
1

© R. Guerraoui

Universal constructions

R. Guerraoui
Distributed Programming Laboratory

2

Universality [Her91]

§  Definition 1 : A type T is universal if, together
with registers, instances of T can be used to
provide a wait-free linearizable implementation of
any other type (with a sequential specification)

§  Definition 2: The implementation is called a
universal construction

3

Consensus

§  Theorem 1: Consensus is universal [Her91]
§  Corollary 1: Compare&swap is universal
§  Corollary 2: Test&set is universal in a system of

2 processes (it has consensus number 2)

§  Corollary to FLP/LA: Register is not universal in
a system of at least 2 processes

4

Shared memory model

Registers (read-write)
+ Consensus objects

P2

P3 P1

5

The consensus object

§  One operation propose() which returns a value. When a
propose returns, the process decides

§  Agreement: No two processes decide differently
§  Validity: Every decided value is a proposed value
§  Termination (wait-free): Every correct process that

proposes a value eventually decides

6

Universality

§  We consider first deterministic objects and then
non-deterministic ones

§  An object is deterministic if the result and final
state of any operation depends solely on the
initial state and the arguments of the operation

7

Example (FIFO Queue)
Sequential deterministic specification

P1
Enq(2) Deq() -> 1

Q Q

P0
Q

Enq(1) Deq() -> 2

Q

8

Example (Set)
Sequential non-deterministic specification

P1
Insert(2) Remove() -> 1 or 2

Q Q

P0
Q

Insert(1)

Q

Remove() -> 1 or 2

9

Universal construction (1)

§  We assume a deterministic object

§  We give an algorithm where
ü every process has a copy of the object

(inherent for wait-freedom)
ü processes communicate through registers and

consensus objects (linearizability)

10

P1
Enq(2)

Q Q

P0
Q Q

Enq(1)

Example (FIFO Queue)
Non-linearizable execution

Deq() -> 2

Deq() -> 1

11

Universal algorithm (1)

P1
Read() Prop()

Reg Cons

P0
Cons Reg

Write(x) Prop()

12

Shared objects

§  The processes share an array of n SWMR
registers Lreq (theoretically of infinite size)

§  This is used to inform all processes about which
requests need to be performed

13

Shared objects

§  The processes also share a consensus list Lcons (also of
infinite size)

§  This is used to ensure that the processes agree on a total

order to perform the requests (on their local copies)

ü We use an ordered list of consensus objects
ü Every such object is uniquely identified by an integer
ü Every consensus object is used to agree on a set of

requests (the integer is associated to this set)

14

Universal algorithm (1)

§  The algorithm combines the shared registers
Lreq[I] and the consensus object list Lcons to
ensure that:
ü Every request invoked by a correct process is

performed and a result is eventually returned
(wait-free)

ü Requests are executed in the same total order
at all processes (i.e., there is a linearization
point)

ü This order reflects the real-time order (the
linearization point is within the interval of the
operation)

15

Linearization (FIFO Queue)

Enq(2) Deq() -> 1

Q Q Q Q

Enq(1) Deq() -> 2

16

Local data structures

§  Every process also uses two local data
structures:
ü  A list of requests that the process has

performed (on its local copy): lPerf
ü  A list of requests that the process has to

perform: lInv

§  Every request is uniquely identified

17

Universal algorithm (1)

§  Every process pI executes three // tasks:
ü Task 1: whenever pI has a new request, pI

adds it to Lreq[I]
ü Task 2: periodically, pI adds the new elements

of every Lreq[J] into lInv
ü Task 3: while (lInv – lPerf) is not empty, pI

performs requests using Lcons

18

Task 3

§  While lInv – lPerf is not empty
●  pI proposes lInv – lPerf for a new consensus in

Lcons (increasing the consensus integer)
●  pI performs the requests decided (that are not in

Lperf) on the local copy
●  For every performed request:

pI returns the result if the request is in Lreq[I]
pI puts the request in lPerf

19

Example (FIFO Queue)

P1

P0
Cons1

Enq(1)

Enq(2) Deq() -> 1

Deq() -> 2

Cons2 Cons3

Cons4

20

Correctness

§  Lemma 1 (wait-free): every correct process pI
that invokes req eventually returns from that
invocation

§  Proof (sketch): Assume by contradiction that pI
does not return from that invocation; pI puts req
into Lreq (Task 1); eventually, every proposed
lInv - lPerf contains req (Task 2); and the
consensus decision contains req (Task 3); the
result is then eventually returned (Task 3)

21

Correctness

§  Lemma 2 (order): the processes execute the
requests in the same total order

§  Proof (sketch): the processes agree on the same

total order for sets of requests and then use the
same order within every set of requests (the
linearization order is determined by the integers
associated with the consensus)

22

Correctness

§  Lemma 3 (real-time): if a request req1 precedes
in real-time a request req2, then req2 appears in
the linearization after req1

§  Proof (sketch): it directly follows from the

algorithm that the result of req2 is based on the
state of req1

23

Why not?

§  Every process pI executes three // tasks:
ü Task 1: whenever pI has a new request, pI

adds it to lInv
ü Task 3: while (lInv – lPerf) is not empty, pI

performs requests using Lcons

24

Universality (1 + 2)

§  We consider first deterministic objects and then
non-deterministic ones

§  An object is non-deterministic if the result and
final state of an operation might differ even with
the same initial state and the same arguments

25

Example (Set)

P1

P0
Cons1

Cons2 Cons3

Insert(1)

Insert(2) Remove() -> 1

Cons3

Remove() -> 2

Cons4

Remove() -> 1

Cons4

Remove() -> 2

26

Non-linearization

Insert(2) Remove() -> 1

S S S S

Insert(1) Remove() -> 1

27

A restricted deterministic type

§  Assume that a non-deterministic type T is defined
by a relation δ that maps each state s and each
request o to a set of pairs (s’,r), where s’ is a new
state and r is the returned result after applying
request o to an object of T in state s.

§  Define a function δ’ as follows:
For any s and o, δ’(s,o) ∈ δ(s,o).

The type defined by δ’ is deterministic

28

It is sufficient to implement a type
defined by δ’ !

§  Every execution of the resulting (deterministic)
object will satisfy the specification of T.

P1

P0
Cons1

Cons2 Cons3

Insert(1)

Insert(2) Remove() -> 1

Cons3

Remove() -> 1

Cons4

Remove() -> 2

Cons4

Remove() -> 2

29

Task 3 (Preserving non-determinism)

§  While lInv – lPerf is not empty
●  pI produces the reply and new state (update)

from request by performing:
 (reply,update):= object.exec(request)
●  pI proposes (request,reply,update) to a new

consensus in Lcons (increasing the consensus
integer) producing (re,rep,up)

●  pI updates the local copy: object.update(up)
●  pI returns the result if the request is in Lreq[I]
●  pI puts (req,rep,up) in lPerf

