Opacity
 Serializability

 Consistent memory view

 Trade-off

 The read is either
 visible or careful

Intuition

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik

Read invisibility
 The fact that the read is invisible means T1
cannot inform T2, which would in turn abort T1
if it accessed similar objects (SXM, RSTM)

 NB. Another way out is the use of multiversions:
T2 would not have written “on” T1

Conditional progress
- obstruction-freedom -

 A correct transaction that eventually does not
encounter contention eventually commits

 Obstruction-freedom seems reasonable
and is indeed possible

DSTM

  To write O, T requires a write-lock on O (use C&S);
T aborts T’ if some T’ acquired a write-lock on O (use

C&S)

  To read O, T checks if all objects read remain valid -
else abort (use C&S)
  Before committing, T releases all its locks (use C&S)

  If a transaction T wants to write an object O
owned by another transaction T’, T calls a
contention manager

  The contention manager can decide to wait,
retry or abort T’

Progress

Contention managers
  Aggressive: always aborts the victim

  Backoff: wait for some time (exponential backoff) and
then abort the victim

  Karma: priority = cumulative number of shared objects
accessed – work estimate. Abort the victim when
number of retries exceeds difference in priorities.

  Polka: Karma + backoff waiting

Greedy contention manager

 State
 Priority (based on start time)
 Waiting flag (set while waiting)

 Wait if other has
 Higher priority AND not waiting

 Abort other if
  Lower priority OR waiting

T1

T2

read()

write()

commit

O1

O1
write()

O2

Aborting is a fatality

read()

O2

abort

TM does not always replace locks:
it hides them

Memory transactions look like db
transactions but are different

Concluding remarks

The garbage-collection analogy

  In the early times, the programmers had to take
care of allocating and de-allocating memory

  Garbage collectors do it for you: they are now
incorporated in Java and other languages

  Hardware support was initially expected, but
now software solutions are very effective

Historical perspective
  Eswaran et al (CACM’76) Databases
  Papadimitriou (JACM’79) Theory
  Liskov/Sheifler (TOPLAS’82) Language
  Knight (ICFP’86) Architecture
  Herlihy/Moss (ISCA’93) Hardware
  Shavit/Touitou (PODC’95) Software
  Herlihy et al (PODC’03) Software – Dynamic
  Guerraoui/Kapalka (Morgan&Claypool) Principles

