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Locking is ’’history’’ 

Lock-freedom is difficult 



        
Wanted 

A concurrency control abstraction 
that is simple, robust and efficient  



           Transactions 



Historical perspective  
   Eswaran et al (CACM’76) Databases 
   Papadimitriou (JACM’79) Theory 
   Liskov/Sheifler (TOPLAS’82) Language  
   Knight (ICFP’86) Architecture 
   Herlihy/Moss (ISCA’93)  Hardware 
   Shavit/Touitou (PODC’95) Software 
   Herlihy et al (PODC’03) Software – Dynamic 



  accessing object 1; 
  accessing object 2; 

Back to the sequential level 



  accessing object 1; 
  accessing object 2; 

Back to the sequential level 

atomic { 

} 



             Semantics 

             
Every transaction appears to execute 

at an indivisible point in time 



Double-ended queue 

Enqueue Dequeue 



  class Queue { 
    QNode head; 
    QNode tail; 
    public enq(Object x) { 
      atomic { 
        QNode q = new QNode(x); 
        q.next = head; 
        head = q; 
      } 
    } 
    ... } 



Queue composition 

Dequeue 

Enqueue 



  class Queue { 
    … 
    public transfer(Queue q) { 
      atomic { 
        Qnode n = this.dequeue(); 
        q.enqueue(n) } 
    } 
    ... } 



           Simple example
    (consistency invariant) 
             
           0 < x < y



 T: x := x+1 ; y:= y+1 

           Simple example
           (transaction) 



  accessing object 1; 
  accessing object 2; 

The illusion of a critical section 

atomic { 

} 



   “It is better for Intel to get involved in this 
[Transactional Memory] now so when we get to the 
point of having …tons… of cores we will have the 
answers” 
   Justin Rattner, Intel Chief Technology Officer 



   “…we need to explore new techniques like 
transactional memory that will allow us to get the 
full benefit of all those transistors and map that 
into higher and higher performance.” 

 Bill Gates, Businessman 



   “…manual synchronization is intractable…
transactions are the only plausible 
solution….” 

 Tim Sweeney, Epic Games 



 
  Sun/Oracle, Intel, AMD, IBM, MSR   

  Fortress (Sun); X10 (IBM); Chapel (Cray) 

 

The TM Topic has been a  
VERY HOT topic 



 
  begin() returns ok 

 
  read() returns a value or abort  
  write() returns an ok or abort 

  commit() returns ok or abort 
  abort() returns ok 

 

The TM API 
(a simple view) 



Two-phase locking 
 

  To write or read O, T requires a lock on O;  
T waits if some T’ acquired a lock on O 
 
 
  At the end, T releases all its locks 



Two-phase locking  
(more details) 

 

  Every object O, with state s(O) (a register), is 
protected by a lock l(O) (a c&s) 

  Every transaction has local variables wSet and wLog 

  Initially: l(O) = unlocked, wSet  = wLog = ∅ 
 



Two-phase locking 
 

Upon op = read() or write(v) on object O 
if O     wSet then  

 wait until unlocked= l(O).c&s(unlocked,locked) 
   wSet = wSet U O 
   wLog = wLog U S(O).read() 
if op = read() then return S(O).read() 
S(O).write(v) 
return ok 
 
 

€ 
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Two-phase locking (cont’d) 

Upon commit()  
cleanup() 
return ok 
 
Upon abort()  
rollback() 
cleanup() 
return ok 
 
  
 
 



Two-phase locking (cont’d) 
 
Upon rollback() 
for all O ∈ wSet do S(O).write(wLog(O)) 
wLog = ∅ 
 
Upon cleanup() 
for all O ∈ wSet do l(O).write(unlocked)  
wSet = ∅ 
  
 
 



Why two phases?  
(what if?) 

 

  To write or read O, T requires a lock on O;  
T waits if some T’ acquired a lock on O  
 
    

 
  T releases the lock on O when it is done with O 



Why two phases? 

T1 

T2 

read(0) write(1) 

O1 O2 

read(0) write(1) 

O2 O1 



Two-phase locking  
(read-write lock) 

 

  To write O, T requires a write-lock on O;  
T waits if some T’ acquired a lock on O 
 
  To read O, T requires a read-lock on O;  

T waits if some T’ acquired a write-lock on O 
 
  Before committing, T releases all its locks 



Two-phase locking 
- better dead than wait - 

 

  To write O, T requires a write-lock on O;  
T aborts if some T’ acquired a lock on O 
 
  To read O, T requires a read-lock on O;  

T aborts if some T’ acquired a write-lock on O 
 
  Before committing, T releases all its locks 
  A transaction that aborts restarts again 



Two-phase locking 
- better kill than wait - 

 

  To write O, T requires a write-lock on O;  
T aborts T’ if some T’ acquired a lock on O 
 
  To read O, T requires a read-lock on O;  

T aborts T’ if some T’ acquired a write-lock on O 
 
  Before committing, T releases all its locks 
  A transaction that is aborted restarts again 



Two-phase locking 
- better kill than wait - 

 

  To write O, T requires a write-lock on O;  
T aborts T’ if some T’ acquired a lock on O 
 
  To read O, T requires a read-lock on O;  

T waits if some T’ acquired a write-lock on O 
 
  Before committing, T releases all its locks 
  A transaction that is aborted restarts again 



Visible Read  
(SXM, RSTM, TLRW) 

 
 Write is mega killer: to write an object, 
a transaction aborts any live one which 
has read or written the object 

 Visible but not so careful read: when a 
transaction reads an object, it says so  



Visible Read  

  A visible read invalidates cache lines 

  For read-dominated workloads, this means a 
lot of traffic on the bus between processors 
  - This reduces the throughput 
  - Not a big deal with single-CPU, but with 
many core machines (e.g. SPART T2 Niagara) 



Two-phase locking 
with invisible reads  

 

  To write O, T requires a write-lock on O;  
T waits if some T’ acquired a write-lock on O 
 
  To read O, T checks if all objects read remain 
valid - else T aborts 

 
  Before committing, T checks if all objects read 
remain valid and releases all its locks 



Invisible reads              
(more details) 

 

  Every object O, with state s(O) (register), is protected 
by a lock l(O) (c&s) 

  Every transaction maintains, besides wSet and wLog: 

  -  a local variable rset(O) for every object 

 



Invisible reads 
 

Upon write(v) on object O 
if O    wSet then  
    wait until unlocked= l(O).c&s(unlocked,locked)  
    wSet = wSet U O 
    wLog = wLog U S(O).read()  
(*,ts) = S(O).read() 
S(O).write(v,ts) 
return ok 
 
 

€ 
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Invisible reads 
 

Upon read() on object O 
(v,ts) = S(O).read() 
if O  ∈ wSet then return v 
if l(O) = locked or not validate() then abort() 
if rset(O) = 0 then rset(O) = ts 
return v 
 
 



Invisible reads 
 

Upon validate() 
for all O s.t rset(O) > 0 do 
 (v,ts) = S(O).read() 
 if ts ≠ rset(O) or  
    (O    wset and l(O) = locked) 
then return false 
else return true 
 
 

€ 
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Invisible reads 
 

Upon commit() 
if not validate() then abort() 
for all O ∈ wset do  
   (v,ts) = S(O).read() 
S(O).write(v,ts+1) 
cleanup() 



Invisible reads 
 

Upon rollback() 
for all O ∈ wSet do S(O).write(wLog(O)) 
wLog = ∅ 
 
Upon cleanup() 
for all O ∈ wset do l(O).write(unlocked) 
wset = ∅ 
rset(O) = 0 for all O   
 



DSTM (SUN) 
 

  To write O, T requires a write-lock on O;  
T aborts T’ if some T’ acquired a write-lock on O 
 
  To read O, T checks if all objects read remain 
valid - else abort 
  Before committing, T releases all its locks 



DSTM 

 

 Killer write (ownership)  

 Careful read (validation) 



More efficient algorithm? 
 

Apologizing versus asking permission 

 

 Killer write 
 Optimistic read 

  validity check only at commit time 



Example

             
Invariant: 0 < x < y
Initially: x := 1; y := 2



Division by zero 

 T1: x := x+1 ; y:= y+1  

 T2: z := 1 / (y - x) 



 T1: x := 3; y:= 6  
 

Infinite loop 

 T2: a := y; b:= x;  
        repeat  b:= b + 1 until a = b 



Opacity 
 Serializability 

 Consistent memory view 



            Trade-off 
 
    The read is either  
    visible or careful  



Intuition  

T1 

T2 

read() 

write() 
commit 

I1,I2,..,Im 

O1,O2,..,On 
read() 
Ik 



Read invisibility 
 The fact that the read is invisible means T1 
cannot inform T2, which would in turn abort T1 
if it accessed similar objects (SXM, RSTM) 

 NB. Another way out is the use of multiversions: 
T2 would not have written “on” T1 



Conditional progress  
- obstruction-freedom -  

 A correct transaction that eventually does not 
encounter contention eventually commits 

 

 Obstruction-freedom seems reasonable 
and is indeed possible 



DSTM 
 

  To write O, T requires a write-lock on O (use C&S);  
T aborts T’ if some T’ acquired a write-lock on O (use 

C&S) 
 
  To read O, T checks if all objects read remain valid - 
else abort (use C&S) 
  Before committing, T releases all its locks (use C&S) 



 

  If a transaction T wants to write an object O 
owned by another transaction T’, T calls a 
contention manager  

  The contention manager can decide to wait, 
retry or abort T’ 

Progress 



Contention managers 
  Aggressive: always aborts the victim 

 
  Backoff: wait for some time (exponential backoff) and 
then abort the victim 

 
  Karma: priority = cumulative number of shared objects 
accessed – work estimate. Abort the victim when 
number of retries exceeds difference in priorities.  

 
  Polka: Karma + backoff waiting 



Greedy contention manager 

 State 
 Priority (based on start time) 
 Waiting flag (set while waiting) 

 Wait if other has 
 Higher priority AND not waiting 

 Abort other if 
  Lower priority OR waiting 



T1 

T2 

read() 

write() 

commit 

O1 

O1 
write() 

O2 

Aborting is a fatality 

read() 

O2 

abort 



TM does not always replace locks:         
it hides them  

Memory transactions look like db 
transactions but are different 

Concluding remarks 



The garbage-collection analogy 
 

  In the early times, the programmers had to take 
care of allocating and de-allocating memory 

  Garbage collectors do it for you: they are now 
incorporated in Java and other languages 

  Hardware support was initially expected, but 
now software solutions are very effective 



Historical perspective  
   Eswaran et al (CACM’76) Databases 
   Papadimitriou (JACM’79) Theory 
   Liskov/Sheifler (TOPLAS’82) Language  
   Knight (ICFP’86) Architecture 
   Herlihy/Moss (ISCA’93)  Hardware 
   Shavit/Touitou (PODC’95) Software 
   Herlihy et al (PODC’03) Software – Dynamic 
   Guerraoui/Kapalka (Morgan&Claypool) Principles 


